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Abstract: Honey bees are important species for the study of epigenetics. Female honey bee larvae
with the same genotype can develop into phenotypically distinct organisms (sterile workers and
fertile queens) depending on conditions such as diet. Previous studies have shown that DNA
methylation and histone modification can establish distinct gene expression patterns, leading to
caste differentiation. It is unclear whether the histone methylation modification H3K4me1 can also
impact caste differentiation. In this study, we analyzed genome-wide H3K4me1 modifications in
both queen and worker larvae and found that H3K4me1 marks are more abundant in worker larvae
than in queen larvae at both the second and fourth instars, and many genes associated with caste
differentiation are differentially methylated. Notably, caste-specific H3K4me1 in promoter regions
can direct worker development. Thus, our results suggest that H3K4me1 modification may act as an
important regulatory factor in the establishment and maintenance of caste-specific transcriptional
programs in honey bees; however, the potential influence of other epigenetic modifications cannot
be excluded.
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1. Introduction

Honey bees are eusocial insects and an important model organism for studies of
caste development and caste differentiation in social insects. Their division of labor is
mainly based on the differentiation of castes (queen and worker) [1]. After divergence,
queens and workers have different morphological, physiological, behavioral, and longevity-
related traits, despite sharing the same genome [2]. The mechanism underlying caste
differentiation is not fully understood. However, there is evidence that differences in
nutritional status between queens and workers modulate caste differentiation by altering
DNA methylation patterns [3–6]. In addition, various signaling pathways, such as the Wnt
signaling pathway [7], the target of rapamycin (TOR) nutrient sensing pathway [8,9], and
the mitogen-activated protein kinase (MAPK) signaling pathway [10], are related to honey
bee caste differentiation.

DNA and histone modifications are thought to primarily affect transcriptional events.
The establishment, maintenance, and regulation of transcriptional programs during de-
velopment depend on chromatin plasticity [11]. Recent evidence suggests that chromatin-
based epigenetic mechanisms can influence nutrient-mediated caste differentiation in honey
bees. RNAi knockdown of the DNA methyltransferase DNMT3 has a jelly-like effect on
developmental trajectories, resulting in a significantly higher proportion of queens with
fully developed ovaries [12]. Differences in DNA methylation also influence the alternative
development of queens and workers [13]. H3K27ac has been shown to be a key chromatin
modification, and the caste-specific region of intronic H3K27ac directs the worker caste [11].
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However, for H3K4me3 and H3K36me3, there is no evidence that modification in specific
regions can direct caste development [11]. Histone methylation is methylation that occurs
on the N-terminal lysine (K) [14] or arginine [15] residues of H3 and H4 histones. Like
histone acetylation, histone methylation contributes to almost all biological processes,
from DNA repair, the cell cycle, stress responses, and transcription to development, dif-
ferentiation, and aging [16–20]. It can also regulate the lifespan of model organisms such
as rats [21], Caenorhabditis elegans [22], and Drosophila melanogaster [23], and even have a
transgenerational effect on lifespan [24,25]. However, there is no evidence that histone
methylation contributes to honey bee development.

Hundreds of genes involved in caste differentiation have been identified in honey
bees [13,26]. Differences in chromatin levels may lead to differences in gene expression.
Histone acetylation influences caste differentiation in honey bees [11]. However, the role
of histone methylation in honey bee caste differentiation has not been determined. We
performed the first genome-wide analysis of the distribution of H3K4me1 before (2nd instar)
and after (4th instar) critical time points (3rd instar) [1,27] in honey bee caste differentiation.
Compared with the 2nd instar, the numbers of differentially expressed genes (DEGs) and
H3K4me1 markers were significantly increased at the 4th instar, and gene expression was
negatively correlated with H3K4me1. Further analysis revealed that the chromatin patterns
of queens and workers differed significantly at the 4th instar. H3K4me1 modification
promotes larval development towards worker bees. These findings illustrate the important
role of H3K4me1 in honey bee larval development and caste differentiation.

2. Results
2.1. H3K4me1 Modifications in the Honey Bee Are Enriched in Transcribed Regions

To investigate the chromatin structure of honey bees, we determined, for the first time,
the genome-wide distribution of H3K4me1. We detected H3K4me1 enrichment around the
transcriptional start sites (TSS) of genes in both queen larvae and worker larvae (Figure S1).
These results are consistent with those for other species, including mammals, invertebrates,
and plants [28–30]. Over 8 G of data were generated for all samples, with a mapping value
and Q30 value of greater than 90% (Table S1). These results indicate that the sequencing
results are reliable.

