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Abstract: Cisplatin is a platinum-based cytostatic drug that is widely used for cancer treatment.
Mitochondria and mtDNA are important targets for platinum-based cytostatics, which mediates
its nephrotoxicity. It is important to develop therapeutic approaches to protect the kidneys from
cisplatin during chemotherapy. We showed that the exposure of mitochondria to cisplatin increased
the level of lipid peroxidation products in the in vitro experiment. Cisplatin caused strong damage to
renal mtDNA, both in the in vivo and in vitro experiments. Cisplatin injections induced oxidative
stress by depleting renal antioxidants at the transcriptome level but did not increase the rate of
H2O2 production in isolated mitochondria. Methylene blue, on the contrary, induced mitochondrial
H2O2 production. We supposed that methylene blue-induced H2O2 production led to activation of
the Nrf2/ARE signaling pathway. The consequences of activation of this signaling pathway were
manifested in an increase in the expression of some antioxidant genes, which likely caused a decrease
in the amount of mtDNA damage. Methylene blue treatment induced an increase in the expression of
genes that were involved in the base excision repair (BER) pathway: the main pathway for mtDNA
reparation. It is known that the expression of these genes can also be regulated by the Nrf2/ARE
signaling pathway. We can assume that the protective effect of methylene blue is related to the
activation of Nrf2/ARE signaling pathways, which can activate the expression of genes related to
antioxidant defense and mtDNA reparation. Thus, the protection of kidney mitochondria from
cisplatin-induced damage using methylene blue can significantly expand its application in medicine.
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1. Introduction

Cytostatics are common drugs which are widely used for the treatment of cancer [1].
Within chemotherapy, cytotoxic drugs are used as active agents to treat rapidly spreading
tumor cells by inhibiting proliferation, inducing apoptosis, damaging DNA, or disrupting
the cell metabolism [2]. Cisplatin is a divalent platinum ammonium chloride complex [3].
It is a widely used chemotherapeutic agent for the treatment of various types of malignant
neoplasms, such as melanoma, lymphoma, carcinoma, sarcoma, and germ cell tumors [4],
and it has been used for many decades with a significant increase in survival rates [5].
The introduction of cisplatin into therapy has completely changed the prognosis of some
cancers. Many studies now state that between 50 and 70% of chemotherapy patients are
treated with platinum-based drugs [6]. The anti-tumor effect of the cisplatin is based on its
ability to cause the formation of coordination bonds between the two purine bases of DNA
and the platinum atom by alkylation. DNA–cisplatin adducts lead to distortions in the
structure of the double helix due to the formation of interstrand and intrastrand crosslinks,
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which disrupt the mechanisms of DNA replication and transcription, delaying the cell cycle
and promoting apoptosis [7].

Unfortunately, cytostatics do not have a local effect and impact on the whole organism.
The main limitation of the cisplatin treatment is nephrotoxicity, which occurs in about a
third of patients, and usually appears about 10 days after treatment [8]. The sensitivity of
the kidneys to the cisplatin is likely related to their major role in its excretion [9]. Due to its
low molecular weight and uncharged nature, unbound cisplatin is freely filtered by the
glomeruli, and most of it is retained in the renal cortex. The kidneys accumulate platinum
in part by transport or specific binding to the main transport system and biotransform
it intracellularly [10]. In addition, there is an increase in the production of tumor necro-
sis factor-α (TNF-α) and reactive oxygen species (ROS), which stimulates inflammation,
oxidative stress, vascular damage, necrosis, and apoptosis pathways [11]. These events
collectively lead to the vasculature damage, reduction of blood flow, ischemic damage,
loss of organ function, and acute renal failure [12], recurring episodes of which can lead to
chronic kidney disease [13].

Mitochondria, in particular mitochondrial DNA (mtDNA), are also targets for cis-
platin [14]. mtDNA is more sensitive to damage, since it lacks some repair mechanisms
compared to nuclear DNA [15]. In addition, mtDNA lacks histones and is located in the
mitochondrial matrix, which is in close proximity to the main site of ROS production in
the cell [16]. Kidney cells have a high mitochondrial density since the reabsorption of
glomerular filtrate requires extremely high energy [17]. For this reason, cisplatin-induced
mitochondrial dysfunction may be an important link in the chain of processes leading to
chronic kidney disease.

The clinical limitations of the cisplatin motivate researchers to create thousands of
its analogs [18], but most of these compounds do not have a significant advantage over
cisplatin [19]. For this reason, the search for drugs which may reduce the side effects of
cisplatin without reducing its therapeutic effect is an important task for pharmacology. It
is preferable to use drugs that have a protective effect against nephrotoxicity. Methylene
blue is a heterocyclic compound that appears to be an effective drug. Despite the almost
120-year history of methylene blue in medicine, interest in this compound as a potential
protector against cisplatin toxicity has appeared only in the last 2 years. It was shown that
methylene blue reduces levels of caspases in tissue, creatinine, and blood urea nitrogen in
the kidneys [20], restores sperm function in the testes [21], and reduces mtDNA damage
in the brain [22] after treatment with cisplatin. The effect of methylene blue on kidney
mtDNA damage has not been studied previously. We hypothesize that methylene blue
may have a nephroprotective effect by the same mechanism as the neuroprotective effect.

The goal of this study was to evaluate the effect of cisplatin, methylene blue, and
its metabolite azure B on the levels of ROS production, lipid peroxidation, and mtDNA
damage in isolated kidney mitochondria, establish the protective effect of methylene blue
and azure B under cisplatin-induced renal toxicity in vivo, and evaluate their effect on the
expression levels of the main cytoprotective genes.

