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Abstract: All currently licensed medications for multiple sclerosis (MS) target the immune system.
Albeit promising preclinical results demonstrated disease amelioration and remyelination enhance-
ment via modulating oligodendrocyte lineage cells, most drug candidates showed only modest or no
effects in human clinical trials. This might be due to the fact that remyelination is a sophistically or-
chestrated process that calls for the interplay between oligodendrocyte lineage cells, neurons, central
nervous system (CNS) resident innate immune cells, and peripheral immune infiltrates and that this
process may somewhat differ in humans and rodent models used in research. To ensure successful
remyelination, the recruitment and activation/repression of each cell type should be regulated in a
highly organized spatio–temporal manner. As a result, drug candidates targeting one single pathway
or a single cell population have difficulty restoring the optimal microenvironment at lesion sites
for remyelination. Therefore, when exploring new drug candidates for MS, it is instrumental to
consider not only the effects on all CNS cell populations but also the optimal time of administration
during disease progression. In this review, we describe the dysregulated mechanisms in each relevant
cell type and the disruption of their coordination as causes of remyelination failure, providing an
overview of the complex cell interplay in CNS lesion sites.

Keywords: multiple sclerosis; remyelination; immune cells; oligodendrocytes; transcription factors;
epigenetics

1. Introduction

Multiple sclerosis (MS) is an inflammatory autoimmune disease and the most frequent
degenerative disease of the central nervous system (CNS) [1]. Immune cells with peripheral
origin pass through the damaged blood–brain barrier (BBB) and release cytokines, including
tumor necrosis factor alpha (TNFα), interferon gamma (IFN-γ), and interleukin 17 (Il-17).
These cytokines can directly attack myelinating oligodendrocytes (OLs) [2] or indirectly
impair the OL–neuron coupling by polarizing microglia into the M1 (pro-inflammatory)
state, which then activate reactive neurotoxic A1 astrocytes by secreting Il-1α, TNFα,
and the complement component 1q (C1q) [3]. The combined secretion of cytokines by
lymphocyte infiltrates, activated M1 microglia, and A1 astrocytes lead to OL death and
demyelination [4,5]. Demyelinated axons lose insulation and metabolite support from
OLs [6,7], which eventually leads to axonal degeneration and neuronal loss [8].

Although remyelination can be demonstrated by the occurrence of thin myelin using
electron microscopy and animal models at different time points after a demyelinating
lesion [9], it has been difficult to conclude whether the thinly myelinated axons in post-
mortem MS patients are partly demyelinated or incompletely remyelinated axons [10].
However, Bodini et al. used positron emission tomography to show in vivo myelin degen-
eration and repair by tracing myelin-binding Pittsburgh compound B [11]. This provided
evidence that remyelination can occur in some MS lesions. Imaging remyelination in living
MS patients remains, however, challenging, and currently, the most accurate way to evalu-
ate remyelination is to measure visual evoked potential (VEP) latency (reviewed in [12]),
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which requires a pre-existing lesion in the optic nerve. Remyelination is mostly seen in
acute and relapsing/remitting MS (RRMS) active lesions and borders [13]. Mixed/inactive
lesions, marked by decreased or even absent remyelination, present a rim enriched in
microglia and pro-inflammatory iNOS+ myeloid cells and depleted in anti-inflammatory
CD163+ myeloid cells, compared to active lesions [13]. Furthermore, an increased density
of CD3+ T lymphocytes together with phagocytic and activated microglia has also been
shown in normal-appearing white matter (NAWM) of MS brain tissue compared to control
WM [13,14]. The alteration of innate immune cell populations in MS patients varies largely
within the lesion areas and throughout disease progression.

The density of OL progenitor cells (OPCs), the main cell population remyelinating
axons, increases in early MS lesions compared to the adjacent NAWM, which sustains
mature OL populations with unaltered density. Chronic MS lesions are marked by severe
depletion of OPCs and mature OLs [15]. Consistently, chronic MS lesions were found to
have not only a decreased OL density but also a decreased proportion of OLs that expressed
myelin gene regulatory factor (MYRF) compared to NAWM [16].

This heterogeneity of cell populations and associated extent of remyelination provide
insights into the detrimental and beneficial roles of each cell type in MS progression and
repair at different spatio-temporal regions.

2. Roles of Peripheral and CNS Resident Innate Immune Cells

Demyelination results in large amounts of myelin debris, composed of cholesterol,
phospholipids, glycolipids, and myelin-associated proteins [17]. These myelin debris are
not only neurotoxic [18] but also inhibit axonal outgrowth [19,20] and remyelination [21].
Moreover, myelin-associated proteins, such as myelin basic protein (MBP), myelin prote-
olipid protein (PLP), and myelin oligodendrocyte glycoprotein (MOG), serve as antigens to
induce an adaptive autoimmune response in MS patients [22,23].