We further evaluated caste-specific patterns in the distribution of H3K4me1. In partic-
ular, we divided H3K4me1 into unique peaks (i.e., peaks detected in all three replicates
in one sample, but not in any of the three replicates in the other sample) and differential
peaks (p < 0.05 and fold change > 2). In 2Q (2nd instar queen) vs. 2W (2nd instar worker),
we identified 36 unique H3K4me1 peaks in 2Q and 380 in 2W (Figure 1A). In 4Q vs. 4W,
we identified 347 unique H3K4me1 peaks in 4Q and 1185 in 4W (Figure 1A). There were
significantly more unique peaks for workers than queens at both the 2nd and 4th instars
(Figure S2). There was no significant difference in the relative proportions of the positions of
unique peaks between 2Q and 2W (Figure 1B; χ2 = 2.66, p = 0.27, chi-squared test). However,
there was a difference in the distribution of unique peaks between 4Q and 4W (Figure 1C;
χ2 = 80.18, p = 3.88× 10−18, chi-squared test); 60% of the unique peaks in 4W were enriched
in the promoter region, while 61% of the unique peaks in 4Q were enriched in intronic
regions. The data for differential peaks between queens and workers were consistent with
the results for unique peaks. In 2Q vs. 2W, we identified 18 differential H3K4me1 peaks
in 2Q and 326 in 2W (Figure 1D). In 4Q (4th instar queen) vs. 4W (4th instar worker), we
identified 432 differential H3K4me1 peaks in 4Q and 2233 in 4W (Figure 1D). There was no
significant difference in the distribution of differential peaks between 2Q and 2W (Figure 1E;
χ2 = 4.57, p = 0.10, chi-squared test). However, there was a difference in the distribution of
differential peaks between 4Q and 4W (Figure 1F; χ2 = 45.32, p = 1.44 × 10−10, chi-squared
test); 55% of unique peaks in workers were found in promoter regions, while 54% of
unique peaks in queens were found in intronic regions. In order to study the functional
significance of the caste-specific promoter H3K4me1, we performed a motif enrichment
analysis using the MEME website (https://meme-suite.org/meme/tools/meme; accessed
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on 13 December 2022). The sequence of Drosophila melanogaster was used to annotate the
honey bee motifs. We identified 2Q and 2W transcription factor binding sites that were
significantly enriched, and the top three transcription factor binding sites were identical
(Figure S3A). However, the top five enriched transcription factor binding sites of 4Q and
4W were not the same (Figure S3B).
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Figure 1. (A) Bar plot showing the number of unique H3K4me1 peaks in queen and worker larvae.
(B,C) Bar plot showing the percentage of unique H3K4me1 ChIP-seq peaks within promoters, introns,
and exons in 2Q vs. 2W and 4Q vs. 4W. (D) Bar plot showing the number of differential H3K4me1
peaks in queen and worker larvae. (E,F) Bar plot showing the percentage of differential H3K4me1
ChIP-seq peaks within promoters, introns, and exons in 2Q vs. 2W and 4Q vs. 4W.

2.2. Caste-Specific H3K4me1 Modification Patterns Correlate with Differential Gene Expression

After identifying caste-specific differences in the distribution of H3K4me1 modifi-
cations, we next evaluated whether the caste-specific distributions were associated with
gene expression patterns according to caste. Principal component analysis of our RNA-seq
data revealed strong separation between the two castes (Figure S4). In 2Q vs. 2W, we
identified 666 DEGs and 296 differential peak-associated genes (DPGs), of which 28 genes
were commonly differentially expressed in RNA-seq and ChIP-seq (Figure 2A). In 4Q
vs. 4W, 2306 DEGs and 2004 DPGs were identified, of which 384 genes were commonly
differentially expressed in RNA-seq and ChIP-seq (Figure 2A). In 2Q vs. 2W, there were
18 up-regulated peaks and 326 down-regulated peaks (Figure 2B), and 224 up-regulated
genes and 452 down-regulated genes (Figure S4). In 2Q vs. 2W, there were 432 up-regulated
peaks and 2233 down-regulated peaks (Figure 2B), and 1355 up-regulated genes and
951 down-regulated genes (Figure S4). We found that the genes enriched for the H3K4me1
modification showed significant expression differences based on transcriptional data
(Figure 2C; 2Q vs. 2W, ρ = 0.07, p = 1.35 × 10−27, Spearman test; 4Q vs. 4W, ρ = 0.31,
p = 3.93 × 10−13, Spearman test). In addition, there were significant correlations between
differential H3K4me1 peak signals and transcript levels (Figure S5A) and between DEGs
and H3K4me1 peak signals (Figure S5B). Based on the enrichment with enhancer-associated
histone H3K4me1 modifications, transcription factor binding sites, promoter sites, and
changes in gene expression, worker-specific H3K4me1-enriched regions are markers of
active enhancers and play an important role in caste differentiation.
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Figure 2. (A) Venn diagram showing overlap of differentially H3K4me1-modified genes and DEGs
between queens and workers. (B) Volcano plot of the difference in enrichment between queens
and workers against the negative log p-value for the H3K4me1 signal. Red areas indicate that the
H3K4me1 modification is up-regulated in queens. Blue areas indicate that the H3K4me1 modification
is up-regulated in workers. Gray indicates a lack of a significant difference (p > 0.05). (C) Scatter
plots of the significant differences in expression, determined by ChIP-seq, between queen and worker
larvae (x-axis) against the Log2FC of transcript expression between queen and worker larvae (y-axis).
Red indicates that the differences determined by RNA-seq and ChIP-seq are in agreement. Blue
indicates that the opposite patterns were obtained by RNA-seq and ChIP-seq. Gray indicates that
there is no significant difference (p > 0.05).

