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Abstract: The current paper considers the effects of a water-soluble polymer (polyethylene glycol
(PEG)) on the bioluminescent reaction of the photoprotein obelin from the marine coelenterate
Obelia longissima and the product of this bioluminescent reaction: a coelenteramide-containing
fluorescent protein (CCFP). We varied PEG concentrations (0–1.44 mg/mL) and molecular weights
(1000, 8000, and 35,000 a.u.). The presence of PEG significantly increased the bioluminescent intensity
of obelin but decreased the photoluminescence intensity of CCFP; the effects did not depend on the
PEG concentration or the molecular weight. The photoluminescence spectra of CCFP did not change,
while the bioluminescence spectra changed in the course of the bioluminescent reaction. The changes
can be explained by different rigidity of the media in the polymer solutions affecting the stability of
the photoprotein complex and the efficiency of the proton transfer in the bioluminescent reaction.
The results predict and explain the change in the luminescence intensity and color of the marine
coelenterates in the presence of water-soluble polymers. The CCFP appeared to be a proper tool for
the toxicity monitoring of water-soluble polymers (e.g., PEGs).

Keywords: polymer; polyethylene glycol; bioluminescence; marine coelenterate; photoluminescence;
fluorescent protein; bioassay; toxicity

1. Introduction

In recent decades, pollution of the world’s oceans by water-soluble and insoluble
polymers has become a challenge for ecologists. It is known that water-soluble polymers can
change the rates of cellular processes via stabilizing biological structures. It is shown [1–3]
that enzymes included in the gelatin or starch gel matrix become more stable and lead
to an increase in the activity. Moreover, water-soluble polymers such as polyethylene
glycol (PEG) may cause toxic effects on living organisms [4,5]. The toxic effects of polymer
pollution are now being intensively studied [6–10].

Bioluminescence assay systems are widely used in ecological science to monitor the
toxic effect of chemicals on living organisms. Bioluminescence intensity is considered as
a test physiological parameter for evaluating toxic effects. Simplicity, sensitivity, and a
high registration rate of the emission intensity make bioluminescent tests convenient and
widely applied. The marine luminescent bacterium is one of the most common bioassays
that has been widely used for more than 50 years to monitor the toxicity of media due
to its high sensitivity to toxicants [11–13]. Another type of bioluminescent assay, the
bacterial bioluminescent enzyme system, was suggested in 1990 [14]. An advantage of
the enzymatic assays is the possibility to change the sensitivity to toxic compounds by
(a) varying the component concentrations and (b) constructing polyenzymatic coupled
systems [15–17]. Technological applications of the bioluminescent enzymatic system were
reviewed in [18,19].
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A question arises whether it is possible to detect suppressive or activation effects of
chemicals by a simpler system than a bacterial one. Recently, the authors have suggested
an application of luminescent proteins to monitor the toxicity in biological liquids [20]. The
paper reviews the effects of radiation [21,22], chemical agents [23,24], and higher temper-
ature destruction [25] on the photoluminescence spectra of a coelenteramide-containing
fluorescent protein (CCFP). It was stated that CCFPs could serve as new fluorescence
biomarkers with color differentiation to explore the results of destructive exposures. CCFP
demonstrated changes in color under the exposures listed before. The question of interest
is: will the photoprotein obelin and CCFP—a product of the bioluminescent reaction of
obelin—be sensitive to water-soluble polymers, for example, PEGs? The color and the
intensity of the luminescence are of interest in both cases.

Note that the studies [20–25] applied CCFP, a product of the bioluminescent reaction of
photoprotein obelin from the marine coelenterate Obelia longissima. The structure and mech-
anisms of the photoprotein bioluminescence are now being intensively studied [26–28].
Our previous studies did not find changes in the bioluminescence spectra of the photo-
protein obelin after the exposures listed before (chemical, radiation, or thermal); only the
bioluminescence intensity appeared to be sensitive to the exposures. The sensitivity of the
obelin bioluminescence to PEG is a problem of special interest.