Clearance of myelin debris by macrophages and microglia following demyelination
is a crucial process to allow remyelination. Phosphatidylserine is a phospholipid that is
abundant in myelin. During OL apoptosis, phosphatidylserine translocates to the outer
layer of the plasma membrane, where it serves as a signal inducing phagocytosis [24]. In-
deed, phosphatidylserine mediates the activation of TAM (Tyro3, Axl, and Mertk) receptors
through their ligands Protein S and Gas6 [25,26]. Consistently, in a cuprizone model of
CNS demyelination and remyelination, Shen et al. found that Mertk-KO mice had impaired
myelin clearance and remyelination [27]. Another important phospholipid sensor is the
triggering receptor expressed on myeloid cells-2 (TREM2), which is also expressed by
microglia and macrophages [28]. TREM2 is essential for microglia activation and phagocy-
tosis. Trem2-deficient mice were found to have fewer lipid droplets, elevated endoplasmic
reticulum (ER) stress, and enhanced neuronal damage and motor impairments [29,30].
On the other hand, treatment with the TREM2 monoclonal agonistic antibody ALoo2a
enhanced myelin debris clearance in the mouse model of demyelination mediated by
cuprizone [28]. The same study also detected elevated TREM2 expression in lipid-laden
macrophages–microglia in active lesions from MS patients but not in NAWM and control
WM; this presents further evidence that the activation of microglia and myelin clearance
also occurs transiently in active lesions.

Pattern recognition receptors (PRRs) expressed in CNS phagocytes can also sense myelin
debris. Major PRRs involved in CNS myelin clearance include Toll-like receptors (TLRs),
Nod-like receptors (NLRs), and C-type lectin receptors (CLRs) [31]. Deerhake et al. showed
that PRRs have both pathologic and protective roles in the experimental autoimmune en-
cephalomyelitis (EAE) model, which is commonly used to model the autoimmune inflam-
matory aspect of MS [31]. Indeed, after deleting the primary TLR adaptor protein Myd88,
mutant mice had fewer CD4+ infiltrates and partial-to-complete resistance to MOG immu-
nization [32,33]. However, using the lysolecithin model of CNS demyelination, Cunha and
colleagues showed that Myd88 mutant mice had suppressed phagocyte activation and im-
paired myelin clearance and remyelination [34]. These seemingly contradictory phenotypes



Int. J. Mol. Sci. 2023, 24, 6373 3 of 16

are partially due to the fact that the former studies used the EAE model, whereas the latter
chose the lysolecithin model. As lysolecithin directly dissolves myelin and kills OLs at lesion
sites without causing a major immune response from the peripheral immune system, it is
arguably more suitable for CNS myelin clearance and remyelination studies.

During demyelination, the large amount of cholesterol present in myelin debris is
phagocytosed by activated microglia and macrophages [35]. Activated phagocytes upreg-
ulate sterol synthesis genes in mice [35] and in MS repairing lesion samples [36], except
for the gene coding for 24-dehydrocholesterol reductase (DHCR24). DHCR24 leads to the
sterol synthesis intermediate product desmosterol that activates LXR (liver X receptor)
signaling in phagocytes, which was shown to resolve inflammation and enhance recycled
cholesterol export from phagocytes for remyelination by OLs in vivo [35]. In aged phago-
cytes, cholesterol excessively accumulates, switching from a free to a crystal form, which
activates inflammasomes [37].

On the other hand, activated microglia release the cytokines Il-1α and TNF, as well as
C1q, which polarizes astrocytes into a reactive neurotoxic A1 state. Unlike M1 microglia
which actively engulf myelin debris, A1 astrocytes display decreased Mertk expression and
loss of phagocytic capacity of myelin debris [3]. Furthermore, A1 astrocyte-conditioned
medium can induce neuron and OL apoptosis in vitro [3]. Although activated phagocytes
are recruited to lesion sites and clear myelin debris, persistent microglia and astrocyte activa-
tion are associated with chronic inflammation and loss of myelin. As mentioned earlier, his-
tological analyses showed increased levels of TMEM119+ homeostatic microglia and iNOS+
(pro-inflammatory) myeloid cells and decreased levels of CD163+ (anti-inflammatory)
myeloid cells in the periphery of mixed lesions compared to active lesions [13]. Mixed
lesions are also characterized by fewer oligodendrocytes and less myelin in the lesion center
compared to active lesions that can be remyelinated and to NAWM [13].

