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Abstract: Postmenopausal women are at an increased risk for intervertebral disc degeneration,
possibly due to the decrease in oestrogen levels. Low-magnitude, high-frequency vibration (LMHFV)
is applied as a therapeutic approach for postmenopausal osteoporosis; however, less is known
regarding possible effects on the intervertebral disc (IVD) and whether these may be oestrogen-
dependent. The present study investigated the effect of 17β-oestradiol (E2) and LMHFV in an IVD
organ culture model. Bovine IVDs (n = 6 IVDs/group) were treated with either (i) E2, (ii) LMHFV or
(iii) the combination of E2 + LMHFV for 2 or 14 days. Minor changes in gene expression, cellularity
and matrix metabolism were observed after E2 treatment, except for a significant increase in matrix
metalloproteinase (MMP)-3 and interleukin (IL)-6 production. Interestingly, LMHFV alone induced
cell loss and increased IL-6 production compared to the control. The combination of E2 + LMHFV
induced a protective effect against cell loss and decreased IL-6 production compared to the LMHFV
group. This indicates possible benefits of oestrogen therapy for the IVDs of postmenopausal women
undergoing LMHFV exercises.

Keywords: intervertebral disc; oestrogen; 17β-oestradiol; vibration; organ culture; matrix proteins;
matrix metalloproteinases; anabolism; catabolism

1. Introduction

Back pain is a leading global cause of disability [1], with a considerable loss of produc-
tivity and high healthcare costs [2]. It is more prevalent in adults aged 40–80, particularly
in females [3]. Intervertebral disc (IVD) degeneration (IVDD) is perceived as the major
cause of back pain [4]. Female sex hormones have been described to play an important role
in the aetiology and pathophysiology of several musculoskeletal degenerative diseases. An
association between menopause and lumbar IVDD has been previously observed, suggest-
ing oestrogen deficiency to be a risk factor for IVDD [5–10]. Accelerated IVDD has been
observed in women during the first 15 years post-menopause due to relative oestrogen
deficiency, increased prevalence of spondylolisthesis and facet joint osteoarthritis [5,7,10,11].
Nevertheless, women are diagnosed and treated similarly to men, and possible differences
in how the two sexes experience IVDD have been little explored.

Several studies demonstrated positive effects of oestrogen-related signalling on IVD
metabolism. In two-dimensional (2D) cultures, 17β-oestradiol (E2) was shown to enhance
human IVD cell proliferation [12,13], and to exert anti-apoptotic effects in human cartilaginous
endplate cells [14] and rat nucleus pulposus (NP) [15,16]. In ovariectomised female rats with
IVDD, a 28-day treatment with E2 downregulated matrix metalloproteinase (MMP)3 and
MMP13 expression and up-regulated type II collagen (COL2A1) expression [17]. This indicated
that E2 intradiscal injection may modulate IVD extracellular matrix (ECM) production towards
anabolism; however, it is not known whether E2-induced changes at the gene expression level
can be translated into an increase in IVD matrix production. In bone tissue, osteoanabolic
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effects were shown to be mediated via enhanced chondroitin sulphate production [18], an
important sulphated glycosaminoglycan (sGAG) in IVD metabolism. Depletion of sGAG
within the IVD during degeneration results in a decrease in tissue hydration, cell apoptosis,
loss of nerve growth inhibition and ultimately, loss of disc function [19].

Studies in Chinese [20] and Egyptian [21] populations suggested that whole-body vibra-
tion, among other factors, may be associated with IVDD. However, whole-body vibration
is a popular fitness trend that is described to increase muscle mass, induce weight loss and
reduce joint pain, and is one of the types of physical activity recommended for the treatment
of postmenopausal osteoporosis [22]. In mice, it was shown that the impact of low-magnitude
high-frequency vibration (LMHFV) under conditions that mimic those used clinically in
humans (0.3 g peak-to-peak acceleration/45 Hz, 20 min/day, 5 days/week) on fracture heal-
ing was highly influenced by oestrogen levels, and that this mechanism was dependent on
oestrogen receptor-α signalling and cytoskeletal remodelling [23,24]. Repeated exposure to
whole-body LMHFV (0.3 g peak-to-peak acceleration/45 Hz, 20 min/day, 5 days/week)
was also shown to induce meniscal tears and articular cartilage damage after 4 weeks of
stimulus [25]. Progressive IVDD associated with increased expression of pro-inflammatory
interleukin (IL)-1β and multiple matrix degrading enzymes, including MMP-3 and MMP-13,
was also observed after 8 weeks of LMHFV [26]. Interestingly, IVD matrix components aggre-
can and COL2 were also upregulated by vibration [26]. Overall, the data from the different
publications indicate that vibration may play a contradictory role in IVD ECM metabolism.

On the basis of the discussed literature, we hypothesise that the effects of E2 and
LMHFV might interact with each other in the IVD. We assume that (i) E2 intradiscal
injection may modulate IVD ECM production towards anabolism, as suggested by Liu et al.
(2018) [17], and (ii) LMHFV in combination with E2 may amplify an anabolic response by
IVD cells.

2. Results

To investigate the proposed hypotheses, bovine IVD organ cultures were established
(Figure 1A). On day 6 of culture, the IVDs were treated with (i) 17β-oestradiol (oestrogen,
E2), (ii) LMHFV or (iii) both in combination (E2 + LMHFV). E2 was added to the medium
at a concentration of 100 nM [27] and was added to the medium at every medium ex-
change. The groups treated with LMHFV were placed on a custom-made vibration platform
(Figure 1B) and exposed to a frequency of 45 Hz and peak-to-peak acceleration of 0.3 g for
20 min per day, 5 days per week [28]. Samples were collected after 2 or 14 days of treatment
(days 8 and 21 of organ culture, respectively) (Figure 1C). The study design is illustrated in
Figure 1D.
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peak-to-peak acceleration/45 Hz 20 min/day, 5 days/week) or both in combination (E2 + LMHFV)
was initiated at day 6. (A) Isolated discs. (B) Custom-made vibration platform with discs under
vibration. (C) Disc after removal of annulus fibrosus and nucleus pulposus tissue samples for further
evaluations. (D) Timeline of the experiments.