In general, CCFPs can be isolated from luminous marine coelenterates, e.g., jellyfish
Aequorea [28] and Phialidium (Clytia) [29], hydroid Obelia longissima [30], etc. A fluorophore
of CCFPs is coelenteramide, an external molecule; being a heteroaromatic fluorescent
compound, it is non-covalently bound to a protein inside its hydrophobic cavity. The
chemical structure of the coelenteramide molecule (neutral and ionized forms) is presented
in Figure 1. Coelenteramide is a photochemically active molecule, as it is able to be a
proton donor in its electron-excited states and to generate several forms which differ in
energy fluorescent states [31] and, hence, in fluorescence color. Contributions of the forms
to visible fluorescence spectra depend on the efficiency of the photochemical process and
these are governed by the microenvironment of coelenteramide [32–37]. There occur similar
proton transfer processes and formations of fluorescent forms after chemical/biochemical
excitation in the course of bioluminescence reactions in marine coelenterates.
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Figure 1. The chemical structure of the coelenteramide molecule (neutral and ionized forms). The
aromatic fragments that can be involved in electronic excitation are marked with the letters F, B, and
P, corresponding to phenolic, benzene, and pyrazine rings [38].

According to [39], the spectra of the obelin bioluminescence and light-induced fluo-
rescence of CCFP are a superposition of spectral components (emitters) that correspond
to different forms of coelenteramide. The contributions of the spectral components might
change, indicative of proton interactions in the active center of the protein complex. The
contribution of the spectral components to the integral spectrum determines the color of
the luminescence.

The spectra of the obelin bioluminescence and the light-induced fluorescence of CCFP
can be deconvolved into Gauss components [39]. It is shown in these studies that the
spectra can include three components in the visible region, with the maxima (Figure 2)
corresponding to violet, blue–green, and green spectral regions. According to [31–36],
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component I was attributed to the neutral coelenteramide form, while components II and
III were attributed to the ionized forms of coelenteramide (Figures 1 and 2). Ionized forms
II and III can differ in the effective location of a proton in the complex of polypeptide with
coelenteramide between the phenolic coelenteramide group as a proton donor and His22
as a proton acceptor; hence, forms II and III can differ in ionization degree.
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There is a possibility to change the spectral characteristics of the photoprotein obelin
by varying the rigidity of its environment. The effects of water-soluble polymers on the
bioluminescence reaction of obelin and the light-induced fluorescence of its product, CCFP,
have not been studied yet. Dependencies of the effects on the polymer characteristics in
solutions (molecular weight and concentration) might elucidate the influence of water-
soluble polymers on water organisms in the world’s oceans.

This study aims at evaluating the effects of PEGs of different molecular weights
and concentrations on the bioluminescent reaction of the photoprotein obelin from the
marine coelenterate Obelia longissima and photoluminescence of CCFP, a bioluminescence
reaction product. Accordingly, two main points were under consideration: (1) effects
of PEGs on the intensity of the bioluminescence and photoluminescence responses; (2)
effects of PEGs on the spectra of the obelin bioluminescence and CCFP photoluminescence.
The work is original in the area of responses of marine coelenterates to water-soluble
polymer pollutants.

2. Results and Discussion

We studied the effects of PEGs of different molecular weights (1 kDa, 8 kDa, and
35 kDa) on the bioluminescence of the photoprotein obelin and photoluminescence of the
coelenteramide-containing fluorescent protein (CCFP). The concentration of PEG varied
from 0 to 1.44 mg/mL. The bioluminescence/photoluminescence intensities/yields and
spectra were studied.

2.1. PEG Effect on the Bioluminescence Reaction of Obelin
2.1.1. PEG Effect on the Bioluminescence Yield of Obelin

The time-dependent change of the relative bioluminescence quantum yield is pre-
sented in Figure 3. This figure illustrates the results of exposure to three concentrations of
PEG; PEG of 1 kDa was chosen as an example.
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Figure 3. Change in the relative bioluminescence quantum yield vs. time of the bioluminescence
reaction. Polyethylene glycol 1 kD, concentrations: 0.01, 0.1, and 1 mg/mL.