3. Roles of Oligodendrocyte Lineage Cells in Remyelination
3.1. Oligodendrocyte Progenitor Cells Migrate to Lesion Sites and Proliferate Following CNS Injury

Both parenchymal adult OPCs and subventricular neural stem cells (NSCs) can re-
populate depleted OLs in lesion sites [38–44]. The relative contribution of OPCs versus
NSCs depends on the location of lesions. Using cuprizone-conditioned mice, Xing and
colleagues found that in the rostral region adjacent to the subventricular zone, the majority
of OLs originated from Nestin+ neural precursor cells (NPCs) and formed remyelinated
internodes with a thickness equivalent to unchallenged controls, in contrast to the re-
myelinating sheath observed in other CNS regions that is typically thinner than in the
unlesioned CNS [43]. In terms of distribution, however, the NG2 (nerve/glial antigen-2)-
and PDGFRα (platelet-derived growth factor receptor alpha)-expressing OPCs are more
widespread throughout the CNS than NPCs and might, hence, likely be more available
for OL repopulation for the various CNS lesion sites [38,39,42,45,46]. OL repopulation
and subsequent remyelination are relatively efficient in active demyelinating lesions, even
after several successive lesions, but the efficiency of this process decreases in chronic MS
lesions [13,15]. Demyelination induces the release of a range of chemoattractants that
activate OPC migration to lesion sites [45,47,48]. Moyon and colleagues identified the
chemoattractants Il1β and Ccl2, among other upregulated genes, in OPCs isolated from
cuprizone-treated mice compared to healthy untreated mice [45]. CCL2 was also found to
be upregulated at the protein level in active MS lesions and cuprizone-treated mice. Con-
sistent with their chemoattractant function, in vitro treatment with IL1β or CCL2 promotes
OPC migration [45]. In addition to chemoattraction, other mechanisms are involved in
OPC migration. For instance, the PDGF-A-induced ERK pathway and the interaction of
integrins in OPCs with laminin in the extracellular matrix (ECM) promote OPC migration
and process extension via focal adhesion kinase activation and actin reorganization [48,49].

On the other hand, a wide range of chemorepellents is released by CNS cells during
CNS demyelination [50]. Chondroitin sulfate proteoglycans (CSPGs) inhibit remyelina-
tion through binding to their cognate receptor, protein tyrosine phosphatase σ (PTPσ),
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on OPCs [51]. Inhibiting CSPG/PTPσ signaling leads to increased expression of matrix
metalloproteinase-2 (MMP-2) in OPCs, digestion of inhibitory CSPGs by MMP-2, and
enhanced recovery from EAE induction [51]. A review by De Jong et al. [50] provides a
detailed overview of the complex ECM remodeling process during demyelination. Im-
proper ECM remodeling may inhibit OPC migration and OL repopulation and lead to
remyelination failure in MS lesions. For example, Boyd and colleagues (2013) reported that
the chemoattractant rSema3F appears in and around active lesions, together with astrocytes,
microglia, and macrophages, whereas Sema3A is absent [47]. Sema3A appears only in
chronic active MS lesions and inhibits mouse OPC migration in vivo. All in all, upon CNS
injury, CNS resident cells secrete a wide range of chemicals, ECM, and ECM-remodeling
enzymes, providing molecular and structural cues for OPC migration. In pathological
conditions, ECM chemorepellents can exceed chemoattractants, hence inhibiting OPC
migration to lesion sites, leading to inefficient repair.

OPC migration to lesion sites precedes proliferation [52]. A wide range of ECM
molecules, growth factors, and chemokines secreted by astrocytes are crucial for OPC
proliferation. Endothelin-1 (ET-1) inhibits OPC maturation, thereby maintaining their
migratory and proliferative capacity [53]. ET-1 also increases the production of the growth
factors PDGFA and FGF2 and promotes OPC proliferation via activating ERK/MAPK
and CREB pathways [54]. Various ECM components, such as fibronectins and laminins,
appear or are upregulated in active MS lesion sites. They can self-polymerize or assemble to
form an adhesive bridge between OPCs and the surrounding tissue via integrin receptors,
promoting OPC migration and proliferation [50,55,56].

Not surprisingly, some factors that transiently promote migration and proliferation
such as Wnt also inhibit OPC differentiation [57–59], which protects premature OLs from
insults within the inflamed microenvironment [60]. Wnt signaling was shown to be acti-
vated after demyelination, and this activation is associated with the increased expression
of its intranuclear mediator Tcf4 in mouse lesion areas and MS lesions [57]. Wnt signal-
ing leads to the activation and accumulation of β-catenin, which eventually translocates
to the nucleus and triggers expression of the Cxcl12-binding chemokine receptor Cxcr4
that facilitates OPC migration [59]. Perturbed Wnt/β-catenin signaling may compromise
remyelination. The overactivation of β-catenin under the control of the Olig2 promoter in
mice inhibits OPC differentiation and delays remyelination after lesion [57]. Conversely,
overexpression of the Wnt inhibitor Apcdd1 increases OPC differentiation in vitro and
enhances remyelination after lysolecithin lesion [61].