2.1. Effect of Oestrogen and Vibration on the Expression of Genes of the Extracellular Matrix and
Its Metabolism

After 2 days of incubation of bovine IVDs under basal control conditions or with
E2, LMHFV or both E2 + LMHFV, the gene expression of cell metabolism and apoptosis
marker PT53, oestrogen receptors ESR1 and ESR2, pro-inflammatory gene prostaglandin-
endoperoxide synthase 2 (PTGS2) and in annulus fibrosus (AF) and NP cells was assessed
by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Prostaglandin
E2 (PGE2) was quantified in the culture supernatants at days 8 and 21. The expression
of PT53 appeared to be downregulated in AF and NP cells after E2 treatment in compar-
ison to the control group (0.06 ± 0.09- and 0.05 ± 0.03-fold in AF and NP, respectively,
p = 0.062; Figure 2A). ESR1 and ESR2 were detected in AF and NP cells (Figure 2B,C). ESR1
expression was not altered in AF cells, but downregulated in NP cells after E2 or LMHFV
treatments, both when compared to the control (0.13 ± 0.20- and 0.31 ± 0.06-fold for E2
and LMHFV, respectively, p < 0.05) and E2 + LMHFV (0.11 ± 1.6-fold for E2, p < 0.01, and
0.26 ± 0.56-fold for LMHFV, p = 0.067; Figure 2B). LMHFV appeared to downregulate
0.35 ± 0.12-fold (p = 0.062) ESR2 expression in AF cells, while in NP cells it was down-
regulated by either E2 (0.12 ± 0.08-fold, p = 0.062) or LMHFV alone (0.31 ± 0.15-fold,
p < 0.05; Figure 2C). PTGS2 was slightly upregulated after the E2 stimulation in AF cells
(17 ± 27-fold) and significantly upregulated in NP cells when compared to control con-
ditions (10 ± 12-fold, p < 0.05, Figure 2D). Additionally, PTGS2 in AF cells treated with
E2 + LMHFV was upregulated versus the control (36 ± 46-fold, p = 0.062) and the LMHFV
group (34 ± 1.7-fold, p < 0.05). At day 8, PGE2 production was significantly higher in E2
(2.7 ± 0.49-fold, p < 0.05) and E2 + LMHFV (5.4 ± 0.45-fold, p < 0.01) compared to the con-
trol, and in E2 + LMHFV compared to LMHFV alone (6.0± 0.56-fold, p < 0.01, Figure 2E). At
day 21, significantly lower PGE2 production was observed in E2 (0.26 ± 0.57-fold, p < 0.001)
and E2 + LMHFV (0.19 ± 0.67-fold, p < 0.0001) groups versus day 8, with no differences
between the groups at the later timepoint.

The expression of ECM components collagen type I alpha 1 chain (COL1A1) and
COL2A1, as well as of matrix-degrading enzymes (MMP1, MMP3 and a disintegrin and
metalloproteinase with thrombospondin motifs 4 [ADAMTS4]) and their inhibitors (tissue
inhibitor of MMPs 1 [TIMP1], TIMP2) was also investigated by qRT-PCR after 2 days
of treatment of bovine IVDs. No effects on the regulation of COL1A1 or COL2A1 were
observed in AF cells (Figure 3A,B). By contrast, in the NP, LMHFV led to a downregulation
of COL1A1 expression (0.41 ± 0.27-fold), whereas COL2A1 upregulation (3.4 ± 2.4-fold)
was observed when compared to basal control conditions (p < 0.05; Figure 3A,B). LMHFV
in combination with E2 also led to COL2A1 upregulation versus the control in the NP
(9.0 ± 12-fold, p < 0.05; Figure 3B). Aggrecan (ACAN) was not altered in the AF, but was
slightly upregulated by E2 alone or E2 + LMHFV in the NP (7.5 ± 6.6- and 13 ± 7.1-fold,
respectively, p = 0.062; Figure 3C). Regarding matrix degradation, no differences were
observed in MMP1 expression (Figure 3D). In comparison to the control group, MMP3 was
slightly downregulated by AF cells stimulated with LMHFV (0.48 ± 0.37-fold, p = 0.062)
and upregulated by NP cells cultured with E2 medium supplementation (13 ± 10-fold,
p = 0.062; Figure 3E). Additionally, ADAMTS4 expression was not altered in the AF, but
was significantly downregulated by all treatments in the NP (0.26 ± 0.31-, 0.31 ± 0.14- and
0.14 ± 0.19-fold for E2, LMHFV and E2 + LMHFV, respectively, p < 0.05; Figure 3F). A
trend could be seen towards TIMP1 downregulation in NP cells treated with E2 + LMHFV
(0.11 ± 0.17-fold, p = 0.062; Figure 3G). TIMP2 was downregulated by LMHFV in the
AF (0.26 ± 0.19-fold, p < 0.01) and upregulated by E2 in the NP (3.0 ± 1.4-fold, p < 0.05)
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compared to the control, while combined treatment significantly attenuated these effects
(p < 0.05; Figure 3H).
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Figure 2. Relative gene expression of cell metabolism and apoptosis marker (A) PT53, oestrogen
receptors (B) ESR1 and (C) ESR2, and pro-inflammatory gene (D) PTGS2 in cells of the AF and NP.
RNA was isolated at day 8 of organ culture. IVD groups were either cultured under basal conditions
(control) or treated with oestrogen (E2), low-magnitude high-frequency vibration (LMHFV) or the
combination of E2 + LMHFV. Levels of mRNA were normalised to GAPDH and to the control
(red dashed line = 1). Results are presented as 2−∆∆Ct. (E) PGE2 quantification (ng/mL) in culture
supernatants at days 8 and 21. Box plots (n = 4–6 IVDs/group). * p < 0.05, ** p < 0.01 (*, comparison
to control); # p < 0.05, ## p < 0.01 (#, comparison to E2 + LMHFV group); $$$ p < 0.001, $$$$ p < 0.0001
(*, comparison to the same group at day 8).