It can be seen that PEG increases the quantum yield of bioluminescence during all the
time periods of registration (relative quantum yield > 1). The bioluminescence intensity
increase might be due to the protein complex stabilization in the course of the biolumines-
cent reaction and to a decrease in the non-radiative relaxation in the electron-excited states
of the bioluminescence emitter. We observed an increase in the bioluminescence yields for
all the three PEG samples (1 kDa, 8 kDa, and 35 kDa) at all the PEG concentrations applied.

2.1.2. PEG Effect on the Spectra of Bioluminescence Reaction

The impact of the PEG samples (1 kDa, 8 kDa, 35 kDa) on the bioluminescence spectra
was analyzed. Three concentrations of PEGs were analyzed: 0.01 mg/mL, 0.1 mg/mL, and
1 mg/mL. As an example, Figure 4 shows the changes in the bioluminescence spectra in
the presence of PEG, 1 mg/mL (8 kDa).
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The changes in the spectra upon the addition of PEG are evident from Figure 4, with
a decrease in the violet component contribution. We analyzed the effect of PEGs on the
contributions of the components to the bioluminescence spectra. The complex biolumi-
nescence spectra in the PEG solutions were deconvoluted into peak components: violet
(maximum 400 nm), blue–green (maximum 485 nm), and green (maximum 557 nm). For all
the PEG samples, the contributions of the components to the reconstituted bioluminescence
spectral outlines were calculated. As an example, Figure 5 shows the kinetics of the violet
component contribution in the solutions of PEG, 8 kDa. Three concentrations of the PEG
solutions are presented. Similar results were obtained with polymers of the other molecular
weight, 1 and 35 kDa.
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Figure 5. Kinetics of the violet component contribute to the bioluminescence spectra in the solutions
of polyethylene glycol, 8 kDa. The PEG concentrations: 0.01, 0.1, and 1 mg/mL.

Figure 5 demonstrates the kinetics of the violet component contribution during the
bioluminescent reaction. One can see the suppression of the violet component at the
beginning and at the end of the bioluminescent reaction and its increase at the 5th–10th
second, which is as high as 190%. Contribution of the sum of II (blue–green) and III
(green) components varied as well but were opposite to the I (violet) component. A similar
tendency was observed in the solutions of different PEG concentrations. No monotonic
concentration dependence was observed, as seen in Figure 5.

Bioluminescence kinetics in Figure 5 suggests that PEG initiates the less effective
deprotonation of coelenteramide in the course of the reaction compared with the initial and
final stages of the reaction. It is evident that the binding of photoprotein with fragments
of PEG can stabilize the photoprotein structure with a lower efficiency of proton transfer;
this process is time-dependent on the bioluminescence kinetics. Details of this dependence
should be further studied in special experiments.

Figure 6 presents the concentration dependences of the violet contribution for the
different concentrations and molecular weight of PEG. The bioluminescence spectra were
analyzed at the beginning (0.6 s), in the middle (6 s), and at the end (12.6 s) of the re-
action. The figure demonstrates the absence of the violet contribution dependence on
the PEG molecular weight and confirms its absence at the PEG concentration chosen in
the experiments.
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The increase in the violet contribution is a result of a decrease in the efficiency of
proton transfer in the enzyme-bound coelenteramide in the course of the bioluminescence
reaction (Figures 1 and 2): “discharging” (i.e., reconstruction) of the photoprotein complex
in the presence of Ca2+. Collisional interactions with polymeric fragments and the change
in the rigidity of the medium in the presence of PEG are likely to be responsible for this
effect. The time-dependence of the violet component during the bioluminescence reaction
should be investigated further; the reasons for this are to be clarified in detail.

The results can depend on temperature, as it is supposed that diffusion components
in polymer solutions can be valuable in molecular mechanisms of the polymer interaction
with photoprotein. The temperature dependences of the spectral component contributions
should also be a subject of further investigations.