Similarly, the activation of the Notch pathway allows OPC proliferation [62], inhibits
their differentiation [53,63], and may, therefore, be a target for remyelination [64]. The
Notch pathway is activated by the membrane-bound ligands delta or serrate (Jagged)
secreted by reactive astrocytes [60]. Expression of the Notch ligands Jagged 1 and Jagged 2
increases at the lesion margins following CNS demyelination [65]. The activation of Notch
in OPCs enhances their proliferation in demyelinated lesions and prevents their differ-
entiation [60]. Notch signaling can modulate the activity of Sox10, a major transcription
factor for myelination and remyelination, via the Notch downstream effector Hes5, which
sequesters Sox10 by direct binding [66]. On the other hand, the inhibition of Notch1 restricts
OPC expansion and induces differentiation and myelination [64]. Indeed, the ablation
of Notch1/2 under the control of the Olig1 promoter results in accelerated remyelination
following lysolecithin demyelination compared to control littermates, albeit at the expense
of OPC proliferation [64]. However, Notch also affects the fate of neurons and other glial
cells in the CNS [60]. Therefore, one must consider the off-target effects when developing
MS therapies involving the modulation of the Notch pathway.

3.2. Key Transcription Factors for Oligodendrocyte Maturation and (Re)myelination

Olig2 is expressed in the entire OL lineage cells and is an essential transcription
factor for oligodendrogenesis [67]. The loss of Olig2 in NG2 cells leads to reduced OPC
production [68] and to a fate switch into the astrocyte lineage [69]. The overexpression
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of Olig2 under control of the Sox10 promoter in mice enhances the expression of Myrf,
Mbp, and Plp1 expression, promoting OPC differentiation and enhancing remyelination
after lysolecithin lesion [70]. Olig2 expression remains relatively low in healthy WM while
increasing in active but not inactive MS lesions, which suggests its contribution to the
success of remyelination [70]. Olig1, a homolog to Olig2, is co-expressed with Olig2 in most
OL lineage cells. Unlike Olig2-null mice that die at birth, Olig1-null mice exhibit a normal
phenotype until the adult stage. Additionally, Olig2 is confined to the nuclear compartment,
whereas Olig1 is mostly localized in the cytoplasm of OLs. During demyelination and
remyelination, however, Olig1 translocates to the OL nucleus. This subcellular translocation
is very likely to be critical for remyelination, as suggested by the finding that Olig1-null mice
fail to express PLP and MBP and to remyelinate after cuprizone- or lysolecithin-induced
CNS demyelination, while control littermates remyelinate extensively [71].

Nkx2.2 is transiently expressed at the onset of OPC differentiation and determines
the differentiation timing. Zhu and colleagues have reported that Nkx2.2 represses PDGF
signaling via the downregulation of PDGFRα, arresting OPC migration and proliferation
while inducing their differentiation in the developing mouse spinal cord [72]. From a
therapeutical point of view, it could be interesting to target Nkx2.2 in MS lesions; however,
it may also be challenging due to the transient time window of Nkx2.2 expression. Hypo-
thetically, activating Nkx2.2 in MS lesions while OPCs migrate to or proliferate at lesion
sites could result in reduced numbers of OPCs that can differentiate into remyelinating
OLs. Similarly, one should also consider the spatio-temporal dual function of the PDGF
signaling, as opposed to merely pro-proliferative or inhibitory to differentiation.

Sox10 is required during OPC differentiation and induces myelination-associated gene
expression (reviewed in [73]). During postnatal development in mice, Sox10 deletion in
OLs causes hypomyelination associated with a drastically decreased expression of mature
OL markers, such as Plp, Mbp, and Myrf [74]. In addition, Myrf was completely absent
after additional ablation of Sox8, a close relative of Sox10 [74]. As Sox10 upregulates
myelination-associated genes during OL developmental myelination, it is tempting to
speculate on its role in remyelination. Indeed, Duman and colleagues reported that an
increased expression of the chromatin-remodeling enzyme histone deacetylase 2 (HDAC2)
enhanced MBP expression and CNS remyelination after lysolecithin lesion in mice, through
Sox10 stabilization and maintenance of Sox10 target genes activation [75].

