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Abstract: Gestational diabetes mellitus (GDM) is a severe pregnancy complication for both the woman
and the child. Women who suffer from GDM have a greater risk of developing Type 2 diabetes
mellitus (T2DM) later in life. Identification of any potential biomarkers for the early prediction of
gestational diabetes can help prevent the disease in women with a high risk. Studies show microRNA
(miRNA) as a potential biomarker for the early discovery of GDM, but there is a lack of clarity as to
which miRNAs are consistently altered in GDM. This study aimed to perform a systematic review
and meta-analysis to investigate miRNAs associated with GDM by comparing GDM cases with
normoglycemic controls. The systematic review was performed according to PRISMA guidelines
with searches in PubMed, Web of Science, and ScienceDirect. The primary search resulted in a total of
849 articles, which were screened according to the prior established inclusion and exclusion criteria.
Following the screening of articles, the review was based on the inclusion of 35 full-text articles,
which were evaluated for risk of bias and estimates of quality, after which data were extracted
and relative values for miRNAs were calculated. A meta-analysis was performed for the miRNA
species investigated in three or more studies: MiR-29a, miR-330, miR-134, miR-132, miR-16, miR-223,
miR-155, miR-122, miR-17, miR-103, miR-125, miR-210, and miR-222. While some miRNAs showed
considerable between-study variability, miR-29a, miR-330, miR-134, miR-16, miR-223, and miR-17
showed significant overall upregulation in GDM, while circulating levels of miR-132 and miR-155
were decreased among GDM patients, suggesting further studies of these as biomarkers for early
GDM discovery.

Keywords: gestational diabetes; microRNA; diagnostic biomarker; prognostic biomarker

1. Introduction

Gestational diabetes mellitus (GDM) is diabetes occurring during pregnancy and
causes serious complications for both the woman and the baby. Women who develop GDM
are at high risk of developing Type 2 diabetes mellitus (T2DM) later in life or recurrent
GDM in future pregnancies. GDM has a significant risk of complications for both mother
and child [1]. Both during pregnancy and immediately following delivery, there is an
increase in morbidity: preeclampsia and maternal mortality are at an elevated risk, and
GDM fetuses are also more likely to experience macrosomia, early birth, neonatal icterus,
and perinatal hypoglycemia [2]. Early intervention may prevent the development of
perinatal morbidity. Several risk factors that may contribute to the development of GDM
in women have been identified. These include maternal age, Anglo-European ethnicity,
smoking, family history of diabetes, and previous birth of a child with macrosomia, as
well as obesity [2]. Considering this, the International Diabetes Federation (IDF) and the
International Associations for the Diabetes in Pregnancy Study Groups (IADPSG) advise
screening for GDM, preferably by measuring plasma glucose levels (HbAlc, random or
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fasting plasma glucose values) in all or high-risk women at the first antenatal visit, followed
by screening using an oral glucose tolerance test (OGTT) at gestational week 24-28.

Thus, efforts are underway to identify better biomarkers that will enable the diagnosis
of GDM at an earlier stage or provide more precise prognostic predictions of the risk of
GDM. Circulating RNAs, especially microRNAs (miRNAs), have been suggested as novel
biomarkers for the early detection of GDM. MiRNAs are small noncoding single-stranded
RNA molecules of about 22 nucleotides in length. Found in plants, animals, viruses, human
tissues, and blood, miRNAs function by RNA silencing and post-transcriptional regulation
of gene expression. Their primary role is, therefore, to regulate messenger RNA (mRNA)
degradation and to adjust protein levels. More than 2500 miRNAs have been identified
in the human genome, and miRNAs regulate at least 30% of protein-coding genes [3-5].
In addition to being located intracellularly and controlling gene expression, miRNAs are
also secreted to the extracellular environment. Increasing evidence suggests that cells can
package miRNA and other RNA species in exosomes or microvesicles before releasing them
into the bloodstream [6]. Circulating RNAs are promising candidates for use as biomarkers
because of their widespread distribution in bodily fluids, such as serum, plasma, urine,
sweat, and saliva [6,7]; their protection by AGO2 and other proteins [8-10], or by lipid
bilayer membranes in extracellular vesicles (EVs); and the fact that levels of particular
miRNAs have been found to reflect various pathophysiological conditions.

Concerning GDM, multiple studies have investigated the circulating levels of a consid-
erable number of specific miRNA species in relation to GDM, sometimes with incongruent
results. Biomarker studies of circulating RNAs often study a low number of subjects, which
carries the risk of bias in reporting and generally low power [11]. Thus, the current study
aimed to perform a systematic review and meta-analysis of circulating miRNA with respect
to early detection of GDM with the overall purpose of identifying a credible set of consistent
GDM-associated miRNAs. Specifically, the aim was to identify a credible set of circulating
miRNAs confidently associated with GDM.

2. Materials and Methods

We followed PRISMA guidelines for the systematic review [12,13]. Details of the
protocol for this systematic review were registered on PROSPERO and can be accessed at
www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42021241518 (accessed on
9 April 2021) [14]. The PRISMA checklist and PRISMA abstract checklists are enclosed as
Supplementary Tables S1 and S2.

2.1. Data Extraction

The literature search was performed using the search string: (Gestational diabetes OR
pregnancy-induced diabetes) AND (microRNA OR miRNA OR microribonucl*) AND human,
in the databases PubMed (https:/ /pubmed.ncbinlm.nih.gov/ (accessed on 22 November 2022),
National Library of Medicine, National Institute of Health, Bethesda, MD, USA), ScienceDirect
(Elsevier, Amsterdam, The Netherlands), and Web of Science (Clarivate, London, UK). Searches
were updated in November 2022. All abstracts were independently screened manually by two
people to evaluate inclusion, and any disagreement was resolved by discussion with a third
evaluator. We included observational studies, case-control studies, cross-sectional studies, and
cohort studies. Only studies including at least one GDM group and a nondiabetic control group
were included. Studies were included regardless of body weight or adiposity, gestational age,
or ethnicity. Only studies measuring circulating miRNA through quantitative methods, such
as reverse-transcription quantitative PCR, RNA-sequencing or microarrays were included. We
excluded studies of twin pregnancies, or study groups in which subjects had a prior diagnosis
of either Type 1 or Type 2 diabetes mellitus. Moreover, only peer-reviewed original articles
using English language were included (Figure 1).


www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42021241518
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Figure 1. PRISMA flow diagram showing the search and inclusion numbers of the systematic review.