2.2. PEG Effect on the Photoluminescence Spectra of the Coelenteramide-Containing
Fluorescent Protein
2.2.1. PEG Effect on the Photoluminescence Intensity of the Coelenteramide-Containing
Fluorescent Protein

The effect of PEG on the photoluminescence intensity of the coelenteramide-containing
fluorescent protein (CCFP) was studied. Figure 7 illustrates the interaction results of CCFP
and PEG (1, 8, 35 kDa) at different PEG concentrations; the photoluminescence decay was
observed, but no dependence on polymer molecular weight was found. These results can be
attributed to the collisional interactions of CCFP with the fragments of the polymer chains.

The differences in the effects of PEG on CCFP and bioluminescence reactions could
be concerned with post-reaction stabilization of the product of the reaction, CCFP. This
supposition is based on differences in structures (and hence sensitivities to exogenous
compounds) of CCFP and bioluminescence emitters [32].

Therefore, the coelenteramide-containing fluorescent protein appeared to be a proper
tool for toxicity monitoring of water-soluble polymers, PEGs. Photoluminescence inhibition
efficiency reached 40% at a PEG concentration of 0.15 mg/mL.

Our results make us suppose that it is not a polymeric molecule as a whole that is
responsible for the luminescence suppression but only fragments of the polymeric chains.
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Figure 7. Dependence of the photoluminescence intensity, I, of the coelenteramide-containing
fluorescent protein on the polyethylene glycol concentration, with an excitation wavelength of
350 nm and a registration wavelength of 510 nm.

2.2.2. PEG Effect on the Photoluminescence Spectra of the Coelenteramide-Containing
Fluorescent Protein

Figure 8 provides the normalized photoluminescence spectra of the coelenteramide-
containing fluorescent protein (CCFP) at different PEG concentrations. The concentrations
applied are presented in Figure 7. PEG of 8 kDa was chosen here as an example.
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applied are presented in Figure 6. The excitation wavelength was 350 nm.

It might be seen from Figure 8 that no changes in the photoluminescence spectra
of CCFP upon the variation of the PEG concentration were observed. Spectral maxima
(510 nm) did not shift and the shape of the spectra changed negligibly. This indicates that
PEGs do not affect the efficiency of photochemical proton transfer in the CCFP complex,
nor do they affect the ratio of the protonated and deprotonated forms of coelenteramide
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in the fluorescent protein (Figures 1 and 2). Similar results were obtained for polymers of
other molecular weights, e.g., 1 and 35 kDa.

Hence, only the bioluminescence reaction spectra appeared to be sensitive to the
presence of the polymer rather than the product of the bioluminescence reaction: “dis-
charged photoprotein” or coelenteramide-containing fluorescent protein. This indicates the
optimality and stability of the protein structure.

3. Materials and Methods
3.1. Materials

Recombinant preparations of obelin D12C were obtained from the Photobiology
Laboratory, Institute of Biophysics, SB RAS, Krasnoyarsk, Russia. A detailed description of
the recombinant obelin production was given in [40,41]. Solutions of lyophilized obelin
(2.65 mg/mL) in a 0.02 M tris(hydroxymethyl)aminomethane buffer (pH 7) and 0.05 M
ethylenediaminetetraacetic acids (Sigma-Aldrich, St. Louis, MO, USA) were applied. Three
PEG samples of different molecular weights were used: 1, 8, and 35 kDa. Table 1 provides
the physicochemical characteristics of the polymer samples.

Table 1. Physicochemical characteristics of PEG of different molecular weights.

PEG 1000 PEG 8000 PEG 35000

Formula (C2H4O)nH2O [42]
pH 1% solution 5.0–7.0

Molecular weight 900–1100 7200–8200 35,000–40,000

Solubility Soluble in organic solvents. Solubility decreases with increasing the
molecular weight of the polymer [43].

Reactivity Mostly inert, can form complex compounds with salts of alkaline/earth
metals [43].

Toxicity Non-toxic [4].