2. Results
2.1. Effect of Cisplatin and Thiazine Dyes on the Rate of H2O2 Production in Kidney Mitochondria

The addition of cisplatin did not significantly increase the rate of H2O2 production
in intact mouse kidney mitochondria (Figure 1). There was a change in the rate of H2O2
production from 46.06 ± 0.27 pmol/min/mg to 52.54 ± 5.21 pmol/min/mg. The addition
of methylene blue increased the rate of H2O2 production to 66.81 ± 0.97 pmol/min/mg,
but the differences were not statistically significant (p = 0.061). The addition of azure B
increased the rate of H2O2 production to 70.97 ± 6.85 pmol/min/mg (p < 0.05).
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Figure 1. Impact of cisplatin, methylene blue, and azure B on the rate of H2O2 production: (A) Ad-
dition of cisplatin did not increase the rate of H2O2 production, and subsequent additions of meth-
ylene blue or azure B increased it; (B) Addition of methylene blue or azure B increased the rate of 
H2O2 production, and subsequent additions of cisplatin did not impact on the rate of H2O2 pro-
duction. The results are expressed as means ± SEM. * Differences are statistically significant p < 0.05 
(Mann–Whitney test). All measurements were provided in at least four repetitions. 

Preliminary addition of methylene blue to isolated mitochondria caused more sig-
nificant increases in the rate of H2O2 production (to 83.68 ± 11.42 pmol/min/mg protein, p 
< 0.05), as well as the addition of azure B (to 75.12 ± 13.52 pmol/min/mg protein, p = 0.05). 
Subsequent addition of cisplatin did not cause any change in the rate of H2O2 production.  

2.2. The Effect of Cisplatin and Thiazine Dyes on the Levels of Lipid Peroxidation Products in the 
Kidneys 

During an in vitro experiment, we showed a two-fold increase in the concentration 
of DC in mitochondria incubated with cisplatin compared with the control (p < 0.05). 
Preliminary incubation of mitochondria with solutions of methylene blue and azure B 
did not affect the cisplatin-induced increase in DC concentration (Figure 2A). During an 
in vivo experiment, we did not show statistically significant differences between the 
studied groups (Figure 2B). 

Figure 1. Impact of cisplatin, methylene blue, and azure B on the rate of H2O2 production:
(A) Addition of cisplatin did not increase the rate of H2O2 production, and subsequent additions
of methylene blue or azure B increased it; (B) Addition of methylene blue or azure B increased the
rate of H2O2 production, and subsequent additions of cisplatin did not impact on the rate of H2O2

production. The results are expressed as means ± SEM. * Differences are statistically significant
p < 0.05 (Mann–Whitney test). All measurements were provided in at least four repetitions.

Preliminary addition of methylene blue to isolated mitochondria caused more signif-
icant increases in the rate of H2O2 production (to 83.68 ± 11.42 pmol/min/mg protein,
p < 0.05), as well as the addition of azure B (to 75.12 ± 13.52 pmol/min/mg protein,
p = 0.05). Subsequent addition of cisplatin did not cause any change in the rate of
H2O2 production.

2.2. The Effect of Cisplatin and Thiazine Dyes on the Levels of Lipid Peroxidation Products in
the Kidneys

During an in vitro experiment, we showed a two-fold increase in the concentration
of DC in mitochondria incubated with cisplatin compared with the control (p < 0.05).
Preliminary incubation of mitochondria with solutions of methylene blue and azure B
did not affect the cisplatin-induced increase in DC concentration (Figure 2A). During an
in vivo experiment, we did not show statistically significant differences between the studied
groups (Figure 2B).



Int. J. Mol. Sci. 2023, 24, 6118 4 of 17
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 2. (A) Concentration of conjugated dienes in the in vitro experiment. Adding cisplatin to 
mitochondria increased the concentration of conjugated dienes. Subsequent additions of methylene 
blue or azure B had no effect on the concentration of the diene conjugates. The results are expressed 
as means ± SEM. All measurements were provided in at least four repetitions. (B) Concentration of 
conjugated dienes in the in vivo experiment. Cisplatin injection and methylene blue and azure B 
treatment did not impact on the concentration of conjugated dienes. * Differences are statistically 
significant p < 0.05 (Mann–Whitney test). Control (n = 10), cisplatin (n = 6), cisplatin + methylene 
blue (n = 8), cisplatin + azure B (n = 8). 

2.3. Effect of In Vitro Cisplatin and Thiazine Dye Addition to Mitochondria on mtDNA Damage 
Levels 

During an in vitro experiment, we showed that cisplatin caused strong damage in all 
studied fragments of mtDNA (Figure 3). A five-fold increase in the amount of mtDNA 
damage was observed in the 7th fragment (p < 0.05). A three-fold increase in the number 
of mtDNA damage was observed in the 1st fragment (p < 0.01), 3rd fragment (p < 0.001), 
8th fragment (p < 0.001), and 9th fragment (p < 0.001). In the 2nd fragment, a two-fold 
increase in the number of mtDNA damage in the cisplatin-treated mitochondria was 
observed (p < 0.05). Preincubation of mitochondria with methylene blue or azure B did 
not prevent cisplatin-induced lesions of mtDNA. 

Figure 2. (A) Concentration of conjugated dienes in the in vitro experiment. Adding cisplatin to
mitochondria increased the concentration of conjugated dienes. Subsequent additions of methylene
blue or azure B had no effect on the concentration of the diene conjugates. The results are expressed
as means ± SEM. All measurements were provided in at least four repetitions. (B) Concentration
of conjugated dienes in the in vivo experiment. Cisplatin injection and methylene blue and azure B
treatment did not impact on the concentration of conjugated dienes. * Differences are statistically
significant p < 0.05 (Mann–Whitney test). Control (n = 10), cisplatin (n = 6), cisplatin + methylene
blue (n = 8), cisplatin + azure B (n = 8).