We performed extensive data extraction on the included articles to extract publication
information, identity of miRNA measured, number of subjects in each group, information
about adiposity of investigated subjects, GDM diagnostic criteria, gestational age at diagno-
sis, gestational age at sampling, sample material, measuring method for miRNA, reference
gene used, measurement units, and measured levels and variation of examined miRNAs in
studied cohorts (Supplementary Materials File S1). The software WebPlot digitizer, version
4.5 2021; https:/ /automeris.io/ WebPlotDigitizer/ (accessed on 22 November 2022) was
used to extract levels of miRNA and degree of variation (SD, SEM, or 25 and 75 percentiles).
Reported levels and degree of variation (SD) for each miRNA in the GDM group were
recalculated relative to the control group, which was set to one. In some studies, the
median instead of mean was reported. To extract data for the meta-analysis, we assumed
normally distributed data for the calculation of SD, although some miRNAs were not
normally distributed. Formulas used to calculate SD based on SEM or box plots are given
in Supplementary Materials File S1.

2.2. Estimation of Study Quality

Quality estimates were based on the Newcastle-Ottawa Scale [15], with the question-
naire adjusted for gestational diabetes (Figure 2, Supplementary Materials File S1).
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Figure 2. Quality evaluations of the included studies according to the NOS Scale. Green
scale (right side) corresponds to the percentage of NOS scale points fulfilled, and blue scale
(left side) corresponds to the percentage of NOS scale points not fulfilled. References for
evaluated studies: Pfeiffer et al. (2020) [16], Ke et al. (2022) [17], Zhao et al. (2011) [18],
Ye et al. (2022) [19], Serensen et al. (2022) [20], Serensen et al.  (2021) [21], Juchnicka et al.
(2022) [22], Abdeltawab et al. (2022) [23], Stirm et al. (2018) [24], Peng et al. (2018) [25],
Zhang et al. (2021) [26], Wei et al. (2021) [27], Wander et al. (2017) [28], Radoji¢i¢ et al. (2022) [29],
Martinez-Ibarra et al. (2019) [9], Cao et al. (2017) [30], Yoffe et al. (2019) [31], Nair et al. (2018) [32],
Hromadnikova et al. (2022) [33], Tagoma et al. (2018) [34], Niu et al. (2022) [35], Nair et al. (2021) [36],
Lamadrid-Romero et al. (2018) [37], Zhou et al. (2019) [38], Yu et al. (2021) [39], Wang et al. (2021) [40],
Gillet et al. (2019) [41], Li et al. (2021) [42], Hocaoglu et al. (2019) [43], Wen et al. (2021) [44],
Shen et al. (2021) [45], Bhushan et al. (2022) [46], Xiao et al. (2020) [47], Zhang et al. (2020) [48].

2.3. Data Analysis and Statistics

All data are included in Supplementary Materials File S1. Qualitative analyses were
made by sorting studies by sample materials tested, ethnicity, measurement methods,
and time of measurement during gestation. We qualitatively assessed if these variables
could be underlying sources of study heterogeneity. Meta-analysis for the relationship
between miRNA levels and GDM diagnosis was performed on miRNAs reported with
quantitative data in at least 3 studies. Several studies made comparisons at several time
points during gestation for the same subjects. In order to not include the same subjects
more than once per meta-analysis, we included the earliest measured time point only.
Meta-analysis was performed using the R-package ‘meta’ [49] with the fixed-effects model,
as most studied miRNA species were investigated in only a few studies. Between-study
heterogeneity, 2, was computed as the restricted maximum-likelihood estimator [50] as
default in ‘meta’. Biases in meta-analyses were estimated by inspecting funnel plotsand
outliers were inspected manually. For statistical evaluation, we used R and R-studio
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software (Vs. 4.2.2 and 2022.07.2, respectively) and the package ‘meta’. Excel 365 was used
to organize data. p-values < 0.05 were considered significant.

3. Results
3.1. Data Inclusion

The systematic review followed PRISMA guidelines [12,13]. PRISMA abstract and
article checklists for the current study are completed and available in Supplementary Tables
51 and S2. Through systematic searches in PubMed, Science Direct, and Web of Science,
we identified 896 abstracts, with 849 remaining after removal of duplicates (Figure 1). We
screened 846 records (3 were unavailable) and excluded 797 based on abstract content,
leaving 49 articles for full-text screening, where 14 articles were excluded during full-text
examination. In total, we were able to include 22 articles in the meta-analysis (Table 1) and
an additional 13 articles in the qualitative part of the systematic review (Table 2), giving a
final number of 35 original articles on which the systematic review and meta-analysis were
based (Figure 1).

Table 1. Studies included in the meta-analysis part of the systematic review.

Study

Title Reference Meta-Analysis

Abdeltawab, A. et al. (2021)

Circulating micro RNA-223 and angiopoietin-like protein 8
as biomarkers of gestational diabetes mellitus

[23] v

Cao, Y.L. etal. (2017)

Plasma microRNA-16-5p, -17-5p and -20a-5p: Novel
diagnostic biomarkers for gestational diabetes mellitus

[30] v

Filardi, T. et al. (2022)

Identification and Validation of miR-222-3p and miR-409-3p
as Plasma Biomarkers in Gestational Diabetes Mellitus
Sharing Validated Target Genes Involved in Metabolic

Homeostasis

Gillet, V. et al. (2019)

miRNA Profiles in Extracellular Vesicles from Serum Early
in Pregnancies Complicated by Gestational Diabetes [41] v
Mellitus

Hocaoglu, M. et al. (2019)

Differential expression of candidate circulating microRNAs
in maternal blood leukocytes of the patients with [43] v
preeclampsia and gestational diabetes mellitus.