2.2. Effect of Oestrogen and Vibration on Cell Viability, DNA, sGAG and Collagen

After 21 days of culture, including 16 days of stimulation with either E2, LMHFV or
E2 + LMHFV, cell apoptosis in the AF and NP was investigated by the terminal deoxynu-
cleotidyl transferase dUTP nick-end labelling (TUNEL) assay (single staining channels are
depicted in Appendix A, Figure A2). The amount of DNA was assessed in digested tissues.
Cell viability was over 70% in the AF, and over 58% in the NP, and no significant differences
were observed between the groups (Figure 4A,B). The DNA content was normalised to the
wet weight of each respective tissue sample (Figure 4C). A significant decrease in the DNA
was observed in AF and NP tissues treated with LMHFV when compared to both control
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(0.43 ± 0.54 and 0.21 ± 0.27-fold for AF and NP, respectively, p < 0.05) and E2 + LMHFV
(0.17 ± 0.63 and 0.10 ± 0.43-fold for AF and NP, respectively, p < 0.05).
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Figure 3. Relative gene expression of IVD matrix components (A) COL1A1, (B) COL2A1 and
(C) ACAN, matrix-degrading enzymes (D) MMP1, (E) MMP3 and (F) ADAMTS4 and inhibitors
of matrix degradation (G) TIMP1 and (H) TIMP2 in cells of the AF and NP. RNA was isolated at day 8
of organ culture. IVD groups were either cultured under basal conditions (control) or treated with oe-
strogen (E2), low-magnitude high-frequency vibration (LMHFV) or the combination of E2 + LMHFV.
Levels of mRNA were normalised to GAPDH and to the control (red dashed line = 1). Results are
presented as 2−∆∆Ct in box plots (n = 4–6 IVDs/group). * p < 0.05, ** p < 0.01 (*, comparison to the
control); # p < 0.05 (#, comparison to E2 + LMHFV group).
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Figure 4. Cell viability in control, E2, LMHFV and E2 + LMHFV IVD tissues after 21 days of culture.
(A) Representative fluorescence microscopy images of TUNEL staining in the AF and NP. Apoptotic
cells are stained green (TUNEL, green arrows) and Hoechst counterstains cell nuclei blue (scale bars,
200 µm and 50 µm). (B) Quantification of the percentage of viable cells. (C) Amount of DNA
normalised to wet weight (µg/g) in AF and NP tissues. Results are presented in box plots (n = 6
IVDs/group). * p < 0.05.

The amounts of sGAG and collagen were normalised to the DNA content of each
tissue digest (Figure 5). Representative images of sGAG and collagen content are depicted
in Figure 6A,B, respectively. While no differences were observed between groups in the AF,
the amount of sGAG/DNA in the NP was significantly increased after the application of
LMHFV (1.9 ± 0.40-fold, p < 0.05, Figure 5A). This effect was reversed when E2 was also
present in the combined group. Samples treated with LMHFV showed displayed higher
collagen/DNA both in the AF (2.3 ± 0.52-fold, p < 0.05) and NP (2.0 ± 0.30-fold, p < 0.01)
regions, whereas the combination of E2 + LMHFV significantly decreased it (0.62 ± 0.60-
and 0.27 ± 0.54-fold in the AF and NP, respectively, p < 0.05, Figure 5B). Interestingly, when
E2 was administered alone, no differences were observed compared to control samples.
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Figure 5. Protein quantification in AF and NP tissue digests of control, E2-, LMHFV- and
E2 + LMHFV-treated IVD samples after 21 days of culture. (A) sGAG and (B) collagen normalised
to DNA (mg/µg). Results are presented in box plots (n = 4–6 IVDs/group). * p < 0.05, ** p < 0.01,
**** p < 0.0001.

When analysing in more detail the distribution of collagen fibres (Figure 6B), the
total content was in agreement with the increase of collagen in the LMHFV-treated group
detected by biochemical quantification (Figure 5B). The % of collagen detected by picrosirius
red staining also showed a significantly higher collagen content in the LMHFV-treated
group compared to E2 + LMHFV, particularly in the AF region (1.4 ± 0.22-fold, p < 0.05).
Regarding the distribution of fibres with different thicknesses, it was observed that orange
fibres (relatively thick and mature) were the most abundant in all groups (Figure 6C).
Additionally, more orange fibres were detected in the AF of LMHFV-treated IVDs versus
E2 + LMHFV (1.7 ± 0.26-fold, p < 0.01). Though less than 7% of yellow fibres were detected
in all groups, a higher content was observed in the AF of E2 + LMHFV compared to E2
alone (2.1 ± 0.68-fold, p = 0.059) and of green fibres compared to LMHFV (4.1 ± 1.2-fold,
p < 0.05). In the NP, a higher content of yellow and green fibres was observed after LMHFV
was applied (3.2 ± 0.98- and 3.3 ± 1.3-fold, respectively, p < 0.05).

2.3. IL-6 and MMP-3 Production

Immunohistochemical staining for IL-6 (Figure 7A), an inflammation-associated molecule,
and MMP-3 (Figure 7B), a matrix-degrading enzyme, was performed on IVD sections
collected at day 21 of organ culture after treatment with E2, LMHFV or E2 + LMHFV was
started at day 6. Representative images of AF and NP regions are depicted in Figure 7A,B
and of negative immunoglobulin G (IgG) control in Appendix A Figure A5. For each
experiment, all groups were stained at the same time for comparative purposes. The
staining intensity in each treatment group was normalised to the respective untreated
control. Spatial distribution investigations depicted stronger staining intensity of both
proteins in pericellular regions. Significantly higher IL-6 production was observed in
the AF and NP regions of the E2- and LMHFV-treated groups versus the control (about
1.2 ± 0.06-fold, p < 0.05; Figure 7C). IVDs treated with E2 + LMHFV also produced more
IL-6 in comparison to control samples in the NP region (1.1 ± 0.06-fold, p < 0.05), but
significantly less than IVDs treated with E2 or LMHFV alone (0.9 ± 0.07-fold, p < 0.05).