2.3. Effect of In Vitro Cisplatin and Thiazine Dye Addition to Mitochondria on mtDNA
Damage Levels

During an in vitro experiment, we showed that cisplatin caused strong damage in all
studied fragments of mtDNA (Figure 3). A five-fold increase in the amount of mtDNA
damage was observed in the 7th fragment (p < 0.05). A three-fold increase in the number of
mtDNA damage was observed in the 1st fragment (p < 0.01), 3rd fragment (p < 0.001), 8th
fragment (p < 0.001), and 9th fragment (p < 0.001). In the 2nd fragment, a two-fold increase
in the number of mtDNA damage in the cisplatin-treated mitochondria was observed
(p < 0.05). Preincubation of mitochondria with methylene blue or azure B did not prevent
cisplatin-induced lesions of mtDNA.
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Figure 3. Impact of cisplatin, methylene blue, and azure B addition to intact renal mitochondria on 
the number of mtDNA damage. Differences are statistically significant: * p < 0.05, ** p < 0.01, *** p < 
0.001 (Mann–Whitney test). The results are expressed as means ± SEM. All measurements were 
provided in at least four repetitions. 

2.4. Effect of Cisplatin Injections and In Vivo Administration of Thiazine Dyes on Levels of 
mtDNA Damage 

An analysis of the average number of mtDNA showed that cisplatin injection in-
creased the amount of damage for 20%, compared with the control (p < 0.05) (Figure 4). 
Methylene blue pre-treatment prevented the cisplatin-induced mtDNA lesion (p < 0.05 
compared with cisplatin-treated mice). Azure B pre-treatment prevented the cispla-
tin-induced mtDNA lesion, but statistically significant differences were not observed 
with cisplatin-treated mice. 

 
Figure 4. Impact of cisplatin injections and methylene blue and azure B treatments on the amount 
of mtDNA damage in kidneys. Differences are statistically significant: * p < 0.05, ** p < 0.01 
(Mann–Whitney test). The results are expressed as means ± SEM. Control (n = 10), cisplatin (n = 6), 
cisplatin + methylene blue (n = 8), cisplatin + azure B (n = 8). 

In the 1st, 2nd, 3rd, and 9th fragments, cisplatin injections induced an increase in the 
number of mtDNA damage (p = 0.05 for the 1st fragment, p < 0.05 for the 2nd and 3rd 

Figure 3. Impact of cisplatin, methylene blue, and azure B addition to intact renal mitochondria
on the number of mtDNA damage. Differences are statistically significant: * p < 0.05, ** p < 0.01,
*** p < 0.001 (Mann–Whitney test). The results are expressed as means ± SEM. All measurements
were provided in at least four repetitions.

2.4. Effect of Cisplatin Injections and In Vivo Administration of Thiazine Dyes on Levels of
mtDNA Damage

An analysis of the average number of mtDNA showed that cisplatin injection increased
the amount of damage for 20%, compared with the control (p < 0.05) (Figure 4). Methylene
blue pre-treatment prevented the cisplatin-induced mtDNA lesion (p < 0.05 compared with
cisplatin-treated mice). Azure B pre-treatment prevented the cisplatin-induced mtDNA
lesion, but statistically significant differences were not observed with cisplatin-treated mice.
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Figure 4. Impact of cisplatin injections and methylene blue and azure B treatments on the amount
of mtDNA damage in kidneys. Differences are statistically significant: * p < 0.05, ** p < 0.01
(Mann–Whitney test). The results are expressed as means ± SEM. Control (n = 10), cisplatin
(n = 6), cisplatin + methylene blue (n = 8), cisplatin + azure B (n = 8).

In the 1st, 2nd, 3rd, and 9th fragments, cisplatin injections induced an increase in the
number of mtDNA damage (p = 0.05 for the 1st fragment, p < 0.05 for the 2nd and 3rd
fragments, p < 0.01 for 9th fragment). In these fragments, pre-treatment with methylene
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blue and azure B prevented the increase in the amount of mtDNA damage; additionally,
statistically significant differences were not observed with cisplatin-treated mice. An
increase in the amount of mtDNA damage both in the cisplatin and cisplatin + methylene
blue groups compared with the control was observed in the 7th fragment (both p < 0.05).
Methylene blue and azure B statistically significantly decrease the number of mtDNA,
compared with the cisplatin-treated mice in the 8th fragment (both p < 0.05).

2.5. Effect of Cisplatin and Thiazine Dyes on Gene Expression Levels

Cluster analysis of gene expression reveals three clusters (Figure 5). The first cluster
includes the transcription factor Nfe2l2, antioxidant genes (Txnrd2, Cat, Gclc, Gpx), and
genes involved in DNA repair (Brca1, Ogg1). In this group, the expression of most of
the genes decreased after cisplatin injections. We observed a two-fold decrease in the
expression of the Brca1, Ogg1, and Gclc genes, and a 95% decrease in the expression of
Txnrd2. At the same time, the methylene blue treatment increased the expression of the
Brca1, Txnrd2, Cat, Gclc, and Nfe2l2 genes by 2–4 times, and increased the expression of the
Ogg1 and Gpx genes by 1.5 times. The azure B significantly increased only the expression
of the Brca1 and Txnrd2 genes.
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Figure 5. Heat-map of change in the gene expression in the kidneys after cisplatin injections and
methylene blue and azure B treatments. Genes are grouped according to their similarity in expression
profile. Control (n = 10), cisplatin (n = 6), cisplatin + methylene blue (n = 8), cisplatin + azure B (n = 8).
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The second cluster included genes involved in the regulation of mitophagy (p62 and
Pink1), the antioxidant gene Prdx3, and the gene-encoding heme oxygenase (Ho1). Cisplatin
injections increased the expression of these genes, especially Ho1 and Prdx3. Methylene blue
does not significantly affect gene expression, unlike azure B, which reduced the expression
of these genes, especially Ho1 and Prdx3.