Hromadnikova, I. et al. (2022)

Cardiovascular Disease-Associated MicroRNAs as Novel
Biomarkers of First-Trimester Screening for Gestational [33] N
Diabetes Mellitus in the Absence of Other
Pregnancy-Related Complications

Juchnicka, I. et al. (2022)

miRNAs as Predictive Factors in Early Diagnosis of [22] N
Gestational Diabetes Mellitus.

Ke, W. et al. (2022)

miR-134-5p promotes inflammation and apoptosis of
trophoblast cells via regulating FOXP2 transcription in [17] v
gestational diabetes mellitus

Lamadrid-Romero, M. et al.
(2018)

Central nervous system development-related microRNAs
levels increase in the serum of gestational diabetic women [37] v
during the first trimester of pregnancy.

Martinez-Ibarra, A. et al.
(2019)

Unbhealthy Levels of Phthalates and Bisphenol A in Mexican
Pregnant Women with Gestational Diabetes and Its
Association to Altered Expression of miRNAs Involved
with Metabolic Disease

[9] v

Nair, S. et al. (2018)

Human placental exosomes in gestational diabetes mellitus
carry a specific set of miRNAs associated with skeletal [52] Vv
muscle insulin sensitivity
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Table 1. Cont.

Study Title Reference

Meta-Analysis

Extracellular vesicle-associated miRNAs are an adaptive

Nair, S. et al. (2021) response to gestational diabetes mellitus

[36]

v

Circulating miR-330-3p in Late Pregnancy is Associated

Peiffer, S. et al. (2020) with Pregnancy Outcomes Among Lean Women with GDM

[16]

vV

Gestational Diabetes is Associated with an Increased
Radojici¢, O. et al. (2022) Expression of miR-27a in Peripheral Blood Mononuclear [29]
Cells

The Predictive Value of miR-16, -29a and -134 for Early
Serensen, A.E. et al. (2021) Identification of Gestational Diabetes: A Nested Analysis of [20]
the DALI Cohort

The Temporal Profile of Circulating miRNAs during
Serensen, A.E. et al. (2022) Gestation in Overweight and Obese Women with or [20]
without Gestational Diabetes Mellitus

Circulating early- and mid-pregnancy microRNAs and risk

Wander, P.L. et al. (2017) of gestational diabetes (28] %
. MiR-330-3p contributes to INS-1 cell dysfunction by
Xiao, Y. et al. (2020) targeting glucokinase in gestational diabetes mellitus. (471 v
Plasma Exosomal miRNAs Associated with Metabolism as
Ye, Z. etal. (2022) Early Predictor of Gestational Diabetes Mellitus [19] v
Early diagnosis of gestational diabetes mellitus using
Yoffe, L. etal. (2019) circulating microRNAs (31] v
Early second-trimester serum miRNA profiling predicts
Zhao, C. etal. (2011) gestational diabetes mellitus [18] v
miR-132 serves as a diagnostic biomarker in gestational
Zhou, X. et al. (2019) diabetes mellitus and its regulatory effect on trophoblast [38] Vv

cell viability

Table 2. Studies included only in the qualitative systematic review.

Study Title

Reference

MicroRNA-7 Regulates Insulin Signaling Pathway by
Bhushan, R. et al. (2022) Targeting IRS1, IRS2, and RAF1 Genes in Gestational
Diabetes Mellitus

[46]

Study of serum miR-518 and its correlation with
inflammatory factors in patients with gestational diabetes
mellitus complicated with hypertensive disorder
complicating pregnancy

Li, Y. et al. (2021)

[42]

The Expression and Clinical Value of miR-221 and miR-320

Niu, S. etal. (2022) in the Plasma of Women with Gestational Diabetes Mellitus

[35]

High glucose induces dysfunction of human umbilical vein
Peng, H.Y. et al. (2018) endothelial cells by upregulating miR-137 in gestational
diabetes mellitus

[25]

miR-181d promotes pancreatic beta cell dysfunction by

Shen, H. etal. (2021) targeting IRS2 in gestational diabetes mellitus

[45]

Maternal whole blood cell miRNA-340 is elevated in
Stirm, L. et al. (2018) gestational diabetes and inversely regulated by glucose and
insulin

[24]

MicroRNA profiling of second trimester maternal plasma
Tagoma, A. et al. (2018) shows upregulation of miR-195-5p in patients with
gestational diabetes.

[34]
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Table 2. Cont.

Study Title Reference
Circulating miRNAs miR-574-5p and miR-3135b are
Wang, E. et al. (2021) potential metabolic regulators for serum lipids and blood [40]

glucose in gestational diabetes mellitus

Elevated Serum and Urine MiR-429 Contributes to the

Wei, L. etal. (2021) Progression of Gestational Diabetes Mellitus 271
miR-520h Inhibits cell survival by targeting mTOR in

Wen, J. etal. (2021) gestational diabetes mellitus [+4]

Yu, X. et al. (2021) miR-96-5p: A potential diagnostic marker for gestational [39]

diabetes mellitus

Zhang, L. et al. (2021)

Diagnostic value of dysregulated microribonucleic acids in
the placenta and circulating exosomes in gestational [53]
diabetes mellitus

Dysregulation of microRNA-770-5p influences

Zhang, Y.L. et al. (2020) pancreatic-3-cell function by targeting TP53 regulated [48]

inhibitor of apoptosis 1 in gestational diabetes mellitus

3.2. Quality Evaluation of Included Studies

The 35 included studies (Tables 1 and 2) were evaluated using the Newcastle-Ottawa
Scale (NOS) [15,54], with evaluation criteria listed in Supplementary Materials File S1, and
the NOS evaluations for each included study are displayed in Figure 2. The average total
NOS Score was 59%, ranging from 20% [47] to 90% [17]. The diagnosis of GDM was made
using national guidelines or IADPSG criteria in 88% of studies (Criteria 3A), while none of
the studies clearly described any loss of samples during experiments or data analysis (i.e.,
failed reactions, eliminated outliers, or absent values; Criteria 3C), although some studies
did report number of subjects analyzed for each miRNA.