The role of extracellular signal-regulated kinases (ERKs) in OPC differentiation is less
clear. One study found that Erk2-null GFAP-expressing radial glial cells, which give rise to
neurons and oligodendrocytes, failed to differentiate from OPCs to mature OLs in vitro and
that postnatal OL differentiation and myelination were delayed in the mouse corpus callo-
sum, suggesting a role of ERK2 in the timing of OPC differentiation and myelination [76].
However, other studies did not find evidence linking ERK1/2 activity to OPC differentia-
tion [77–79]. Instead, the latter studies show that ERK1/2 signaling is mostly required for
myelin thickness. Erk1/2-null mice showed significant hypomyelination, while the size of
the PLP+ OL population was similar to that of control littermates [77]. In comparison, mice
under sustained ERK1/2 activation displayed thicker remyelination of spinal cord lesions
7 weeks after lysolecithin-induced demyelination than control littermates [79]. Consistently,
the FDA-approved medication miconazole has been shown to activate ERK1/2 specifically
in OPCs and to enhance remyelination after lysolecithin lesion in mice [80]. Interestingly,
ERK activation in preexisting OLs promotes the formation of new myelin sheaths [81],
which challenges the view—also challenged later by Duncan et al. [82]—that remyelination
is conducted only by OPCs.

OLs require Myrf for myelin formation [83], maintenance [84], and remyelination [16].
Mice with Myrf ablated in the OL lineage under the control of the Olig2 promoter show
decreased myelin gene expression compared to control littermates and fail to myelinate [83].
Conversely, overexpression of Myrf induces MBP expression in developing chick spinal
cord [83]. Conditional Myrf ablation in mature OLs in adult mice leads to the downreg-
ulation of myelin genes, including Plp, Mbp, Mog, and Mag, without, however, affecting



Int. J. Mol. Sci. 2023, 24, 6373 6 of 16

Sox10 expression [84]. Indeed, Sox10 activates the expression of Myrf at the transcriptional
level [73] and in turn Myrf guides Sox10 target gene selection during OL differentiation [85]
and cooperates with Sox10 to activate the transcription of myelin genes [74]. However,
Sox10 expression is not regulated by Myrf [84]. Consistently, the depletion of Myrf in
OPCs under the control of the Pdgfra promoter in mice leads to myelin gene expression and
remyelination failure after lysolecithin-induced demyelinating lesion in the CNS, while
OPC recruitment to the lesion site remains unaffected [16]. Furthermore, the same study
reported that fewer Sox10+/NogoA+ cells were Myrf+ in chronic MS lesion centers than in
shadow plaques, indicating that a lack of Myrf may contribute to remyelination failure in
some MS lesions.

The tyrosine kinase Fyn promotes OPC differentiation, OL process extension, and
myelination [86]. Mbp mRNA-containing granules can be shuttled to OL–axon contact sites,
where L1/contactin-activated Fyn phosphorylates heterogeneous nuclear ribonucleoprotein
A2 (hnRNP A2), leading to the dissociation of the RNA transport granules, thereby allowing
for spatio-temporal regulation of MBP translation and myelination [87]. Additionally, upon
activation by the laminin family member Netrin-1, Fyn can inactivate Rho-A, which is
a downstream effector of LINGO-1, a negative regulator of OPC differentiation [88,89].
Another laminin family member, laminin-2, which interacts with β1-integrin, can also
initiate myelination via Fyn activation. Consistently, the ablation of laminin-2 in the mouse
CNS leads to delayed OL maturation and hypomyelination in vivo [90].

3.3. Epigenetic Modulation of Myelination in Oligodendrocyte Lineage Cells and the Aging Process

HDACs are known to repress gene expression by deacetylating histones, which leads to
chromatin condensation and thereby limits access to genes for the transcriptional machinery.
In addition, HDACs have many non-histone targets, such as transcription factors and other
factors involved in transcriptional regulation. Class 1 HDACs are powerful regulators of OPC
differentiation, myelination, and remyelination [75,91–93]. HDAC2 prevents the targeting of
Sox10 to the proteasome via deacetylating its negative regulator eukaryotic elongation factor
1A1 (eEF1A1) [75] and thereby promotes Sox10-mediated activation of promyelinating and
myelin genes, such as Myrf and Myelin basic protein (Mbp) in OLs [94]. Theophylline, a potent
HDAC2 activator when used at a low dose, increases Sox10 and myelin protein expression
and remyelination in the mouse spinal cord after a demyelinating lesion by lysolecithin in
young and old adults [75], in the mouse sciatic nerve after nerve crush injury [75] and in a
mouse model of peripheral neuropathy [95]. On the other hand, co-immunoprecipitation
analyses revealed that the association of HDAC1/2 with the transcription factor Yin Yang 1
(YY1) was weak in OPCs but enhanced in OLs [93]. In this study, the authors show that YY1
inhibits the expression of Tcf4 and Id4 by recruiting HDAC1 to their promoter region. Similarly,
HDAC1 was found to be increasingly recruited to the promoter of the differentiation inhibitor
Hes5 in the mouse corpus callosum after demyelination induced by cuprizone treatment, and
this was associated with an increased expression of Olig1 [96]. Taken together, these studies
show that class 1 HDACs can enhance the expression of multiple promyelinating factor and
myelin genes by repressing their inhibitors.