The third cluster includes two genes: the antioxidant gene Sod2 and the gene involved
in DNA repair, Trp53bp1. Therapy of mice with thiazine dyes had no significant effect on
their expression level, while injections of cisplatin significantly reduced the expression of
the Trp53bp1 gene.

3. Discussion

Nephrotoxicity is one of the main limitations in cisplatin therapy, despite the high
efficacy in the treatment of cancer. Oxidative stress plays an important role in the induction
of toxicity by cisplatin [23]. Oxidative stress can arise directly; for example, by increasing
the rate of H2O2 production in mitochondria, which have at least ten ROS production sites:
mono amine oxidases A and B, cytochrome b5 reductase, dihydroorotate dehydrogenase,
α-glycerophosphate dehydrogenase, complex I, coenzyme Q, complex III, cytochrome c,
cytochrome c oxidase, succinate dehydrogenase, aconitase, α-ketoglutarate dehydrogenase
complex, and pyruvate dehydrogenase complex [24]. Oxidative stress can also be formed
indirectly; for example, by reducing intracellular concentrations of glutathione [25], by
reducing the level of NADPH and SH-groups, and by the reduction of expression or activity
of key antioxidant enzymes glutathione peroxidase (GSH–Px), glutathione reductase (GR),
and glutathione S-transferase (GST) [26–28]. In this study, we have shown that the addition
of cisplatin to isolated mitochondria did not lead to an increase in hydrogen H2O2 (Figure 1).
This is not surprising, since cisplatin has not previously been shown to cause inhibition of
any respiratory chain complexes. In addition, some inhibitors of the respiratory chain are
used in co-chemotherapy with cisplatin to increase the level of oxidative stress to damage
tumor cells [29]. However, our data do not contradict the claim that cisplatin causes
oxidative stress in the kidneys. We have shown a decrease in the expression of the Cat, Gclc,
and Txnrd2 genes (Figure 5) encoding the corresponding antioxidant enzymes. Cat is a
gene encoding the catalase, a key antioxidant enzyme in protecting the body from oxidative
stress by converting H2O2 into water and oxygen [30]. The glutathione is a tripeptide that
consists of glutamate, glycine, and cysteine. The first reaction of glutathione synthesis is
rate-limiting and is catalyzed by glutamate cysteine ligase (GCL), which consists of two
subunits: a heavy or catalytic (GCLC, Mr ∼73,000) and a light or modifier (GCLM, Mr
∼30,000) subunit. As a result, γ-glutamyl-l-cysteine is formed, to which glycine is further
attached via glutathione synthase (GSS) [31].

Powerful antioxidants that remove peroxide are peroxiredxins (PRDXs), which are
able to eliminate H2O2, alkyl hydroperoxides, and peroxynitrite. All PRDX enzymes are
obligatory dimers and contain a conserved NH2-terminal cysteine–SH residue that reacts
with H2O2 to form cysteine sulfenic acid (cysteine–SOH) with the release of H2O. Oxidized
cysteine residues, the cleavage of disulfide bonds, and the reduction of peroxiredoxins are
carried out by proteins from the thyredoxin (TXN) family. In this case, a disulfide bond
is formed between cysteine residues in TNX itself. TNXRD2 transfers an electron from
NADPH to active TXN. The reaction begins with a reduction of the selenenylsulfide to
the selenolate anion with electrons received from NADPH via FAD. The second electron
transfer from a second molecule of NADPH reduces the cysteine. The selenolate anion then
attacks the disulfide bonds of TXN and the resulting to regenerate the selenenylsulfide.
Txnrd2 encodes the mitochondrial form of thioredoxin reductase, which is important for
scavenging ROS in mitochondria [32]. It has previously been shown that cisplatin can
induce depletion of renal antioxidant defense systems, such as GST, glutathione peroxidase,
superoxide dismutase, catalase, activities, and a reduced glutathione level [33]. Thus,
we can conclude that the inhibition of the antioxidant defense of the kidneys on the
transcriptome level may be the cause of cisplatin-induced oxidative stress.



Int. J. Mol. Sci. 2023, 24, 6118 8 of 17

It is well known that free radicals interact with membrane lipids, causing their peroxi-
dation [34]. We showed that the addition of cisplatin to mitochondria promotes an increase
in the level of DC in the kidney’s mitochondria in vitro (Figure 2A), which corresponds
with the data obtained earlier, where it was shown that the treatment of renal cortical
slices with cisplatin in vitro leads to an increase in lipid peroxidation products [35]. At the
same time, injections of cisplatin did not lead to an increase in the DC level in the in vivo
experiment (Figure 2B). These data are inconsistent with studies that have repeatedly
demonstrated an increase in the product of lipid peroxidation levels in the kidneys in vivo
under the cisplatin treatment. It is likely that the reason for the discrepancy between the
results is the measurement of different kinds of lipid peroxidation markers. Previously,
the estimation of the concentration of malonic aldehyde was performed [26,36], which are
secondary lipid peroxidation products and are formed as a result of the cleavage of oxidized
polyunsaturated fatty acids (PUFAs). Malonic aldehyde is a widely used lipid peroxidation
marker, but not specific enough, since malonic aldehyde can be formed by the degradation
of non-lipid molecules (proteins, bile pigments, nucleic acids, and carbohydrates). DC are
the primary products of lipid peroxidation. During the free-radical oxidation of arachidonic
acid, hydrogen cleavage occurs in the δ-position with respect to the double bond, which
leads to the displacement of this double bond with the formation of DC [37]. For this reason,
the concentration of DC can be considered a more reliable indicator of the concentration of
lipid peroxidation products [38]. However, deeper studies of the effect of cisplatin on the
lipid peroxidation processes are needed.