3.3. Characterization of Patient Populations among Studies

Patient characteristics were extracted from all included studies to investigate overall
heterogeneity regarding included patients. Ten studies diagnosed GDM using IADPSG
criteria [9,19-21,24,29,31,33,43,55], seven used ADA criteria [17,18,25,28,34,37,38], three
used national guidelines [16,36,51], and one study used WHO criteria [22], while the
remaining studies did not define GDM diagnosis according to any explicit diagnostic
criteria (Supplementary Materials; Data Extraction Sheet). Patients were generally included
with no specific reference to the BMI of patients and control subjects; however, four
studies only investigated obese or overweight subjects [18,20,21,37], and one study only
investigated subjects with a BMI < 25 kg/m? [23]. In 21 (60%) of the studies, the control
group was explicitly matched to the GDM group with respect to BMI. The majority of
studies examined subjects in the second trimester (weeks 24-28), but four studies examined
subjects in the first trimester [9,21,41,47]. Thus, the included studies were comparable
overall, although diagnostic criteria were only explicit in 50% of the studies [16].

3.4. Qualitative Analysis of Experimental Approaches for miRNA Quantification

The sample material varied between plasma (32%) [25,28-31,33-35,51], serum (53%)
[9,16-18,20-23,37,38,43,46-48,55], whole blood [24], and EVs (14%) [19,36,41,52]. Circulating
miRNAs were quantified using a variety of approaches, such as discovery studies using
small RNA sequencing followed by single miRNA reverse transcription—quantitative PCR
(RT-gPCR) validation of selected miRNAs, RT-qPCR arrays, or candidate panels of single
RT-qPCR assay, where RT-qPCR was by far the most used methodology.

RT-qPCR data are routinely analyzed using one to several reference RNAs, against
which the target RNAs are compared. The most common references used are the U6 small
nucleolar RNA (used in 13 out of the included studies), which are endogenously present,
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and C. elegans (cel) miR-39-3p (cel-miR-39, used in 10 out of the included studies), which is
added as a spike-in during RNA extraction or cDNA synthesis. Additional endogenously
present references used for data normalization were miR-423-3p, miR-454, beta-actin, miR-
103a-3p, U58A and U36B small nucleolar RNAs, and miR-16. Other synthetic RNAs used as
spike-in materials included A. thaliana miR-159, cel-miR-54, and cel-miR-238. One study did
not report the normalization strategy for RT-qPCR data [31]. Only 4 original studies out of
30 included studies employed normalization to the average of several references, although
this is recommended by guidelines for circulating RNA assays in clinical sciences [56]. Of
note, levels of circulating miR-16 and miR-103 were previously reported to be associated
with GDM [20,21,30,57], indicating that studies incorporating these two miRNAs as en-
dogenous references [22,46] could generate biased data and complicate interpretations in
the field. Thus, significant heterogeneity was identified regarding the use of references
during data normalization for RT-qPCR studies, although spike-in RNAs derived from
plant or nematode miRNA sequences as well as the endogenously expressed U6 RNA were
used in many of the studies.

3.5. Diversity in Investigated Circulating miRNAs in Relation to GDM

We evaluated the number of times each miRNA was studied in relation to GDM (Figure 3).
The majority of circulating miRNAs (1 = 92) were only investigated in one study, suggesting
that more studies of these particular miRNAs could potentially verify these miRNAs as
being associated with a GDM diagnosis. Twelve miRNAs were each investigated in two
studies (miR-126-3p [28,34], miR-137-3p [25,37], miR-142-3p [22,34], miR-142-5p [24,34], miR-
191-5p [34,37], miR-195-5p [33,34], miR-21-3p [28,43], miR-224-5p [16,52], miR-27b-3p [28,52],
miR-30c-5p [34,37], miR-517-5p [28,41], and miR-9-5p [9,37]. Eleven different miRNAs were
each investigated in three original studies (miR-103-3p [16,20,21], miR-125b-5p [18,34,37],
miR-134-5p [17,20,21], miR-19a-3p and miR-19b-3p [24,30,34], miR-20a-5p [30,33,34], miR-221-
3p [33-35], miR-30-5p [34,37,41], miR-342-3p [33,34,41], miR-423-5p [19,34,52] and miR-92a-
3p [33,34,52], while seven miRNAs were each investigated in four studies: Five of these were
able to enter the quantitative meta-analysis and are covered below (miR-122-5p, miR-132-3p,
miR-155-5p, miR-17-5p, miR-210-3p), while additional two miRNAs were investigated in
four studies each, but for which not sufficient studies could enter the meta-analysis (miR-23a-
3p [31,33,34,46], miR-99a-5p [18,19,34,52]) (Figure 3, Supplementary Materials File S1).

mm 1 miRNA investigated in 11 studies: miR-29a-3p

mm 1 miRNA investigated in 9 studies: miR-16-5p
mm 2 miRNAs investigated in 5 studies: miR-222-3p, miR-330-3p
mm 7 miRNAs investigated in 4 studies

mm 11 miRNAs investigated in 3 studies

mm 12 miRNAs investigated in 2 studies

92 miRNAs investigated in only 1 study

Figure 3. Diversity in the reported circulating miRNAs investigated in relation to GDM pregnancies.
Twenty-two miRNAs were reported to be investigated in three or more original studies, while the
majority of investigated miRNAs (n = 92 miRNA species) were only investigated in one original study.
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3.6. miR-29a