To investigate the effect of H3K4me1-modified genes on caste differentiation, a KEGG
analysis was performed. We detected enrichment for distinct developmental processes in
the two castes at both the 2nd and 4th instars. Among the unique peak-associated genes of
2W and 4W, eight KEGG pathways were related to honey bee caste differentiation, while
among the unique peak-associated genes of 2Q and 4Q, there were only three and five
KEGG pathways related to honey bee caste differentiation, respectively (Figure 3A–D). This
was consistent with our previous analysis [31], again showing that H3K4me1 modification
favors the development of honey bee larvae into worker bees. More DPGs in 4th instar
larvae than in 2nd instar larvae were involved in caste differentiation (Figure 3E,F).
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Figure 3. Negative log2 p-values for the honey bee caste differentiation-related KEGG pathways
that are enriched with unique H3K4me1-related genes in 2Q (A), 2W (B), 4Q (C), and 4W (D).
Pathways marked in red font are pathways associated with caste differentiation, while black font is not.
(E) KEGG pathway enrichment analysis of differentially H3K4me1 peak-related genes in 2Q vs. 2W.
(F) KEGG pathway enrichment of differentially H3K4me1 peak-related genes in 4Q vs. 4W.

2.3. Caste Features of Worker Bees May Be Induced by H3K4me1

A representative gene involved in highly significant caste-specific changes in both
H3K4me1 enrichment and gene expression analysis is shown in Figure 4A. Juvenile hormone
esterase (JHe; LOC406066) is shown as an example of a physio-metabolic worker-specific
gene [32], in which H3K4me1 enrichment differences are associated with the TSS. Similarly,
the other two caste differentiation-related genes, P450-6a17 and IGF, showed significant
differences in gene expression and H3K4me1 enrichment in both TSS and gene ontology
regions (Figure S6).

In addition, we selected five genes with established roles in the caste differentia-
tion of honey bees for verification, namely JHe [32], Vg (vitellogenin, LOC406088) [33],
JHAMT (juvenile hormone acid O-methyltransferase, LOC724216) [34], Hex70a (hexamerin
70a, LOC726848) [35], and Hsp90 (heat shock protein 90, LOC408928) [36]. Our transcriptome
results were consistent with those of previous studies [32,35–37], and trends in H3K4me1
enrichment were consistent with trends in transcriptome data, thus supporting the relia-
bility of our results. Juvenile hormone (JH) is a master regulator of caste differentiation
in honey bees [38]. Vitellogenin is an antagonist of JH. H3K4me1 enrichment in the Vg
genes of workers was significantly higher than that in queens at the 2nd and 4th instars.
These results further support the role of H3K4me1 modification in regulating transcription,
and reveal the effect of H3K4me1 and transcript co-regulation on caste differentiation in
honey bees.
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Figure 4. Function of H3K4me1 modification in caste differentiation by modulating the expression
levels and modification abundance of genes. (A) Juvenile hormone esterase (JHe; LOC406066). The
gene in this region reached genome-wide significance (p ≤ 0.01) at both the 2nd and 4th instars, and
had a greater than two-fold difference in H3K4me1 modification. (B) RNA expression levels and
H3K4me1 abundance of differentially expressed candidate caste-differentiation-related transcripts
are shown. Expression levels are expressed as mean ± SEM relative to a reference gene (GAPDH;
LOC726445) in three replications. Fold enrichment is the difference in abundance between queen
larvae and worker larvae; green denotes a higher fold enrichment, while purple denotes a lower fold
enrichment. Differences in relative expression levels were analyzed using t-tests.