Oxidative stress not only leads to the damage of biological membranes, but also
affects the DNA structure. The damaging effect of cisplatin on nuclear DNA has been well
studied [4,39]. Cisplatin causes the formation of coordination bonds between the two purine
bases of DNA and the platinum atom by alkylation. The appearance of such adducts of
DNA–cisplatin leads to distortions in the structure of the double helix due to the formation
of interstrand and intrastrand crosslinks (Figure 6), which disrupts the mechanisms of DNA
replication and transcription, as well as induces 8-oxoguanine formation and single-strand
breaks, delaying the cell cycle and promoting apoptosis [7].

The mechanism of cisplatin binding to mtDNA is similar to nuclear DNA binding;
however, if adducts are removed in nuclear DNA and DNA is restored by nucleotide
excision repair, then similar nucleotide excision repair (NER) mechanisms are absent in
mitochondria [14]. In both the in vitro and in vivo experiments, cisplatin damaged all
studied mtDNA fragments without exception (Figures 3 and 4). According to the data
obtained earlier, the treatment of cells with cisplatin leads to the binding of one platinum
molecule per 3800 bp of nuclear DNA and the binding of one platinum molecule per
2166 bp of mtDNA [14,40]. This may indicate that cisplatin-induced mtDNA damage is
more significant than nuclear DNA damage. MtDNA damage can cause deterioration of
energy metabolism in the kidney, and mtDNA mutations are associated with proximal and
distal tubular dysfunctions, renal Fanconi syndrome, focal segmental glomerulosclerosis,
tubulointerstitial nephritis, etc. [17]. For this reason, mtDNA protection in cisplatin-induced
kidney injury is an important task that reduces cisplatin nephrotoxicity.

The various strategies used to prevent cisplatin-induced nephrotoxicity are actively
studied; for example, hydration with magnesium and mannitol supplements [41], the use
of various natural and synthetic antioxidants [42], nitric oxide modulators, diuretics, and
cytoprotective and anti-apoptotic agents [43,44] such as cilastatin [45,46], vincamine [47],
dibenzazepine [48], astaxanthin [49], theophylline [50], and others. It is known that methy-
lene blue has a wide spectrum of action, including cytoprotective, anti-apoptotic, and
antioxidant actions [51].
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Figure 6. Effect of cisplatin and methylene blue on the oxidative stress and mtDNA damage. Cis-
platin penetrates the cell in the aquatic form. Chloride atoms on cisplatin are displaced by water
molecules. Cisplatin can cause antioxidant depletion and mtDNA damage by origins of interstrand
and intrastrand crosslinks, with subsequent formation of oxidized guanine bases and single-strand
breaks. Damage of the mtDNA can cause mitochondrial dysfunction and renal cell death. Methylene
blue induces H2O2 production in mitochondria. H2O2 can trigger the Nrf2/ARE signaling pathway
by oxidation of Keap1. Nrf2 can increase the expression of antioxidant genes for defense against
cisplatin-induced oxidative stress. Nrf2 activation leads to increase the expression of genes which are
involved in the base excision repair (BER): the main mechanism of mtDNA reparation. BER restores
an intact mtDNA structure and protects kidney cells from death.

In vitro experiments showed that methylene blue does not lead to a decrease in the
level of diene conjugates (Figure 2A) and mtDNA damage (Figure 3) in the kidneys, which
are caused by cisplatin exposure. Moreover, methylene blue promotes an increase in
H2O2 production in the intact kidney’s mitochondria (Figure 1), which is consistent with
the data obtained earlier on brain mitochondria [52–56]. Presumably, an increase in the
rate of H2O2 production at picomolar concentrations is not capable of causing strong
damage of membranes or mtDNA, but H2O2 can act as a signaling molecule capable of
activating some transcription factors, such as nuclear factor erythroid 2-related factor 2
(Nrf2) [57,58]. H2O2 leads to the oxidation of cysteine residues in kelch-like ECH-associated
protein 1 (KEAP1), changing its conformation and inhibiting binding to Nrf2. This process
prevents ubiquitination and degradation of Nrf2 [59]. The Nrf2/ARE signaling pathway is
considered one of the most important defense mechanisms against oxidative stress [60,61].

It has been demonstrated previously that methylene blue is able to activate the
Nrf2/ARE signaling pathway [22,62,63]. In turn, Nrf2-null mice treated with cisplatin
showed more pronounced damage of renal cells [64]. We have shown that methylene
blue increases the expression of a number of antioxidant genes Cat, Gclc, Txnrd2, Gpx
(Figure 5), which is apparently associated with the activation of the Nrf2/ARE signaling
pathway. Another consequence of the activation of the Nrf2/ARE signaling pathway is
the activation of DNA repair pathways. It is known that the main mtDNA repair pathway
is the base excision repair (BER) pathway [65]. BER is a DNA repair system that removes
damaged bases from the double helix. BER begins with recognition and removal of the
damaged base by DNA glycosylases, one of which is 8-Oxoguanine DNA glycosylase
(Ogg1) [66]. Brca1 stimulates the activity of key BER enzymes, including Ogg1 [67]. In turn,
Nrf2 can regulate the expression of genes involved in DNA repair, including Ogg1 [68] and
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Brca1 [69]. We have shown that methylene blue increased the expression of Nfe2l2, Ogg1,
and Brca1 genes (Figure 5). We can hypothesize that activation of the Nrf2/ARE signaling
pathway by methylene blue is responsible for the increase in repair activity, resulting in
mtDNA protection (Figure 6). Nrf2 also regulates the expression of Trp53bp1, a critical
intermediate of non-homologous end joining (NHEJ) repair [70]. However, we did not find
that methylene blue increased Trp53bp1 expression, although cisplatin caused a decrease in
its expression (Figure 5). This study may indirectly indicate that methylene blue impacts
on the BER pathway, not NHEJ pathway.