MMP-3 production was significantly increased in the AF with E2 treatment
(1.1 ± 0.03-fold, p < 0.01), particularly in the pericellular region and in the translamel-
lar bridging network, but decreased with LMHFV and E2 + LMHFV in combination, when
compared to the control group (about 0.93 ± 0.03-fold, p < 0.05; Figure 7D). In addition, the
combined treatment showed significantly less MMP-3 than did E2 alone (0.89 ± 0.03-fold,
p < 0.0001). In the NP region, only E2 + LMHFV led to significantly lower MMP-3 produc-
tion in comparison to control samples (0.95 ± 0.04-fold, p < 0.05).
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Figure 6. Histological analysis of control, E2, LMHFV and E2 + LMHFV IVD tissues after 21 days
of culture. Sagittal IVD sections were stained with (A) safranin O/fast green for the detection of
proteoglycans (proteoglycans are stained orange and collagens are counterstained green; scale bar,
200 µm) or (B) picrosirius red for the detection of collagens. The colour range visualised under
polarised light microscopy corresponds to relative fibre thickness from thin and less mature green
fibres to increasingly thicker and more mature yellow, orange and red fibres (scale bar, 500 µm).
AF and NP regions of one representative donor are depicted. (C) Quantification of the relative
percentage of collagen fibres in the AF and NP regions of the picrosirius red-stained sections. Results
are presented in box plots (n = 6 IVDs/group). * p < 0.05, ** p < 0.01.
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3. Discussion

IVDD is characterised by, among other events, an imbalance in ECM metabolism
favouring degradation/catabolism [29,30]. While a lack of E2 has been associated with
IVDD [5,17,31,32], the influence of LMHFV on IVD homeostasis and degeneration is, to
date, not fully understood [25,26,33]. Therefore, the main aim of the present work was to in-
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vestigate the effects of E2 and LMHFV, alone or in combination, on IVD matrix metabolism,
using an organ culture model of male IVDs. At day 8 of organ culture, ESR1, but not
ESR2, was upregulated by AF and NP cells compared to fresh samples (Appendix A,
Figure A1), which might have been influenced by the culture conditions [34]. However,
we do not expect significant differences between sex regarding ex vivo findings because
the physiological influence of hormones such as oestrogen was not present. Additionally,
significant cell death and GAG release were observed at day 21, when compared to fresh
IVDs (Appendix A, Figures A3 and A4), simulating features of mildly degenerated IVDs.
Decrease in cell viability and GAG loss in bovine IVD organ cultures without endplates
with time in culture have been previously observed under application of similar static [35]
or dynamic [36] loads. Given the difficult access to healthy human IVDs for research,
bovine caudal IVDs have been proposed as a suitable biological and biomechanical model
to investigate the human lumbar IVD given their similarities in size, cellular composition
and metabolic behaviour [37]. Explant cultures present limitations in the simulation of
physiologic hydration levels and hydrostatic pressure conditions and lack the interac-
tion with other tissues; however, they are easily available and allow for well-controlled
environmental conditions [37,38].

ESR1 and ESR2, classic nuclear receptors of oestrogen signalling, are expressed by
human AF [13] and NP cells, which was confirmed in the present work for the bovine cells,
and their expression was shown to be significantly decreased in the NP with the aggravation
of IVDD both in samples from male and female patients [39,40]. The expression of ERα and
ERβ proteins was previously shown to be higher in the NP of degenerated IVDs of males
versus females [40]. Nevertheless, as stated above, we do not expect significant differences
between sex regarding ex vivo findings. In the present study, a single administration of
100 nM E2 to IVD tissues upregulated ESR1 and ESR2 expression in NP cells after 2 days.
Previously, human NP cell cultures treated with 10 nM E2 (in combination with 15 ng/mL
tumour necrosis factor-α [TNF-α]) for 3 days increased their expression of ERα and ERβ
in comparison to the TNF-α treatment alone, but up to similar values as in the control
group [41].

On the basis of the current literature [17,31], we hypothesised an anabolic effect of E2
on the IVD potentially mediated via sGAG production [18]. This hypothesis could not be
confirmed in the present study. Here, the expression of PTGS2 and production of PGE2,
and the expression of ADAMTS4, as well as of TIMP2 (an inhibitor of MMP activity) were
downregulated by NP cells after E2 treatment, whereas COL1A1, COL2A1, MMP1 and
MMP3 expression was not changed. In addition, immunohistochemical analysis suggested
a pro-inflammatory and catabolic effect of E2 through increased IL-6 and MMP-3 produc-
tion; however, with no significant changes in sGAG or collagen content. No changes in cell
viability or cellularity were observed, in contrast to previous work in which human AF
cell proliferation was observed in vitro following exposure to 100 nM E2 for 10 days [13].
E2 administration (10 µM, 100 nM and 1 nM for 48 h) was shown to upregulate SOX9,
ACAN and COL2A1 gene expression by NP cells of male rats cultured in vitro, and to
enhance protein deposition of ACAN and COL2, and sGAG in a concentration-dependent
manner [31]. The p38 mitogen-activated protein kinase (MAPK) signalling pathway was
shown to be involved in this regulatory process [31]. Rat NP cells treated with 1 nM E2
for 24 h were shown to be protected against apoptosis by upregulating α2β1 signalling
pathway [15] and COL2, downregulating MMP-3 and MMP-13, and by inhibiting the
activation of the nuclear factor-κB (NF-κB) signal pathway, which plays a relevant role in
IVDD [16,42]. The E2 effects were also demonstrated to occur via the PI3K/Akt/mTOR
pathway, a key regulator of survival during cellular stress [43–45]. In vivo, E2 administra-
tion (25µg/kg body weight/day for 28 days) attenuated ovariectomy-induced IVDD in
female rats by MMP3 downregulation and COL2A1 upregulation [17]. In ovariectomised
female mice, E2 treatment (subcutaneous implantation of pellets containing 0.18 mg E2)
decreased tumour necrosis factor-α, IL-1β and IL-6 in NP cells at the gene and protein
levels after 6 weeks [46]. Interestingly, E2 modulation of these pro-inflammatory cytokines
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was shown to be mediated by substance P [40,46]. In summary, only a mild effect of E2
could be observed on IVD matrix metabolism up to 14 days after treatment of bovine IVD
organ cultures. Although the used E2 concentration was is in the range of published work
for 2D cells cultures (between 1 nM and 10 µM) [13,15,31,39], oestrogen bioavailability
may be lower in organ culture when compared to isolated cells or endogenous production,
and the effect of soluble factors on isolated IVD cells may be inherently different than
on three-dimensional organ cultures, as previously shown in other investigations [47].
Nevertheless, the observed differences may be mostly due to the fact that the cells were not
challenged with, for instance, pro-apoptotic [15] or pro-inflammatory factors [39,42,44,45],
as performed in previous studies. Yet, the aim of this work was to investigate the effect of
E2 only under homeostatic/mildly degenerative conditions.