Seven original studies investigated circulating miR-29a [9,18,20,21,28,33,41] for which
data were available for inclusion in the meta-analysis (n = 313 control subjects and n = 344
GDM patients) (Figure 4A). Overall, miR-29a was significantly increased in GDM patients,
with a standardized mean difference (SMD) of 0.18, corresponding to a fold-increase of
1.18 in GDM patients (confidence interval (CI): 0.03-0.34, p < 0.05). However, significant
heterogeneity was observed (I of 71%, T2 = 0.1294, and p < 0.01), giving a prediction
interval ranging from —0.76 to 1.27 (Figure 4A). Furthermore, Tagoma et al. (2018) [34]
observed a three-fold increased miR-29a in GDM patients, further underlining that miR-
29a is generally increased in circulation in GDM. Interestingly, Wander et al. (2017) [28]
observed that circulating levels of miR-29a were associated with an increased risk of
GDM, primarily if the fetus was male. Moreover, the closely related miR-29b was also
observed to have increased in circulation [34,41]. It should be noted that the study by
Zhao et al. (2011) [18], displaying a decrease in circulating miR-29a levels, is the only study
investigating miR-29 in Chinese women, whereas the other studies were performed in
European or Hispanic subjects.

A Intervention No intervention
Study Total Mean 5D Total Mean 5D miR-2%9a SMD 95%-C1 Weight
Zhao_2011 Validation 36 065047 36 1.00 091 -0.48 [-0.94;-001] 11.5%
Hromadnikova_2022 121 096079 80 100076 -0.05 [-0.33; 0.23) 315%
Wander_2017 36 143 203 80 1.00 2.03 0.21 [-0.18; 0.60] 16.2%
Serensen_2021 Early 39 139127 40 1.00 085 0.36 [-0.09; 0.80] 12.7%
Gillet_2019 23 139115 46 100083 041 [-0.10; 091] 9.9%
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Figure 4. Forest plots of the fixed-effect meta-analysis of (A) miR-29a [9,18,20,21,28,33,41], (B) miR-
330[9,16,20,21,47], (C) miR-134 [17,20,21], and (D) miR-132 [18,38,41].
3.7. miR-330

miR-330 was investigated in 5 original studies [9,16,20,21,47], for which the meta-
analysis included 155 control subjects and 135 GDM patients. The meta-analysis showed
an SMD of 0.42, corresponding to a fold-increase of 1.42 in GDM patients (CI: 0.18-0.67,
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p < 0.05), although significant heterogeneity was observed (I? of 87%, > = 0.6257, and
p <0.01), giving a prediction interval ranging from —2.11 to 3.47 (Figure 4B). There is a
tendency that in early GDM pregnancies, miR-330 levels are slightly downregulated [20,21],
and in late GDM, levels are upregulated [9,16,47]. Moreover, miR-330 was also deter-
mined to cause INS-1 clonal beta-cell dysfunction, suggesting possible functional effects of
circulating miR-330 levels [47].

3.8. miR-134

Three independent studies investigated circulating miR-134 in connection to GDM [17,20,21],
giving a total of 149 control subjects and 152 GDM patients for the analysis. The meta-analysis
yielded an SMD of 0.79, corresponding to a fold increase of 1.79 in GDM (CI: 0.55-1.02, p < 0.05),
with significant heterogeneity (1> of 72%, t> = 0.1071, and p = 0.03), rendering a prediction interval
of —4.31-5.79 (Figure 4C). Interestingly, miR-134 is located in a miRNA cluster in an imprinted
region on Chr14q32, which is enriched in beta-cells and controls beta-cell proliferation [58].

3.9. miR-132

miR-132 was investigated in 4 studies [18,34,38,41], of which 3 entered meta-analysis [18,38,41],
including 167 control subjects and 132 GDM patients. Unlike miR-29a, miR-330 and miR-134, miR-
132 was found to be lower overall in GDM patients with an SMD of —0.83 (CL: —1.10 to —0.57,p <
0.05), also with considerable heterogeneity (I? of 97%, T2 = 2.0639, and p < 0.01). Gillet et al. (2019)
measured miR-132 in extracellular vesicles, which might explain the difference from the two other
studies (Figure 4D) [41].

3.10. miR-16

Eight studies of circulating miR-16 were included in the meta-analysis [9,20-22,30,33,36,43].
Qualitatively assessed, the analysis by Cao et al. (2017) [30] constitutes an outlier, as miR-16 was
found to have a ~15-fold increased in GDM women, corresponding to an SMD of 12.9, while
the remaining studies displayed SMDs from —2.42 to 1.78 (Figure 5A). However, as we detected
no objective methodological differences between Cao et al. (2017) and the remaining studies,
we did not exclude it from the analysis. A total of 351 GDM women and 320 control women
entered the meta-analysis, for which the overall SMD was 0.32 (CI: 0.14-0.50, p < 0.05), similarly
to other miRNAs with large heterogeneity (1> of 98%, T2 = 21.3625, and p < 0.01). Serensen
et al. (2022) demonstrated a significant upregulation of miR-16 in early diagnosed GDM women
compared with normal glucose-tolerant (NGT) women, however, with an increase in miR-16
in weeks 35-37 increasing the difference with the control group [20]. miR-16, together with
miR-29a and miR-134, all measured early in pregnancy, could predict GDM diagnosed in week
24-28, with an ROC AUC of 0.717 [21]. However, based on meta-analyses for miR-29a and
miR-134, these two miRNAs appear to be more consistently associated with GDM compared
with miR-16 (Figures 4A,D and 5A).
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Figure 5. Forest plots of the fixed-effect meta-analysis of (A) miR-16 [9,20-22,30,33,36,43], (B) miR-
223[20,21,23,28,31], (C) miR-155 [28,33,43], and (D) miR-122 [19-21,41].