Azure B is a main metabolite of methylene blue, which forms as a result of the oxidative
demethylation of methylene blue. Azure B also has different biological properties and,
therefore, can contribute to the pharmacological profile of the compound [71,72]. Methylene
blue is structurally similar to azure B, but they differ in the degree of ionization of their
oxidized forms. Azure B can deprotonate to some extent with the formation of neutral
quinone imine species, which provide its best diffusion through membranes [73]. This
is likely why azure B proves to be a safer, and in some cases even more effective, drug
than methylene blue [71–74]. However, we have demonstrated that azure B leads to a
smaller increase in the expression of antioxidant and repair genes, which were inhibited by
cisplatin (Figure 5). Azure B also prevents mtDNA damage less compared to methylene
blue (Figure 4), and does not lead to a decrease in lipid peroxidation products (Figure 2A,B).
Therefore, azure B has less pronounced protective properties and is less effective in cisplatin
nephrotoxicity compared to methylene blue.

4. Materials and Methods
4.1. Laboratory Animals

C57BL/6 strain mice (Mus musculus) were used in the experiment. Mice were obtained
from the Stolbovaya nursery. Animals were kept under standard conditions: controlled
temperature (22–25 ◦C) and humidity (at least 40%), maintained in a 12-h light–dark cycle,
with access to water and food ad libitum. The keeping, injections, and sacrifice of animals
were carried out in accordance with the rules established by the Institutional Committee
for the Care and Use of Animals of the Voronezh State University (Section of Animal Care
and Use, protocol on Biomedical Research 42-03 dated 8 October 2020).

4.2. Designs of Experiment

We referred to previous studies when planning experiments. The search for literary
sources was carried out in the PubMed database; we analyzed 77 literary sources from the
years of 1984 to 2022.

The study included two experiments: in vitro and in vivo. In an in vitro experiment,
preliminary isolation of mitochondria from the kidneys was carried out. Further, mitochon-
dria were divided into four aliquots (each tube contains 0.05 mg of mitochondrial protein).
The first aliquot (control) was not incubated with any compound; in the second aliquot
(cisplatin), mitochondria were incubated with 0.05 mg of cisplatin (Teva Pharmaceutical
Industries Ltd., Petah Tikva, Israel) for 30 min. The third (cisplatin + methylene blue) and
fourth (cisplatin + azure B) aliquots were pre-incubated for 10 min with 1 µM of methylene
blue (Sigma-Aldrich, St. Louis, MO, USA) and 1 µM of azure B (Sigma–Aldrich, St. Louis,
MO, USA), respectively, then for 30 min along with 0.05 mg of cisplatin. Incubation was
carried out in a shaker Orbital Shaker-Incubator ES-20 (BioSan, Riga, Latvia) at 150 rpm
and 37 ◦C. Then, DNA was isolated from mitochondria for subsequent measurement of
the amount of mtDNA damage and the concentration of diene conjugates. Earlier studies
have shown that the optimal cisplatin concentration ranges from 0.2–200 µg [75]. We
have experimentally established that cisplatin causes mtDNA damage in concentrations
from 50 µg.

The in vivo experiment involved 32 mice of both sexes, which were randomly di-
vided into four groups. The first group (n = 10) was a control group and received saline
injections and pure water, the second group (n = 6) was exposed to cisplatin by intraperi-
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toneal injections at a dose of 2 mg/kg/day and also received pure water, the third group
(n = 8) received injections of cisplatin (2 mg/kg/day) and oral methylene blue at a dosage of
15 mg/kg/day, and the fourth group (n = 8) received injections of cisplatin (2 mg/kg/day)
and azure B at a dosage of 15 mg/kg/day. Mice received thiazine dye solutions for three
weeks. Cisplatin injections were administered daily during the last week of the experiment.
Subsequently, the animals were sacrificed, and the kidneys were removed for further molec-
ular and biochemical studies. We have previously shown that cisplatin caused serious
cognitive impairment at a concentration of 2 mg/kg/day, and it also caused mice mortality
at higher concentrations. For this reason, in this study we settled on a concentration of
2 mg/kg/day [22]. It has previously been shown that methelene blue restores the mitochon-
drial metabolism of mice at a concentration of 15 mg/kg/day, but not at a concentration of
5 mg/kg/day [53].

4.3. Isolation of Mitochondria from the Kidneys

Mice were sacrificed by dislocation of the cervical spine followed by decapitation. The
kidneys were quickly removed and placed in an isolation buffer consisting of 225 mM
mannitol (Sigma–Aldrich, St. Louis, MO, USA), 75 mM sucrose (Dia–M, Moscow, Russia),
5 mM Hepes (BioClot, Aidenbach, Germany) (pH = 7.4), and 1 mM ethyleneglycoltetraacetic
acid (EGTA) (Sigma–Aldrich, St. Louis, MO, USA), and supplemented with 2 mg/mL fatty
acid-free bovine serum albumin (BSA) (Dia–M, Moscow, Russia). The wash buffer used in
the centrifugation step had the same composition, except for the addition of BSA.

The kidneys were homogenized using a KIMBLE Dounce tissue grinder (Sigma–
Aldrich, St. Louis, MO, USA). The resulting homogenate was centrifuged using a Z36 HK
centrifuge (Hermle Labortechnik, Wehingen, Germany) for 5 min at 900× g. The super-
natant was transferred into clean tubes and centrifuged for 10 min at 9000× g. Afterwards,
the supernatant was removed, and the pellet was resuspended in the wash buffer and
centrifuged for 10 min at 9000× g. The resulting mitochondrial pellet was resuspended in
the wash buffer.