Few studies have addressed the effects of vibration, particularly LMHFV, on the
IVD [48]. Interestingly, acute vibration at 15 Hz (0.3 g peak-to-peak acceleration, 30 min) was
shown to induce transient expression of anabolic genes including Acan, Col2a1, biglycan,
decorin, and Sox9, and suppress expression of Mmp13 by murine IVDs cultured ex vivo,
with the most pronounced changes detected 6 h following vibration [33]. Similar results
were detected in mouse IVDs in vivo; however, anabolic effects decreased at frequencies
of 45 Hz or greater (up to 90 Hz) [33]. Longer exposure to 45 Hz (0.3 g peak-to-peak
acceleration, 30 min/day, 5 days/week, 4 weeks) promoted degenerative changes. MMP3
and COL1A1 expression was found to be increased by the mouse IVD cells, as well as
the amount of sGAG in the AF [25]. In our experiments, LMHFV applied for 2 days
downregulated COL1A1 expression by NP cells, but increased COL2A1 expression, typical
of NP cells in the native environment, in line with the findings from McCann et al. (2013)
for a short exposure time [33]. Although no significant differences in cell apoptosis were
detected by the TUNEL assay, the cellular content of the discs after 2 weeks of LMHFV was
decreased, also in agreement with previous findings [25]. In addition, lower sGAG content
was observed in the NP of LMHFV-treated samples, which may be associated with the fact
that sGAG can easily diffuse out of the tissue, whereas collagen cannot. While there was a
decreased MMP-3 production, a known activator of collagen degradation [49], an increased
percentage of orange “more-mature” collagen fibres was observed in the AF of LMHFV-
treated IVDs. This may indicate an impact of LMHFV on collagen glycosylation, which has
been previously described to be implicated in fibrillar collagen maturation [50]. In humans,
short applications of LMHFV (30 Hz, peak-to-peak acceleration magnitudes of either 0.3 or
0.5 g, 10 min/day) attenuated IVD swelling after 90 days of bed rest [51]. Overall, these
findings demonstrate that the effects of LMHFV on IVD metabolism are dependent on the
frequency and duration of the stimulus, as well as the timepoint of analysis. While short-
term vibration at 45 Hz does not seem to induce strong changes in gene expression [33],
repeated exposure may induce deleterious effects on healthy IVDs [25].

Lastly, the effect of the combined E2 + LMHFV treatment on IVDs was, to the best
of our knowledge, here investigated for the first time. Our data showed an increase in
COL2A1 expression by NP cells, as well as cell proliferation and decreased MMP-3 pro-
duction. However, no changes in sGAG were observed and collagen was even decreased.
The higher cell content in the IVD after E2 + LMHFV was applied for 14 days indicates
that E2 may abrogate the detrimental effects of LMHFV alone, in contrast to results from
Haffner-Luntzer et al. (2018), in which LMHFV-induced cell proliferation of osteoblasts
was abolished by oestrogen supplementation [23]. Cell proliferation may contribute to the
prevention of IVDD. The decrease of collagen suggested a lower production by the cells,
which may be compensated at a later timepoint by a higher cellularity of the disc. E2 might
have had an effect on LMHFV-activated cell death, for instance, via PI3K/Akt/mTOR
pathway, as previously suggested [43–45]. A decrease in IL-6 production may have oc-
curred, for example, via modulation of the NF-κB signalling pathway [16,42]. In bone
tissue homeostasis, the individual anabolic effects of E2 and LMHFV were stronger than
when combined [24]. A positive effect of LMHFV was observed on fracture healing re-
pair in ovariectomized mice (which were not capable to produce oestrogen), whereas in
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non-ovariectomized healthy mice, LMHFV negatively affected bone repair [23,24]. These
effects were shown to be dependent on oestrogen receptor α signalling and cytoskeletal
remodelling [23]. The contrast to our study may be attributed to possible differences in
the pathomechanisms activated in bone and IVD, though different animal models and
experimental setups also may play a role. Although further research will be important to
better understand the mechanism of action of E2 and LMHFV on IVD metabolism both
in health and disease, the present study suggests a beneficial effect of E2 + LMHFV in
healthy/mildly degenerated IVDs, representing a possible therapeutic option to decelerate
IVDD development.