3.11. miR-223

We identified 5 studies for inclusion in the meta-analysis of circulating miR-223,
including 234 control subjects and 275 GDM patients [20,21,23,28,31]. The meta-analysis
of the studies showed an SMD of 1.04, corresponding to a fold-increase of 2.04 in GDM
patients (CI: 0.84 to 1.24, p < 0.05), although with a significant heterogeneity (I* of 97%,
7? = 3.0197, and p < 0.01), giving a prediction interval of —4.61-7.57 (Figure 5B). The
observed heterogeneity is likely influenced by the study of Yoffe et al. (2019) [31], which
demonstrated a much larger SMD of 4.67 compared with the mean of the other studies
(average SMD of 0.85), although the weight of this study is low (1.2%). Overall, the
meta-analysis data indicate that miR-223 is significantly upregulated during GDM, which
correlates well with the fact that miR-223-3p has been associated with impaired insulin
sensitivity in adipose tissues [59] and an upregulation in beta-cells during diabetes [60].
Moreover, circulating miR-223 seem to be increased in GDM women regardless of the time
point of measurement during gestation, suggesting that miR-223 might also be increased in
circulation prior to conception in these women. Of note, circulating EV levels of miR-223
were found to predict development of Type 2 diabetes from impaired glucose tolerance [61].

3.12. miR-155

In total, 3 original studies examined miR-155 [28,33,43] to include a total of 176 controls
and 188 GDM subjects in the meta-analysis, yielding a combined SMD of —0.25 (CI: —0.46
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to —0.03) with substantial heterogeneity (I% of 84%, T = 0.1831, and p < 0.01). Overall, this
resulted in the prediction interval ranging from —6.64 to 6.31 (Figure 5C). While the overall
result of the meta-analysis shows that low levels of miR-155 are associated with GDM, the
study by Tagoma et al. (2018) [34] also found that levels of miR-155 were increased in GDM
patients, adding to the assessment of heterogeneity for this miRNA. Thus, miR-155 is not
suitable as a biomarker for GDM. As late pregnancy was measured in all three included
studies, its function as a diagnostic biomarker could not be considered.

3.13. miR-122

Circulating miR-122 was examined in 4 different studies (5 cohorts) in relation to GDM,
giving a total of 233 control and 289 GDM women [19-21,41]. The meta-analysis showed an
SMD of —0.05 (CI: —0.23 to 0.13), with an observation of substantial heterogeneity (I* of 78%,
12 =0.1578, and p < 0.01), resulting in a prediction interval of —1.35-1.49 (Figure 5D). All the
studies investigated miR-122 in early pregnancy, corresponding to a gestational week before
week 20. However, no clear tendency can be seen across the studies, and therefore miR-122
is estimated to have little to no correlation with the development of GDM. Circulating
miR-122, being released from hepatocytes during impaired glucose tolerance and in states
of fatty liver disease [62], is an independent predictor of progression from impaired glucose
tolerance to Type 2 diabetes [63]. However, data for patients with GDM regarding miR-122
display considerable heterogeneity, which cannot be explained by ethnicity, degree of
obesity, biofluid material or different use of reference genes (Supplementary Materials).

3.14. Additional miRNAs Undergoing Meta-Analysis: miR-17, miR-103, miR-125a/b, miR-210,
and miR-222

3.14.1. miR-17

miR-17 was investigated in 3 studies including 219 control subjects and 164 GDM
patients [30,33,37]. The meta-analysis of the studies showed an SMD of 0.72 (Cl: 0.46-0.97,
p < 0.05), corresponding to a fold increase of 1.72 in GDM patients, however, with a high
degree of heterogeneity among studies (I of 99%, T2 = 26.5867, and p < 0.01 (Figure 6A).
Moreover, although the meta-analysis suggests a significant difference in the level of
circulating miR-17 in a GDM pregnancy compared with a normal pregnancy, these data
should be interpreted with caution, because the majority of the weight of the meta-analysis
is carried by one study only [33], limiting how representative the data are.

3.14.2. miR-103

We included 3 studies investigating circulating miR-103, consisting of a total of 111 con-
trol subjects and 111 GDM patients [16,20,21]. However, the meta-analysis of the studies
could not demonstrate any overall difference between circulating miR-103 between NGT
and GDM subjects (SMD of 0.09, CI: —3.12 to 3.30, and p > 0.05). The meta-analysis displays
heterogeneity of I? = 37%, T2 = 0.0342, and p = 0.20, indicating that the insignificant overall
difference between NGT and GDM is not due to outlier studies (Figure 6B).
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Figure 6. Forest plots of the fixed-effect meta-analysis of (A) miR-17 [30,33,37], (B) miR-103 [16,20,21],
(C) miR-125a/b [18,37,52], (D) miR-210 [28,33,41], and (E) miR-222 [18,28,29,51].

3.14.3. miR-125a and miR-125b

We included miR-125a and miR-125b in one meta-analysis due to the similarity of the
miRNAs and their overall similar regulation in metabolic disease [64,65]. MiR-125a/b was
investigated in 3 original studies, including 49 control subjects and 48 GDM patients, and
yielded an SMD of 0.04 (CI: —0.37-0.44), indicating no differences in levels in circulation
between NGT and GDM subjects [18,32,37]. The meta-analysis displays significant het-
erogeneity of I? = 75%, > = 0.3833, and p = 0.02 (Figure 6C). Moreover, two other studies,
not included in the meta-analysis, displayed an upregulation of miR-125b in GDM [33,34].
Thus, inconsistencies between studies indicate that miR-125 species are not reliable risk
indicators for GDM.