Insufficient OPC differentiation into OLs contributes to the failure of remyelination in
MS patients. Although EAE animal models showed that mature OLs can be completely
repopulated, even after four episodes of induced cortical demyelination, postmortem brains
of chronic MS patients showed decreased numbers of OPCs and OLs in cortical lesions [15]. In
this study, EAE rats were, however, between 8 and 9 months old when sacrificed, whereas the
postmortem MS tissue came from patients who were on average 54 years old and had suffered
from chronic MS for decades [15]. One possible explanation for the decrease in OL repopu-
lation in chronic MS patients is aging [97,98]. Interestingly, a recent phase 2a study showed
that bexarotene, a retinoic acid receptor RXR-gamma agonist with CNS pro-remyelinating
effects demonstrated in preclinical studies [99], improved VEP latency in patients with chronic
optic neuropathy aged up to early 40s but not older [100]. Similarly, remyelination is also
less efficient in aged animals after lysolecithin- or cuprizone-mediated demyelination [96,101].
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Indeed, RNA sequencing showed evidence of age-dependent epigenetic control of OPCs.
Approximately 20% of all genes are differentially expressed in aged OPCs compared to young
OPCs [102]. Particularly, young OPCs show higher expression of genes related to self-renewal,
such as Pdgfra, Ascl1, and Ptprz1, whereas aged OPCs express higher levels of the early differ-
entiation markers Cnp1, Sirt2, and Enpp6, indicating a loss of the stem cell characteristics that
are essential in OPC proliferation and differentiation [102]. Furthermore, Shen et al. showed
that after cuprizone treatment, Cnp, Mag, Olig1, and Hdac transcripts were upregulated in
young but not old mice [96]. In addition, old mice displayed decreased numbers of HDAC1-
and HDAC8-expressing OPCs and decreased remyelination compared to young mice [96].
Interestingly, old mice also showed a higher percentage of OPCs expressing Sox2 – a tran-
scription factor that maintains multipotency and, hence, inhibits differentiation – than young
mice [96]. The authors, therefore, proposed that inefficient class 1 HDAC activity in old mice
may lead to the misregulation of transcription factors for OPC differentiation, resulting in
reduced remyelination.

Sirtuin 2 (SIRT2), a member of class III HDACs, whose activity depends on nicoti-
namide adenine dinucleotide (NAD+), has also been implicated in the decline of OPC
remyelination capacity during aging. Indeed, Ma and colleagues found that nuclear local-
ization of SIRT2 was impaired in the OPCs of aged mice [103]. In this study, the authors
show that SIRT2 expression is high and largely nuclear in OPCs during postnatal myelina-
tion in mice but decreases in adults and is only detected in the cytoplasmic compartment
of mature OLs. After a demyelinating lesion by lysolecithin, SIRT2 is re-expressed in
most OPCs and largely localized in the OPC nuclear compartment in young adult mice,
whereas re-expression and nuclear localization are a lot lower in aged mice. Remarkably,
supplementing β-nicotinamide mononucleotide, the precursor of NAD+, rescues SIRT2
re-expression and nuclear localization and remyelination in aged mice [103].

Reversing age-dependent defects intrinsic to OPCs proved to enhance OPC differ-
entiation and remyelination [102]. In this study, metformin, a drug already used for the
treatment of type 2 diabetes, was found to improve the mitochondria function of aged
OPCs via modulating the AMPK pathway, increased the expression of Pdgfra and Ascl1 in
OPCs, and enhanced remyelination after a CNS lesion induced by ethidium bromide. The
authors suggested that the pro-remyelinating effect of metformin may be due to the fact of
improved DNA repair and increased autophagy, which are known effects of metformin.
Indeed, another study found that metformin increased autophagy activity in microglia and
promoted the clearance of myelin debris in rat spinal cord lesions [104].

In addition to aging, Segel and colleagues found that the ECM present in the OPC
microenvironment stiffens over time and that expression of the “stiffness” mechanoresponsive
ion channel PIEZO1 also increases in OPCs during aging [105]. In this study, the authors
show that transplanted neonatal Piezo1-null OPCs but not transplanted control OPCs keep
proliferating in the aged rat cortex. This work indicates that PIEZO1 acts as a key mediator of
OPC mechanical signaling and that ablation of PIEZO1 disables OPC response to the stiffened
microenvironment and thereby allows OPCs to maintain their activity during aging.