In conclusion, this study provides insights into the effect of E2 and LMHFV on IVD
organ cultures, either singly or in combination. Overall, little effects were observed at
the gene expression level (Figure 8). However, E2 significantly increased the production
of IL-6 and MMP-3, involved in IVD matrix catabolism, whereas LMHFV applied alone
contributed to a decrease in cellularity and an increase in IL-6, but also in collagen compared
to the control. The combination of E2 + LMHFV decreased the production of MMP-
3 compared to the control. Additionally, it promoted cell proliferation and decreased
IL-6 production compared to the LMHFV group, suggesting possible benefits for IVD
homeostasis in postmenopausal women undergoing oestrogen treatment and whole-body
vibration. Nevertheless, further research is important to better understand the effect and
mechanism of action of E2 and LMHFV on IVDD.
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Figure 8. Regulation of anabolic and catabolic genes in AF and NP cells at day 8 of organ culture,
and of proteins at day 21 by E2, LMHFV and E2 + LMHFV treatments compared to the unstimulated
control group. ↑, upregulation/increase; ↓, downregulation/decrease;↔, no alteration.

4. Materials and Methods
4.1. IVD Isolation and Organ Culture Model

Tails from male cattle between the ages of 12 and 24 months (n = 12) were obtained
from a local slaughterhouse (Ulmer Fleisch, Ulm, Germany)—no ethical approval was
required. The tails were processed as previously described [35]; after removing muscles
and ligaments, the mid-region of each IVD was isolated from the caudally and cranially
adjacent cartilaginous endplates using a custom-built cutting-tool, containing two parallel
microtome blades 5 mm apart. Six IVDs per tail (with 5 mm height) were collected. The
IVDs were washed in Dulbecco’s phosphate-buffered saline (Gibco, Waltham, MA, EUA)
solution and transferred to an IVD culture medium containing high-glucose Dulbecco’s
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Modified Eagle Medium (Gibco) supplemented with 5% foetal bovine serum (Sigma-
Aldrich, St. Louis, MO, EUA), 1% penicillin/streptomycin (10,000 U/mL–10 mg/mL,
Gibco), 0.5% amphotericin B (250 µg/mL, Sigma-Aldrich), 1% non-essential amino acids
(Gibco) and 1.5% 5 mol/L NaCl/0.4 mol/L KCl solution to adjust the osmolarity of
the medium to 400 mOsm. The IVDs were cultured in six-well plates with a mem-
brane filter insert on top of each disc (Figure 1A) and under a static load of 0.46 MPa
to avoid swelling [35], and at 37 ◦C in a reduced oxygen atmosphere (6% O2, 8.5% CO2)
with saturated humidity. The medium exchange was performed every second day. At
day 6, the IVDs were treated with (i) 17β-oestradiol (oestrogen, E2), (ii) LMHFV or (iii)
both in combination (E2 + LMHFV). E2 was added to the medium at a concentration of
100 nM [27] and at every medium exchange. The groups treated with LMHFV were placed
on a custom-made vibration platform (Figure 1B) and exposed to a frequency of 45 Hz
and peak-to-peak acceleration of 0.3 g for 20 min per day, 5 days per week [28]. Samples
were collected after 2 or 14 days of treatment (days 8 and 21 of organ culture, respectively)
(Figure 1C). The timeline of the experiments is depicted in Figure 1D.

4.2. Gene Expression Analysis

Gene expression was assessed by qRT-PCR as previously described [52]. On day 8
of the organ cultures, tissue samples from the AF and NP regions were cut into small
fragments, shock-frozen in liquid nitrogen and kept at −80 ◦C overnight. Subsequently,
1 mL RNAlater ICE (Invitrogen, Waltham, MA, EUA) was added to the tissues, which
were stored at −20 ◦C. For the RNA isolation, the samples were thawed and homogenised
in 1 mL QIAzol lysis reagent (Qiagen, Düsseldorf, Germany). For the two-phase extrac-
tion, 200 µL chloroform (Sigma-Aldrich) were added. Following incubation for 1 min,
the samples were centrifuged at 20,000× g for 30 min at 4 ◦C. For the RNA isolation,
the Arcturus PicoPure RNA isolation kit (Thermo Fisher Scientific) was used following
the manufacturer’s instructions. The RNA concentration was determined using a Nano
Quant plate and Tecan reader. The samples were kept on ice between steps. RNA was
transcribed into cDNA using the Omniscript RT kit (Qiagen). After the cDNA was diluted
1:3 in nuclease-free water, qRT-PCR was performed using the custom-designed primers
(Biomers, Ulm, Germany) in Table 1 and the Platinum SYBR Green qPCR SuperMix-UDG
kit (Invitrogen), or TaqMan Gene Expression Assays and the Fast Advanced Master Mix
(Applied Biosystems, Waltham, MA, EUA). Melt curve analysis to ensure assay specificity
was performed and CT values from samples with adequate PCR products were analysed
following the 2−∆∆CT method [53,54]. For each target gene, the mean CT value of each sam-
ple was normalised to the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) and to the control group, being ∆∆CT = ∆CT(sample of interest) − ∆CT(control sample)
and ∆CT = CT(gene of interest) − CT(GAPDH).

Table 1. Bovine oligonucleotide primers used for qRT-PCR. Primers with a shown sequence were
custom designed; primers with an assay ID number were purchased from Applied Biosystems.
fw: forward; rev: reverse.

Gene Sequence (Forward and Reverse Primer) Product Size (bp)

ACAN fw: 5′-ACA GCG CCT ACC AAG ACA AG-3′

rev: 5′-ACG ATG CCT TTT ACC ACG AC-3′ 155

COL1A1 fw: 5′-TGA GAG AGG GGT TGT TGG AC-3′

rev: 5′-AGG TTC ACC CTT CAC ACC TG-3′ 142

COL2A1 5′-CCT GTA GGA CCT TTG GGT CA-3′

5′-ATA GCG CCG TTG TGT AGG AC-3′ 145

ESR1 fw: 5′-GCC TCA AAT CCA TCA TCT TGC T-3′

rev: 5′-CGG TGG ATG TGG TCC TTC TC-3′ 100
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Table 1. Cont.