3.2. Instrumentation

Bioluminescence and light-induced fluorescence spectra were measured with a Cary
Eclipse-2000 spectrofluorometer (Agilent, Santa Clara, CA, USA). Ultraviolet (UV) radiation
was emitted by the xenon flash lamp (80 Hz), producing 80 flashes per second [44]. Emission
spectra for bioluminescence and photoluminescence were recorded in the range from 370
to 600 nm; photoluminescence excitation was 350 nm. The scanning rate was 600 nm/min
and the spectral bandwidths for emission and excitation were 10 nm and 10 nm, with the
wavelength accuracy being ± 1.5 nm. A quartz cuvette with a rectangular cross-section
(2 × 10 mm) was used to register the spectra. The emission spectra were converted from
the wavelength- to wavenumber-dependences, as presented in [45].

3.3. Experiment Methodology

We examined the PEG effects on the bioluminescent reaction of the marine coelenterate
Obelia and coelenteramide-containing fluorescent protein. The amount of 2 µL of PEG
of different concentrations and molecular weights was added to the recombinant obelin
preparation (10−6 mg/mL). The bioluminescence reaction was triggered by 10 µL Ca2+.
The time of bioluminescence registration varied from 1 to 12.6 s.

The light-induced fluorescence spectra of Ca2+-discharged obelin (i.e., photolumines-
cence of the coelenteramide-containing protein) were measured. The excitation wavelength
was 350 nm, with the ambient temperature being 20–25 ◦C.

The changes in bioluminescence and photoluminescence spectra were studied in five
experiments, providing statistical significance.

3.4. Analysis of the Obelin Bioluminescence Spectra

The complex spectra were deconvoluted into peak components by the peak analysis
using Origin lab 2018. The mathematical treatment involved two steps:
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The function increment method [46], based on the Gauss distribution, was applied to
identify spectral components.

A secondary derivative for the fluorescence intensity was calculated [47] to determine
the number of spectral components and their maxima.

To compare the squares of the calculated and experimental spectra, the d-values were
calculated as follows:

d = (|Sexp − Ssum|/Sexp) × 100%, (1)

where Sexp is the square of the experimental spectral outline and Ssum is the square of the
sum of the reconstituted spectral outlines. The d values for all the spectra did not exceed
10%. All the spectra were deconvoluted into a minimum number of components in the
coordinates of luminescent intensity and wavelength number. Microsoft Office Excel was
used to carry out the statistical analysis.

An example of the deconvoluted spectrum is presented in Figure 2 in the Introduction.
Relative bioluminescence quantum yields were evaluated as SPEG/Scontr, where SPEG

and Scontr are the squares of the experimental spectral outlines in the presence and absence
of PEG, respectively, in the coordinates of luminescent intensity and wavelength number.

4. Conclusions

Generally speaking, studies of the effects of polymers on living marine systems are
now of vital importance due to the intensive pollution of the world’s oceans with polymeric
compounds, including commercial water-soluble polymers. The studies should develop
in different directions; marine coelenterates and their protein complexes are significant
part of these investigations. The following direct conclusions can be made from the results
presented in the current paper:

1. PEGs increase the intensity of the bioluminescence reaction because of the photo-
protein structure stabilization. The efficiency of the bioluminescence activation does not
depend on PEG molecular weights (1, 8, or 35 kDa) or the PEG content in the interval of
PEG concentrations 0.01–1 mg/mL.

2. PEGs initiate spectrum shifts and changes in the contribution of spectral components
in the course of the bioluminescent reaction of obelin. The changes are multidirectional
and depend on the reaction stage. The increase in the contribution of the blue component
is as high as 190%.

3. PEGs decrease the photoluminescence intensity of the coelenteramide-containing
fluorescent protein, which is likely due to collisional interactions with the fragments of the
polymer chains.

4. PEGs do not change the shape of the photoluminescence spectrum of the coelenteramide-
containing fluorescent protein. This may indicate that PEG does not affect the efficiency of
proton phototransfer in the protein complex.

5. The coelenteramide-containing fluorescent protein appeared to be a proper tool for
the toxicity monitoring of water-soluble polymers, PEGs, which include polar and nonpolar
chemical groups and hence are able to interact with different fragments of biological
structures, producing integral bioresponses.
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