3.14.4. miR-210

MiR-210 is a well-characterized ‘hypoxi-miR’, being consistently reported as upreg-
ulated by low oxygen tension [66]. As such, this miRNA could be highly relevant as an
indicator of pregnancy complications. We identified three original studies investigating
miR-210 for inclusion into the meta-analysis [28,33,41]. These studies included a total of 180
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control subjects and 206 GDM patients. The meta-analysis indicated no overall association
between levels of miR-210 and GDM diagnosis, with an SMD of —0.05 corresponding
to a fold increase of 0.95 in GDM patients (CI: —0.28-0.16). The meta-analysis showed
a heterogeneity of I* = 81%, T> = 0.1461, and p < 0.01 (Figure 6D). Two studies, one by
Gillet et al. [41] and one by Wander et al. [28], show an upregulation of miR-210, while
the study of Hromadnikova et al., shows a downregulation of miR-210 [33]. Thus, we
identify no overall changes in circulating levels of miR-210 in GDM patients. In patients
with placental insufficiency or preeclampsia, this miRNA could be an indicator of placental
oxygenation [67]; however, most included studies in this review focus on first-trimester
patients, whereas placental insufficiency may not appear until later in pregnancy.

3.14.5. miR-222

A total of 4 studies examined miR-222 [18,28,29,51] and included 126 control subjects
and 162 GDM patients. The SMD of the meta-analysis was —0.12, corresponding to an
overall fold change of 0.88 in GDM patients (CI: —0.36-0.12 p > 0.05). The meta-analysis
had a heterogeneity of I? = 45%, T2 = 0.0519, and p = 0.14 (Figure 6E). Thus, circulating
levels of miR-222 are not consistently associated with GDM.

3.15. Dependency of Gestational Time of Levels of miR-16-5p

To analyze the possible temporal regulation of circulating miRNAs through the ges-
tational period, we examined which miRNAs were measured at several time points in
more than two studies. MiRNA-16.5p was the only miRNA fulfilling this criterion, being
investigated in four studies [20,21,30,52] (Figure 7), while other miRNAs were at the most
investigated for the same gestational time points in up to two studies. For miR-16-5p,
circulating levels at midgestation are significantly higher (raw average of the four studies:
1.96, CI:1.44-2.51) compared with NGT subjects (Figure 7A), and the meta-analysis of the
studies showed an SMD of 0.99 (Cl: 0.99-1.60, p < 0.05), corresponding to a fold increase
of 1.99 in GDM patients, however, with a high degree of heterogeneity among studies (I?
of 99%, t® = 157.6, and p < 0.01 (Figure 7B). The raw average levels in early pregnancy
(<20 weeks) were 1.23-fold vs. nondiabetic women, compared with the 1.96-fold at weeks
20-28, although this was not significantly different (p = 0.06, n = 4-5). Of note, one of
the studies followed an apparently lower trajectory of miR-16-5p levels [52] and could
be an outlier. Levels at late gestation appear to also be similar to levels in midgestation
(Figure 7A).
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Figure 7. Overall temporal regulation of the circulating levels of miR-16-5p throughout gestation:
(A) Circulating levels of miR-16-5p at <20 weeks, 20-28 weeks, and 35-40 weeks of gestation, plotted
for Cao et al., 2017 [30], Serensen et al., 2021 [21], Nair et al., 2018 [52], and Serensen et al., 2022 [20],
calculated relative to levels in nondiabetic control women matched for gestational age. (B) Main-
effects meta-analysis for circulating levels of miR-16-5p at gestational weeks 20-28.

4. Discussion and Conclusions

In the current systematic review and meta-analysis, we aimed to identify circulating
miRNAs associated with GDM diagnosis following PRISMA guidelines. Furthermore,
the aim was to perform a quantitative meta-analysis of miRNAs. Our primary literature
search identified 849 articles, which we screened according to predefined inclusion and
exclusion criteria to yield 35 original studies, for which we extracted quantitative data. We
identified more than 100 different miRNAs investigated in relation to GDM and completed
a meta-analysis for 13 different miRNAs reported in more than 3 studies. In total, 8 of these
were significantly associated overall with GDM: circulating miR-29a, miR-330, miR-134,
miR-16, miR-223, and miR-17 were increased in GDM, while miR-132 and miR-155 were
decreased in GDM patients.

miR-29a was significantly increased in circulation in GDM (Figure 4A) but has also
been reported to be associated with Type 2 diabetes in recent systematic reviews [68,69].
Hence, the upregulation of circulating miR-29a observed in multiple studies of early diag-
nosed GDM could also reflect pregestational impaired glucose tolerance [70]. Interestingly,
acute suppression of miR-29 using an antisense inhibitor in high fat diet fed obese mice
ameliorated hepatic insulin resistance and improved glucose tolerance [71], indicating a
causative role in the maintenance of glucose tolerance [3].

miR-330, increased in circulation in GDM (Figure 4B), could be more specifically
upregulated by GDM, as this was not reported to be associated with Type 2 diabetes [69].
miR-330 was reported to cause beta-cell dysfunction in GDM [47], as well as induce insulin
resistance by causing M2 macrophage polarization [72]. Moreover, increased levels of
miR-330 were also reported to be associated with decreased insulin levels [73].

miR-134, part of the imprinted MEG3-DLK genomic cluster of miRNAs on Chr. 14
controlling beta-cell function [58,74], was upregulated in circulation in GDM patients
(Figure 4C). In cell culture, miR-134 levels are increased by elevated glucose concentrations
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(25 mM) and inhibit angiogenesis [75], as well as inducing trophoblast cell inflammation
and apoptosis [17].

miR-132, increased by AMPK signaling and important for beta-cell function [76], was
decreased in the circulation of GDM patients (Figure 4D) and was also reported to be
associated with Type 2 diabetes [69]. miR-132 is required for beta-cell proliferation, acting
via suppression of phosphatase and tensin homolog (PTEN) [77], while it is downregulated
in beta-cells of obese mice [78], in concordance with the observations of circulating levels
in GDM (Figure 4D).