3. Discussion

We used ChIP-seq to characterize genome-wide caste-specific chromatin patterns in
honey bees and revealed the chromatin patterns related to reproductive division of labor in
social insects. Combined with an RNA-seq analysis, the specific modification of H3K4me1
appeared after the critical time point for caste differentiation. There was no significant
difference in H3K4me1 modification patterns between worker larvae and queen larvae until
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the irreversible stage of caste differentiation. A significant number of queen–worker chromatin
differences are associated with caste-specific transcription. Importantly, a number of enhancers
identified in caste-specific regions may be involved in honey bee caste differentiation.

Previous studies of Drosophila melanogaster [39,40], mice [41,42], and embryonic stem
cells from humans and mice have demonstrated that changes in histone methylation affect
development and regulate cell fate outcomes [43–45]. In honey bees, DNA methylation
is predominantly present in gene body regions and the 5′ ends of genes [3,46,47]. Many
previous studies have demonstrated the role of DNA methylation in caste differentiation.
Different patterns of CpG methylation were detected between the queens and workers [3].
The results of the present study suggest that the developmental asymmetry between queen
and worker larvae is associated with an asymmetry in H3K4me1 modification patterns.
This is consistent with the distribution of DNA methylation in queen and worker bees [3].
Studies have shown that the degree of enrichment of H3K4me1 differs [48]. In addition,
the differential histone methylation of transcription factors that regulate development is
thought to alter cell fate decisions [44]. At the same time, the present study also showed
that H3K4me1 modification can significantly regulate the transcript level of regulatory
factors related to honey bee caste differentiation (such as JHe, Vg, Hex70a, and JHAMT).
Signaling pathways such as FoxO and TOR are known to influence caste differentiation in
honey bees [38,49], and the present study clearly shows that differential H3K4me1 levels
also affect the transcription of genes in these signaling pathways. Notably, caste-specific
H3K4me1-modified genes (such as Hex70a and Vg) are related to reproductive division
of labor and nutrient metabolism [37,50,51]. These results suggest that H3K4me1 marks
contribute to honey bee caste differentiation.

We found that H3K4me1 modification is closely involved in the modification of worker
larvae, and is mainly involved in pathways related to honey bee caste differentiation. Caste-
specific differences in H3K4me1 were mainly detected in the promoter and intronic regions.
Queen-specific H3K4me1 was mainly located in intronic regions. In contrast, worker-
specific H3K4me1 was mainly localized in promoter regions, close to transcription initiation
sites. In addition, abundant caste-specific H3K4me1 in promoter regions was associated
with high levels of caste-specific gene expression, suggesting that these regions play an
important cis-regulatory role. Monomethylation of histone H3 at lysine 4 (H3K4me1) is a
hallmark of activated enhancers in both vertebrates and invertebrates [28,52]. Enhancers
are cis-regulatory DNA sequences and can increase the transcription of target genes. The
opening of repressive enhancer–promoter loops leads to transcriptionally active enhancer–
promoter regulation as a fundamental mechanism underlying differential transcriptional
regulation [53,54]. The spatial organization of chromatin, including long-range enhancers
adjacent to target promoters in cis, also modulates gene expression [55]. Therefore, we
analyzed the caste-specific promoter region H3K4me1 for conserved transcription factor
binding motifs. GATA2 and SPIB accounted for the most transcription factors in 4th instar
queens and workers, respectively. Both GATA2 and SPIB can regulate development and
cell differentiation [56–59]. Therefore, H3K4me1 modification may mediate caste-specific
enhancer activation, thus directing larval development.

Taken together, we speculate that the worker-specific promoter H3K4me1 region has the
hallmarks of an active enhancer. In addition, most worker genes enriched in the promoter
H3K4me1 region are also transcription factors, suggesting that enhancers are associated with
upstream and downstream genes during the development of worker castes. Queen-specific
regions may also be caste-specific enhancers; however, further identification is needed.
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4. Materials and Methods
4.1. Insects

Honey bees (Apis mellifera) were obtained from Jiangxi Agricultural University in 2020.
Queens were restricted for 6 h (8 am to 2 pm) to a plastic frame designed by Pan et al. [60]
to lay eggs in worker cells. The queen laid eggs on a removable plastic base, which was
transferred to a plastic queen cell without touching the egg itself. Half of the eggs were
transferred to queen cells at 2 pm on the second day after laying and before hatching, while
the other half remained in the worker cells. All eggs (in both queen and worker cells) were
cared for by workers. Eggs hatched on the third day after laying. To collect the queen
and worker larvae at instars 2 and 4, larvae were sampled from both queen and worker
cells in each of three colonies at 4 pm on days 5 and 7 after laying. Larvae were picked
with sterilized tweezers and rinsed in ddH2O three times. Filter paper was used to drain
the water from the larvae, and larvae were placed immediately in liquid nitrogen. Whole
larvae were used for sequencing, as in previous studies, since they were very small (2nd
instar worker and queen larvae: 2 mg/larva; 4th instar worker larvae: 12 mg/larva; 4th
instar queen larvae: 25 mg/larva).