4.4. Assessment of the Rate of H2O2 Production in Mitochondria

H2O2 production in mitochondria was measured using the Amplex Ultra Red flu-
orescent reagent (Invitrogen, Carlsbad, CA, USA) according to the protocol described
earlier [76]. The Amplex Red assay is a most specific and sensitive method, with a limit
of detection less than 5 pmol of H2O2. The stoichiometry of Amplex Red and H2O2 is
1:1, and, therefore, the assay results are linear over the range of values encountered in
tissues and cells [76]. The excitation wavelength was set to 530 nm and the emission wave-
length to 590 nm. The measurements were carried out using a Hitachi F-7000 fluorescence
spectrophotometer (Hitachi High Technologies, Tokyo, Japan).

The substrate (10 mM pyruvate), 4 mM phosphate (KH2PO4), 1 U of Amplex Ultra
Red reagent, 4 U of horseradish peroxidase (Amresco, Solon, OH, USA), and 0.2 mg of
mitochondria were added to 1 mL of isolation buffer (225 mM mannitol, 75 mM sucrose,
5 mM Hepes (pH 7.4), 1 mM EGTA, 2 mg/mL fatty acids free BSA. The H2O2 concentration
was measured as the fluorescence intensity of resorufin formed during the reaction upon
oxidation of Amplex Ultra Red. Production changes were recorded after the addition of
0.2 mg cisplatin, 1 µM methylene blue, and 1 µM azure B.

4.5. Measurement of Lipid Peroxidation Products

The diene conjugates (DC) are the primary products of lipid peroxidation, and the
concentration of DC can be considered a more reliable indicator of the concentration
of lipid peroxidation products than measurement of concentration of secondary prod-
uct of lipid peroxidation [38]. DC concentration was measured by spectrophotometry
using a Hitachi U-2900 spectrophotometer (Hitachi High-Technologies, Tokyo, Japan).
In the in vivo experiment, the frozen kidney was preliminarily weighed and homoge-
nized in 0.5 mL of PBS. Normalization of DC concentration was performed relative to
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the mass of the kidney. In the in vivo experiment, the preliminary isolation of mitochon-
dria was carried out. Normalization of DC concentration was performed relative to the
protein concentration.

0.125 mL of saline (MOSPHARM, Moscow, Russia), 1.5 mL of heptane, and 1.5 mL
of isopropyl alcohol (RFK, Moscow, Russia) were added to 125 µL of probe. The resulting
mixture was centrifuged for 10 min at 3000× g and 4 ◦C. Then, distilled water was added
to the supernatant in a ratio of 10:1, and the phases were expected to separate. The upper
heptane phase was transferred into a clean test tube and 0.5 mL of ethyl alcohol was added
in a ratio of 1:5, and 96% ethanol served as a control.

Calculation of the DC concentration was performed according to the formula:

[DC] = (Vtot × D × 106)/(L × E ×m × Vin)

where, Vtot is the sample volume (0.5 mL); D is the optical density value; L is the length of
the optical path (1 cm); E is the coefficient of molar extinction (2.2 × 105); m is the mass
of the kidney (in vivo experiment) and the amount of added protein (in vitro experiment);
Vin is the volume of the introduced sample (0.125 µL).

4.6. Measuring the mtDNA Damage Level

The non-PCR-based methods for evaluating the amount of DNA damage, such as
high-performance liquid chromatography and Southern blot, have a number of limitations.
In particular, they require considerable amounts of DNA for analysis (10–50 µg). Cells
contain a small amount of mtDNA compared to nuclear DNA, so its analysis requires more
sensitive methods, such as long-range PCR [77].

The total DNA isolation in the in vivo experiment was performed using the DNA-sorb-
S-M kit (AmpliSens, Moscow, Russia) according to the protocol. In an in vitro experiment,
the total DNA from mitochondria was isolated using the Proba-GS kit (DNA-Technology,
Moscow, Russia).

The level of mtDNA damage was measured by a quantitative real-time PCR using
the CFX96 Touch (Bio-Rad, Hercules, CA, USA). The reaction mixture (volume 20 µL)
included 4 µL of 5X qPCRmix-HS SYBR (Evrogen, Moscow, Russia), 1 µL mixture of
forward and reverse primers, 1 µL DNA, and 14 µL mQ water. Reaction conditions were:
total denaturation was carried out at 95 ◦C for 3 min; denaturation at the beginning of the
cycle at 95 ◦C for 30 s; primer annealing at 59 ◦C for 30 s, elongation at 72 ◦C for 4 min
30 s; number of cycles was 38; a melting curve from 65 ◦C to 95 ◦C, according to protocol
described earlier [77]. In the experiment, the 1st, 2nd, 3rd, 7th, 8th, and 9th long fragments
were used, because these fragments did not have nuclear pseudogenes.

To determine the degree of mtDNA damage, the ∆Cq value of the control and experi-
mental (damaged) long fragments was compared with the ∆Cq value of the control and
experimental short fragments, which were used as a reference.

The number of mtDNA lesions was calculated per 10 kb according to the formula:

Lesions = (1 − E−(∆long−∆short)) × 10,000 (bp)/fragment length (bp)

where ∆ long = Cq control − Cq experiment for the long fragment and ∆short = Cq
control − cq experiment for the short fragment.

The primer sequences were as follows (Table 1):
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Table 1. Primers that were used to analyse measurement of mtDNA damage.