The different cell types, cell processes, and molecular players involved in CNS de-
myelination and remyelination described above are illustrated in Figure 1.

Peripheral immune infiltrates and CNS resident cells secrete pro-inflammatory cy-
tokines and neurotoxic substances leading to oligodendrocyte (OL) death and demyeli-
nation. Remyelination by OLs requires a choreographed network of both extrinsic and
intrinsic factors that promote OL repopulation, differentiation, and remyelination. OPC:
OL precursor cell; NSC: neural stem cell; M1: M1 microglia; M2: M2 microglia; A1: A1
astrocyte; A2: A2 astrocyte; dOL: dying OL. The figure was generated using Biorender.com.
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4. Treatment Perspectives for Remyelination
4.1. Agents That Directly Promote OPC Differentiation and Remyelination

Various high-throughput screening methods provide insights into candidate molecules
that promote OPC differentiation [106,107]. Using OPCs cultured in micropillar plates, Mei
and colleagues identified eight FDA-approved anti-muscarinic drugs, namely, atropine,
ipratropium, oxybutynin, trospium, tiotropium, quetiapine, benztropine, and clemastine,
that enhance OPC differentiation in vitro [107]. Clemastine was also verified to promote
OPC differentiation and remyelination in lysolecithin-challenged mice [107] and in EAE
mice [108]. Consistently, clinical trials in MS patients showed a small but significant reduc-
tion in VEP latency in patients treated with clemastine, indicating remyelination [109], and
lower levels of plasma neurofilament (NF) light-chain in MS patient blood samples [110],
which is used as an indirect marker of neuroprotection/neurodegeneration. With multiple
candidate agents proven to be ineffective in phase 3 clinical trials (see Table 1), clemastine
is currently the only agent under phase 3 clinical trials for remyelination.

Table 1. Preclinical results and clinical trial outcomes related to CNS remyelination.

Compound Mechanism of
Action—Preclinical Phase 1 Phase 2 Phase 3

Clemastine Antimuscarinic [107]
VEP100 latency

reduced in treated
group [109]

Plasma NF light-chain
lower in treated group [110]

Recruiting
(NCT05338450)

Biotin
Improves fatty acid

synthesis via cofactors
ACC1/2 [111]

Improved motor and
visual function [111]

No significant
improvement in

walking [112]
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Table 1. Cont.

Compound Mechanism of
Action—Preclinical Phase 1 Phase 2 Phase 3

Bexarotene RXR-gamma agonist [99]
Improved VEP latency only
in patients up to 43 years

old [100]

Opicinumab Blocks LINGO-1
signaling [113]

Safe and well
tolerated [114]

No significant
remyelination [115]

Erythopoietin Prevents brain
atrophy [116]

Improved motor
function in treated

group [116]

No clinical
significance [117]

Domperidone Promotes prolactin
secretion [118]

Did not slow disease
progression [119]

Quetiapine
Antioxidative and
pro-proliferative to

OPCs [120]

Completed but not
published

(NCT02087631)

rHIgM22 Inhibits apoptosis via Lyn
kinase [121]

Safe and well
tolerated [122]

Benztropine Downregulates
Notch1 [106]

Metformin Rejuvenates OPCs and
improves autophagy [102]

Recruiting
(NCT05349474,
NCT04121468,
NCT05131828,
NCT05298670)

Theophylline Activates HDAC2,
increases Sox10 [75]

Miconazole Phosphorylates
ERK1/2 [80]

Olesoxime Directly stimulates OPC
maturation [123]

Safe as an add-on
therapy to

interferon-beta [124]

A variety of additional therapeutic compounds that promote OL maturation and
remyelination via distinct pathways have been discovered. Some of the targeted pathways
and transcription factors have already been discussed. For example, benztropine down-
regulates the Notch1 pathway and promotes rodent OPC differentiation and myelination
in vivo [106]. Theophylline increases HDAC2 expression and activity, which increases
Sox10 expression in mouse OLs and enhances remyelination in vivo [75]. Miconazole
increases ERK1/2 phosphorylation of mouse OPCs in vitro and promotes remyelination in
lysolecithin-induced mouse lesion models [80]. The promising preclinical evidence, sup-
ported with pathways that are well-known for OPC differentiation or myelination, warrants
interest to initiate clinical trials. On the other hand, opicinumab, an antibody that blocks
the myelination-negative regulator LINGO-1 (leucine-rich repeat and Ig domain-containing
NOGO receptor interacting protein-1) was found to improve remyelination in vivo [113]
and was well tolerated in a phase 1 clinical trial [114] but did not show any significant
improvement in remyelination of MS lesions in a phase 2 clinical trial [115]. This is the
first compound that has been tested for myelin repair in MS patients. Since then, a few
other candidates were concluded to not affect remyelination in MS patients: biotin, at high
dose, can promote myelin synthesis via the cofactors ACC1/2 (acetyl-CoA carboxylase)
and was shown to improve motor and visual function in a phase 1 trial [111] but showed
no significant improvement in walking in a phase 3 trial [112]. Domperidone was shown
to increase serum prolactin in humans [118], which improves remyelination in animal
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models [125]. Albeit increased serum prolactin levels were found in MS patients given
domperidone, the treatment showed no evidence of an effect on disease progression in a
phase 2 clinical trial [119]. The administration of olesoxime in mouse demyelination models
improved OPC maturation and remyelination [123] and was tested to be safe and well
tolerated in a phase 1 clinical trial [124]. As mentioned, bexarotene activates RXR-gamma
and thereby stimulates OPC differentiation. Interestingly, its effect on VEP improvement
was only significant in patients under 43 years old, which indicates an age-related decline
in remyelination capacity [99,100].