4.2. ChIP-seq Assay and Analysis

Chromatin immunoprecipitation was performed as described by Wojciechowski
et al. [11], with slight modifications. Approximately 800 mg of larvae (320 larvae per
sample in 2Q and 2W; 32 larvae per sample in 4Q and 4W) were cross-linked for 10 min in
1% ChIP-seq–grade formaldehyde. The H3K4me1 antibody (ab195391; Abcam, Cambridge,
UK) was used for immunoprecipitation. The H3K4me1 library was sequenced (50 bp
single-end reads or 150 bp paired-end reads) on an Illumina HiSeq3000 sequencer.

The genome assembly Amel_HAv3.1 (GCF_003254395.2) was downloaded from NCBI
and indexed using Bowtie 2 (v2.3.3). ChIP-seq samples were mapped to this indexed
genome using Bowtie 2 with the default parameters. Detailed mapping statistics for each
sample are available in Tables S2 and S3.

4.3. RNA-seq Analysis

Hierarchical Indexing for Spliced Alignment of Transcripts (HISAT; version 2.1.5) was
used to align the RNA-seq reads to the reference genome (Amel_HAv3.1). Expression levels
were reported as FPKM values to normalize the length of the annotated transcripts and the
total number of reads aligned to the transcriptome. Differential expression was analyzed
using the DESeq2 R package (1.30.0). p-values were corrected for multiple comparisons
with a false discovery rate (value < 0.05). Genes with p-adj ≤ 0.05 were defined as DEGs.
Detailed statistics are available in Tables S4 and S5.

4.4. Verification of Gene Expression Differences by qRT-PCR

The 2nd and 4th instar larvae of queens and workers were sampled. Three samples
were collected for each type of larvae, with each sample coming from a different colony.
Therefore, a total of 12 larval samples across three different colonies were evaluated.

qRT-PCR was performed according to previously described methods [61]. Briefly, total
RNAs were extracted using the TransZol Up Plus RNA Kit (TransGen Biotech, Beijing,
China), and then transcribed into cDNA using a PrimeScript RT Reagent Kit (Takara,
Kusatsu, Japan). GAPDH was used as a reference gene. The primer sequences were
designed using Prime Primer 6.0 (Table 1). A 10 µL reaction system (5 µL of SYBR®Premix
Ex Taq™ II, 3 µL of H2O, 1 µL of cDNA, 0.4 µL each of forward and reverse primers, and
0.2 µL of ROX) was established. The PCR conditions were as follows: 95 ◦C, 5 min; 94 ◦C,
2 min; 40 cycles (95 ◦C, 10 s, Tm, 15 s, 72 ◦C, 15 s); 72 ◦C, 10 min. To establish the melting
curve of the qRT-PCR product, the primers were heated slowly with a gradual increase of
1 ◦C every 5 s from 72 ◦C to 99 ◦C. The data were analyzed using the 2−∆∆CT method.
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Table 1. Primer sequences for quantitative qRT-PCR.

Genes Forward Primer Reverse Primer

GAPDH GCTGGTTTCATCGATGGTTT ACGATTTCGACCACCGTAAC
JHe CTTTTCTCGCTTCCACAACC TCCTGGTCCAGCAATGTGTA
VG AAGACCAATCCACCGTTGAG TGGTTCACGCTCCTAGCTTT

JHAMT GGATTTGCCCAAAGACACAT CGAGGATTCGCGTACAATTT
Hex70a GAGGGTCAAGCATGGAACAT GTTGTTCTTCGCCCAGAGAG
Hsp90 CTGAGAGTGACGCGAAGCTA CTCCGGCATCTTTTCACAAT

5. Conclusions

Significant differences in H3K4me1 modification between queen and worker larvae
were observed during caste differentiation in honey bees. Chromatin modification can
regulate the transcription of the genes that determine the caste. Furthermore, H3K4me1
modification was closely involved in the regulation of the development of worker larvae,
and may be an important modification in the worker development pathway. These findings
clearly establish the contribution of histone methylation to honey bee development, and
may contribute to further research on caste differentiation and developmental plasticity.
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