Gene Sequence (Forward and Reverse Primer) Product Size (bp)

ESR2 fw: 5′-CTC CTG GAC ACC TCT CTC CTT TAG-3′

rev: 5′-GGT TTC ACG CCA AGG ACT CTT-3′ 85

GAPDH fw: 5′-ACC CAG AAG ACT GTG GAT GG-3′

rev: 5′-CAA CAG ACA CGT TGG GAG TG-3′ 178

MMP1 fw: 5′-ATG CTG TTT TCC AGA AAG GTG G-3′

rev: 5′-TCA GGA AAC ACC TTC CAC AGA C-3′ 193

MMP3 fw: 5′-CTG CGG ATA CTT CCA CAG GT-3′

rev: 5′-ATG GAT GAG CAG GGA AAC AC-3′ 198

PT53 fw: 5′-ATT TAC GCG CGG AGT ATT TG-3′

rev: 5′-CCA GTG TGA TGA TGG TGA GG-3′ 174

PTGS2 Bt03214492_m1

TIMP1 fw: 5′-GCT GGA CAT TGG AGG AAA GA-3′

rev: 5′-CGT CCG GAG AGG AGA TGT AG-3′ 209

TIMP2 fw: 5′-TGA GAG AGG GGT TGT TGG AC-3′

rev: 5′-AGG TTC ACC CTT CAC ACC TG-3′ 142

4.3. Cell Viability

Prior to the TUNEL staining, IVD samples were flash-frozen in liquid nitrogen and
stored at −80 ◦C. Cryosections of 10 µm were obtained and stained with 1 ng/mL Hoechst
staining solution (Polysciences, Warrington, PA, USA) for 1 min and using the CF488A
TUNEL apoptosis detection kit (Biotium, Fremont, CA, USA) according to the manufac-
turer’s instructions, as previously described [55]. Representative images were obtained
from randomly selected regions of interest by fluorescence microscopy (Leica DMI6000B,
Leica Microsystems, Wetzlar, Germany). Apoptotic cells were stained green, while cell
nuclei were stained blue (Figure 3A). The percentage of cell viability was determined as:
(number of blue-stained cells—number of green-stained cells)/number of blue-stained
cells × 100.

4.4. PGE2 Quantification in Culture Supernatants

The concentration of PGE2 was measured by using an enzyme-linked immunosorbent
assay kit (Arbor Assays, Ann Arbor, MI, USA) in IVD culture supernatants at days 8 and 21
following the manufacturers’ instructions.

4.5. DNA, sGAG and Collagen Quantification in AF and NP Tissues

At day 14, NP and AF samples were cut into small fragments, weighed and incubated
overnight at 56 ◦C with 500 µL 0.5 mg/mL proteinase K solution for tissue digestion. The
digests were stored at −20 ◦C for further analysis. DNA content in the AF and NP digests
was determined using the Quant-iT PicoGreen dsDNA Assay kit. For sGAG quantification,
the dimethylmethylene blue assay was applied as previously described [52,56]. Chon-
droitin sulphate (Sigma-Aldrich) was used to generate a standard curve. The absorbance
was determined at 525 nm. A predictive model, generated by linear regression-fitting to
the values of the standard curve, was utilised to determine the sGAG concentration. For
hydroxyproline precipitation, 100 µL tissue digest were incubated with an equal volume of
37% hydrochloric acid (Sigma-Aldrich) for 24 h at 110 ◦C [57]. Following centrifugation
at 10,000× g for 3 min, 2 µL of the supernatant were transferred to a 96-well plate and the
solvent evaporated at 60 ◦C. The amount of hydroxyproline was determined following the
kit’s instructions (Sigma-Aldrich). Following 90 min of incubation at 60 ◦C, the absorbance
was determined at 560 nm. Considering that the hydroxyproline corresponds to approxi-
mately 10% of the mass of collagen [58,59], the collagen amount was extrapolated from the
hydroxyproline measurements.
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4.6. Histology

IVD tissues were fixed in 4% saline-buffered formalin for 48 h. Paraffin sections of 6 µm
were cut in the sagittal plane. Safranin-O/fast green staining was performed for an overall
assessment of the proteoglycan content of the tissue (stained pink/red). Briefly, sections
were incubated in Weigert’s iron haematoxylin (Waldeck, Münster, Germany) for 5 min to
stain the cell nuclei and, subsequently, immersed in 0.01% fast green (Waldeck) solution
for 5 min to stain the collagen. Following rapid rinsing in 1% acetic acid (VWR, Radnor,
PA, USA) solution, slides were immersed for 5 min in 0.1% safranin-O (Sigma-Aldrich)
solution to detect proteoglycan deposition. The picrosirius red kit (Abcam, Cambridge,
UK) was used to stain collagen. Sections were stained with picrosirius red solution for
1 h at room temperature. Birefringent collagen fibres were imaged with polarised light
(Axiophot 451887, Zeiss, Jena, Germany). The colour hue corresponds to relative fibre
thickness from thin green fibres to increasingly thick yellow, orange and red fibres. All
images were captured with the same parameters. Area or red (1–9 nm; 230–255 nm), orange
(10–38 nm), yellow (39–51 nm) and green (52–128 nm) fibres were quantified using ImageJ
software following Pereira et al. (2016) [60].