Fragment Name Primers Sequence

2 short Forward: 5′-ACGAGGGTCCAACTGTCTCTTA-3′

Reserve: 5′-AGCTCCATAGGGTCTTCTCGT-3′

1 long Forward: 5′-TAAATTTCGTGCCAGCCACC-3′

Reserve: 5′-ATGCTACCTTTGCACGGTCA-3′

2 long Forward: 5′-ACGAGGGTCCAACTGTCTCTTA-3′

Reserve: 5′-CCGGCTGCGTATTCTACGTT-3′

3 long Forward: 5′-CTAGCAGAAACAAACCGGGC-3′

Reserve: 5′-TTAGGGCTTTGAAGGCTCGC-3′

7 long Forward: 5′-TCATTCTTCTACTATCCCCAATCC-3′

Reserve: 5′-TGGTTTGGGAGATTGGTTGATG-3′

8 long Forward: 5′-CCCCAATCCCTCCTTCCAAC-3′

Reserve: 5′-GGTGGGGAGTAGCTCCTTCTT-3′

9 long Forward: 5′-AAGAAGGAGCTACTCCCCACC-3′

Reserve: 5′-GTTGACACGTTTTACGCCGA-3′

4.7. Estimation of Gene Expression Level

Total RNA was isolated using the ExtractRNA kit (Evrogen, Moscow, Russia), ac-
cording to the protocol. Reverse transcription was performed on a personal Eppendorf
Mastercycler (Eppendorf, Hamburg, Germany). RNA at 9 µL and Random primer at 2 µL
were mixed and heated in an amplifier at 70 ◦C for 2 min to anneal the primers. The follow-
ing components were added to the mixture: 2 µL dNTP, 2 µL mQ water, 1 µL M-MULV
revertase, and 4 µL 5X buffer (both Evrogen, Moscow, Russia). The mixture was incubated
for 1 h at 35 ◦C.

The level of gene expression was assessed using quantitative PCR analysis. The reac-
tion mixture (volume 20 µL) included: 4 µL of 5X qPCRmix-HS SYBR (Evrogen, Moscow,
Russia), 1 µL mixture of forward and reverse primers, 1 µL DNA, and 14 µL mQ wa-
ter. Reaction conditions were: total denaturation was carried out at 95 ◦C for 3 min;
denaturation at the beginning of the cycle at 95 ◦C for 30 s; primer annealing at 59 ◦C for
30 s, elongation at 72 ◦C for 30 s; number of cycles was 45; melting curve from
65 ◦C to 95 ◦C.

The primer sequences were as follows (Table 2):

Table 2. Primers that were used to analyze gene expression.

Gene Name Primers Sequence

Gapdh Forward: 5′-GGCTCCCTAGGCCCCTCCTG-3′;
Reserve: 5′-TCCCAACTCGGCCCCCAACA-3′;

Nfe2l2 Forward: 5′-CTCTCTGAACTCCTGGACGG-3′

Reserve: 5′-GGGTCTCCGTAAATGGAAG-3′

Ho1 Forward: 5′-CACGCATATACCCGCTACCT-3′

Reserve: 5′-CCAGAGTGTTCATTCGAGCA-3′

p62 Forward: 5′-GCCAGAGGAACAGATGGAGT-3′

Reserve: 5′-TCCGATTCTGGCATCTGTAG-3′

Pink1 Forward: 5′-GAGCAGACTCCCAGTTCTCG-3′

Reserve: 5′-GTCCCACTCCACAAGGATGT-3′

Prdx3 Forward: 5′-GTGGTTTGGGCCACATGAAC-3′

Reserve: 5′-TGGCTTGATCGTAGGGGACT-3′

Gpx Forward: 5′-AGTCCACCGTGTATGCCTTCT-3′

Reserve: 5′-GAGACGCGACATTCTCAATGA-3′
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Table 2. Cont.

Gene Name Primers Sequence

Txnrd2 Forward: 5′-GATCCGGTGGCCTAGCTTG-3′

Reserve: 5′-TCGGGGAGAAGGTTCCACAT-3′

Gclc Forward: 5′-GGGGTGACGAGGTGGAGTA-3′

Reserve: 5′-GTTGGGGTTTGTCCTCTCCC-3′

Sod2 Forward: 5′-CAGACCTGCCTTACGACTATGG-3′

Reserve: 5′-CTCGGTGGCGTTGAGATTGTT-3′

Cat Forward: 5′-AGCGACCAGATGAAGCAGTG-3′

Reserve: 5′-TCCGCTCTCTGTCAAAGTGTG-3′

Ogg1 Forward: 5′-GAGACGACAGCCAGGTGTGAG-3′

Reserve: 5′-CCGTTCCACCATGCCAGTA-3′

Trp53bp1 Forward: 5′-GAAGGAAAGCACAGATGAGGATT-3′

Reserve: 5′-CTAGAGGTTTCTGCACGCTG-3′

Brca1 Forward: 5′-AGGTGATTGCAGTGTGAGAGA-3′

Reserve: 5′-GTATCCGGATGCCTCCTCTTC-3′

4.8. Statistical Analysis

Statistical analysis was carried out using the Statistica 10 software package (StatSoft,
Tulsa, OK, USA). Results are presented as means ± S.E.M. The statistical significance of
differences between groups was assessed using the Mann–Whitney test (U-test). Statistical
significance was considered to be p < 0.05.

5. Conclusions

The cisplatin-induced lesions of mitochondria and mtDNA are one of the main limi-
tations to its widespread use in medicine. Methylene blue, a well-known mitochondrial
protector, reduced the amount of mtDNA damage by triggering repair processes, likely
through the Nrf2/ARE pathway activation. It is likely that methylene blue or some other
Nrf2 activators can serve as drugs that reduce the toxicity of cisplatin to non-tumor tissues,
particularly in the kidneys.
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