4.2. Rejuvenating Aged OPCs to Repopulate Remyelinating OLs

The hypothesis that aged OPCs have impaired differentiation capacity makes met-
formin an attractive candidate to promote remyelination in MS. As already mentioned
above, Neumann and colleagues showed that metformin improves remyelination in aged
animals, most likely by increasing autophagy and reducing DNA damage, which may con-
tribute to remyelination [102]. This agent is currently being tested in several clinical trials
for MS patients, including a phase 2 trial where metformin and clemastine are administered
in combination (NCT05349474, NCT04121468, NCT05131828, and NCT05298670).

4.3. Preventing OPC Differentiation Arrest and OL Death Mediated by an Inflamed Environment

As discussed, the elevated neurotoxic cytokines and their induced oxidative stress
present in MS lesions, especially with prolonged persistence, can induce OL death and
inhibit OPC differentiation. Therefore, compounds with antioxidative and anti-apoptotic
properties may be potent candidates to ameliorate MS progression and to improve re-
myelination. The compound rHIgM22 was found to co-localize with integrin β3 and to
upregulate its downstream Src family kinase (SFK) Lyn in rat OLs, preventing OL apopto-
sis [121]. This study shows that a single dose of rHIgM22 infusion following an MS relapse
is well tolerated and can be detected in patients’ cerebrospinal fluid in a dose-dependent
manner, which warrants further studies [122]. The antipsychotic drug, quetiapine, is found
to block the cuprizone-induced elevation of lipid peroxides via antioxidative function.
Lipid peroxides inhibit OPC differentiation. Adding quetiapine in cuprizone-treated rat
primary OPCs promotes OPC differentiation in vitro [120]. The phase 1 clinical trial on
quetiapine (NCT02087631) was completed but not published. Another candidate agent
with antioxidative and anti-apoptotic properties, erythropoietin, was shown to improve
the motor function of a small group of MS patients in a phase 1 clinical trial but showed no
clinical significance in the subsequent phase 2 trial [116,117].

5. Concluding Remarks

As discussed, chronic lesions are associated with prolonged inflammation, disturbed
signaling pathways, and altered epigenetic control within the CNS, all of which contribute
to remyelination failure. Proper oligodendrogenesis and remyelination depend on both
extrinsic and intrinsic factors, and these factors should be modulated appropriately at
different stages of disease progression. For example, repressing microglia activity at an
early stage of the disease can result in inefficient myelin clearance, which impedes re-
myelination [34], whereas inactivation of Notch signaling in OL lineage cells enhances
their differentiation but compromises their proliferation. Therefore, effective strategies for
treating MS should implement modulatory or synergistic treatments at different stages
of MS pathology or at certain time points after a demyelinating event. From the early
stages of the disease onward, it is critical to focus on repressing the overactivation of the
innate and adaptive immune system to preserve mature OLs and their myelin. Following a
demyelinating event, enhancing CNS phagocytic activity to remove myelin debris would
be important to provide an optimal microenvironment for subsequent remyelination. Pro-
migratory or pro-proliferative strategies may be difficult to combine with pro-differentiating
and pro-myelinating interventions. Therefore, ideally, OPC differentiation should be
promoted when sufficient numbers of OPCs have already migrated into the lesion sites.
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A lot of research is, however, still needed to accurately pinpoint the time window where
OPC differentiation is preferably induced in MS patients, and this is very likely dependent
on each patient. To achieve this goal, it appears essential to identify biomarkers of disease
stage, demyelination events, and axonal loss that are easily accessible, for example, in the
blood or other body fluids, such as plasma levels of NF light-chain that can be used as
an indirect marker of axonal degeneration. Such markers would be very instrumental to
decide on the best treatment strategy in a given MS patient at a given time.
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