4.7. Immunohistochemistry

Immunostaining was performed as previously described [52,55]. Paraffin sections were
first incubated for 1 h at 37 ◦C and 30 min at 60 ◦C. The slides were deparaffinised in xylene
(2× 100%) and descending ethanol solutions (2× 100%, 90%, 80%, 70%, 50%) and washed
in distilled water. For unmasking, the sections were incubated in 10 mM citrate buffer at
95 ◦C for 20 min. Following cooling for 20 min, blocking was performed with 3% H2O2 in
tris buffered saline (TBS) buffer for 20 min at room temperature and 5% goat serum in TBS
with 0.1% Tween-20 (TBST) for 1 h at room temperature. Subsequently, incubation with
primary antibody rabbit anti-IL-6 (5 µg/mL in TBST with 1% goat serum, Bioss, Woburn,
MA, USA) or rabbit anti-MMP-3 (5 µg/mL in TBST with 1% goat serum, Abcam) was
performed overnight at 4 ◦C. Following incubation with secondary antibody biotinylated
goat anti-rabbit IgG (5 µg/mL dilution in TBST with 1% goat serum, Invitrogen) for 30 min,
the VECTASTAIN Elite ABC HRP and the Vector NovaRED Substrate kits (both from Vector
Laboratories, Newark, CA, USA) were used following the kits’ instructions. Cell nuclei
were stained with haematoxylin. For dehydration, the sections were incubated in ascending
ethanol solutions (90%, 100%) and xylene (2× 100%), and lastly covered with Vitro-Clud
(R. Langenbrinck Labor- und Medizintechnik, Emmendingen, Germany). The stained
sections were analysed following Saggese et al. (2019) [55]. Representative images were
obtained under bright field microscopy. Artifacts were excluded by manually defining a
region of interest using ImageJ software. Each image was deconvoluted into three different
channels using a colour deconvolution plug-in for haematoxylin and 3,3′-diaminobenzidine
(H DAB). The mean pixel intensity was quantified in the DAB channel. The data were
normalised to control samples stained at the same time as samples from the additional
groups [52,55].

4.8. Statistical Analysis

GraphPad Prism 8 (GraphPad Software, Inc, La Jolla, CA, USA) was used for the
statistical analysis. Normal distribution was assessed with the Shapiro-Wilk test. For
comparison of the normalised data to the control, the Wilcoxon signed rank test was
performed. For parametric data, the comparison between groups was performed using
Brown-Forsythe and Welch one-way analysis of variance, followed by Dunnett’s multiple
comparison test. For nonparametric data, the comparison between groups was performed
using Kruskal-Wallis test with Dunn’s multiple comparison test. Groups treated with E2
or LMHFV were compared to E2 + LMHFV. Differences were considered significant for
p < 0.05.
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5. Conclusions

While E2 and LMHFV are known to influence IVD homeostasis, this study provides
further insights into their single and combined effect on IVD organ cultures. In this model,
little effect of E2 on the IVD metabolism was observed, except for an increased production
of IL-6 and MMP-3. Interestingly, LMHFV applied alone contributed to a decrease in
cellularity and an increase in IL-6 production, but also in collagen, compared to the control.
The combination of E2 + LMHFV seemed to counteract the effect of LMHFV alone by
presenting a protective effect against cell loss and decreased IL-6 production compared to
the LMHFV group. This ex vivo data suggests possible benefits of oestrogen therapy in
combination with whole-body LMHFV on IVD homeostasis. However, further research is
necessary to better understand the mechanism of action of E2 and LMHFV and their effect
on IVDD.
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Appendix A

Appendix A.1. Basal Expression of Oestrogen Receptors ESR1 and ESR2

The expression of oestrogen receptors ESR1 and ESR2 was investigated in freshly
isolated AF and NP tissues and compared to the expression after 8 days of organ culture
under control conditions. Results showed a significant upregulation of ESR1, but not ESR2,
by AF and NP cells at day 8 of organ culture (113.2 ± 1.1- and 8.5 ± 1.2-fold, respectively,
p < 0.01, Figure A1).
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and NP from freshly isolated tissues and at day 8 of organ culture under basal control conditions.
Levels of mRNA were normalised to the housekeeping gene GAPDH. Results are presented as 2−∆Ct.
Box plots (n = 4–6 IVDs/group). Mann-Whitney test, ** p < 0.01; ns, non-significant.
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Appendix A.2. Cell Apoptosis Detection in AF and NP at Day 21 of Organ Culture

Cell apoptosis/viability in control, E2, LMHFV and E2 + LMHFV IVD tissues was
investigated after 21 days of culture. Representative images of Hoechst and TUNEL staining
in the AF and NP are depicted in Figure A2.

DNA content of fresh AF and NP tissues is depicted in Figure A3. In fresh AF and
NP samples, the DNA/wet eight was about 89 ± 15 and 37 ± 10 µg/g, respectively. This
data is in agreement with the literature [61,62]. After 21 days, we observed a significant
decrease in the DNA content of the AF (0.3 ± 0.4-fold) and NP (0.5 ± 0.3-fold) compared to
freshly isolated tissues.

Fresh AF and NP samples present about 16 ± 5 and 55 ± 10 mg of sGAG per g
of IVD tissue wet weight, respectively (Figure A4A). This data is in agreement with the
literature [61,62]. Significantly lower sGAG was observed in the organ culture controls at
day 28 than in fresh AF and NP samples (0.02 ± 0.71- and 0.40 ± 0.32-fold, respectively,
p < 0.01, Figure A4A). Loss of sGAG to the cultures supernatants was also quantified
on days 8 and 21 (Figure A4B). No significant differences were observed between the
different groups.
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Figure A4. (A) Sulphated glycosaminoglycan (sGAG) content in fresh AF and NP tissues and in
samples from the control group after 21 days of organ culture. (B) Amount of sGAG released to
the culture supernatant of control, E2, LMHFV and E2 + LMHFV IVD tissues after 8 and 21 days of
organ culture. Results are presented in box plots (n = 6 IVDs/group). Mann-Whitney test, ** p < 0.01,
*** p < 0.001.

Appendix A.3. IL-6 and MMP-3 Detection in the Entire IVD

In Figure A5A the negative isotype control for IL-6 and MMP-3 staining is depicted.
Quantification of IL-6 and MMP-3 without discriminating between AF and NP regions
was in agreement with the results for the separate regions (shown in Figure 5). Signif-
icantly higher IL-6 was observed in E2 and LMHFV compared to the control (p < 0.01,
Figure A5B) and E2 + LMHFV (p < 0.05). By contrast, MMP-3 was significantly lower in
IVD tissues of E2- (p < 0.05) and E2 + LMHFV-treated samples (p < 0.001) compared to the
control (Figure A5C). MMP-3 was also significantly lower in E2 + LMHFV-treated samples
(p < 0.001) versus E2 (p < 0.001).
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