Circulating miR-16 was increased in GDM samples (Figure 5A) and was reported,
together with miR-29a and miR-134, to form a predictive biomarker algorithm for GDM [21].
Interestingly, deletion of miR-16-5p in skeletal muscle positively correlates with insulin
sensitivity [79], and circulating levels of miR-16-5p are also correlated positively with
insulin sensitivity [80], which is not well-reconciled with circulating miR-16-5p being
increased in GDM, which is a state characterized by impaired insulin sensitivity. However,
Cao et al. (2017) [30] found circulating miR-16-5p levels to be highly correlated with insulin
resistance, measured with the HOMA-IR index.

miR-223 was increased in circulation in GDM (Figure 5B) but has been reported to
be decreased in plasma from Type 2 diabetes patients [69]. It is therefore a possibility that
miR-223 is differentially regulated in GDM compared with Type 2 diabetes. miR-223 is
highly enriched in cells of hematopoietic origin, and it is conceivable that the increased
miR-223 in GDM could be due to the increased body weight often observed in GDM
patients, as increased body weight also increases the number of cells in circulation [81].
Moreover, insulin resistance increases miR-223 levels in white adipose tissue, where it
targets GLUT4 [82].

Decreased miR-155 was associated overall with a GDM diagnosis (Figure 5C) and
has been associated with inflammatory responses and endothelial dysfunction [83-85].
Moreover, miR-155 induction during hyperlipidemic states is necessary for compensation
of pancreatic beta-cells to insulin resistance in mice, while lower levels in beta-cells are
associated with diabetes [86].

miR-122 in circulation was not associated overall with a GDM diagnosis (Figure 5D),
although this was reported to be associated with Type 2 diabetes [63,69] with hepatic
steatosis [62] and the metabolic syndrome [87].

Circulating miRNAs miR-17, -103, -125 a and -125b, -210, and -222 were also reported
to have been previously investigated in relation to GDM, although none of these were
consistently changed in GDM patients (Figure 6).

There are several limitations to the performed systematic review and meta-analysis:
Biomarker studies are often affected by publication bias, in that insignificant associations
are less reported than significantly different associations. For the systematic review, we
included only published studies, hence potentially excluding studies demonstrating in-
significant differences between GDM and NGT. To minimize publication bias, we included
all data, including Supplementary Materials, from the included studies, regardless of
whether the miRNAs displayed significant differences between groups. For the meta-
analysis, it was possible to include only circulating miRNAs, for which at least three studies
reported data with averages and estimates of variability, necessary for the computation
of the standardized mean difference (SMD). We observed 92 circulating miRNAs, which
had only each entered 1 published study. Thus, it is likely that more circulating miRNAs
can be identified that associate with GDM. It is therefore possible that at least some of
the miRNAs are under-represented. However, we minimized publication biases by also
including data from all Supplementary Materials available. Moreover, for most of the
investigated miRNAs in the meta-analysis, we identified significant heterogeneity among
reported associations of the miRNAs investigated in the individual studies regarding GDM.
There are several possible explanations for the observed heterogeneity: study populations
may vary by ethnicity, age, time of sampling during gestation, and the sample material
investigated. All these factors are likely to influence measured levels of miRNA [56].
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Moreover, we also identified diversity in the measurement and normalization strate-
gies for quantification of miRNAs: There was marked heterogeneity, among which miRNAs
were investigated with respect to GDM. Of the 131 investigated miRNAs, the majority,
92 miRNAs, had only been investigated in 1 study. The 13 miRNAs that were analyzed
in the ensuing meta-analysis constitute only a small fraction of the possible circulating
miRNAs that could potentially be biomarkers for GDM. While we analyzed 13 miRNAs in
separate meta-analyses, only 7 of these were significantly associated overall with GDM.
These observations indicate that a selection bias exists, of which miRNAs are investigated
in relation to GDM, which is emphasized by the observation that only a few of the included
studies were based on hypothesis-free approaches, such as arrays, PCR-arrays or small
RNA-sequencing for selection. Different selections of PCR normalization strategy consti-
tutes another source of heterogeneity among studies. Although a few reference genes are
more used than others (such as U6 and artificial RNA spike-ins), a large number of different
targets are chosen as references. Thus, as also discussed in consensus statements for the clin-
ical use of gPCR assays [11,56], different choices of reference genes will introduce variability
between studies. Thus, standardization of assays and reporting for circulating miRNA
levels would decrease between-study variability and facilitate interstudy comparisons.

While the research field of circulating miRNAs as biomarkers is not well-developed,
our meta-analysis clearly shows that circulating levels of several miRNAs are significantly
associated with a GDM diagnosis, despite the number of studies being low and the total
number of included subjects also being low: between 50 and 350 in each group. Thus,
there is a clear need for additional and larger studies of circulating miRNAs in GDM to
determine with better precision the association and risk-prediction benefits that can be
obtained by the inclusion of circulating miRNAs for early detection of GDM. Moreover,
based on comparison with miRNAs recently reported in a systematic review for miRNAs in
relation to Type 2 diabetes, it is also evident that some of the miRNAs associated with GDM
(miR-29a, -132, -155, -210, and -223) are also associated with Type 2 diabetes, although the
direction of change is not always the same [69]. Thus, some of the identified miRNAs may
not be specific for GDM but may also be changed in pregestational hyperglycemia. Thus,
to enable translation of miRNAs into clinical practice, we specifically recommend that the
circulating miRNAs identified in the meta-analysis (miR-29a, miR-330, miR-134, miR-132,
miR-16, miR-223, and miR-155) be tested in several large cohorts of well-characterized
GDM patients and glucose-tolerant pregnant women using the same well-defined clinically
validated assays using prespecified data analytical pipelines [56]. This will further allow
the robust combination of several miRNAs into one biomarker profile with clear association
and higher specificity for GDM, as described for miR-29a, -16, and -134 [21]. To further
enable the use of circulating miRNAs as biomarkers in general, it would also be neces-
sary to establish population baseline levels for the relevant miRNAs, as these currently
remain uncharacterized.
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