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Abstract: Dietary selenium (Se) intake within the physiological range is critical to maintain vari-
ous biological functions, including antioxidant defence, redox homeostasis, growth, reproduction,
immunity, and thyroid hormone production. Chemical forms of dietary Se are diverse, including
organic Se (selenomethionine, selenocysteine, and selenium-methyl-selenocysteine) and inorganic Se
(selenate and selenite). Previous studies have largely investigated and compared the health impacts of
dietary Se on agricultural stock and humans, where dietary Se has shown various benefits, including
enhanced growth performance, immune functions, and nutritional quality of meats, with reduced
oxidative stress and inflammation, and finally enhanced thyroid health and fertility in humans.
The emergence of nanoparticles presents a novel and innovative technology. Notably, Se in the
form of nanoparticles (SeNPs) has lower toxicity, higher bioavailability, lower excretion in animals,
and is linked to more powerful and superior biological activities (at a comparable Se dose) than
traditional chemical forms of dietary Se. As a result, the development of tailored SeNPs for their use
in intensive agriculture and as candidate for therapeutic drugs for human pathologies is now being
actively explored. This review highlights the biological impacts of SeNPs on growth and reproductive
performances, their role in modulating heat and oxidative stress and inflammation and the varying
modes of synthesis of SeNPs.
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1. Introduction of Selenium

Elemental selenium (Se) is an essential element with a capacity to ameliorate various
biological functions, including antioxidant defence, redox homeostasis, growth, reproduc-
tion, immunity, and thyroid hormone production [1]. Selenium is sequestered primarily
through dietary means and is present in trace amounts in the body although the distribution
varies between tissue types. The recommended dietary dose exhibits a narrow margin
with both beneficial and toxic effects documented [2,3]. Previous studies have shown that
physiological levels outside the recommended range of Se intake are harmful; low dietary
Se is linked to thyroid diseases, diabetes, and metabolic disorders while excessive Se causes
cytotoxicity [4–6]. Therefore, tight regulation of optimal physiological Se levels is key for
metabolic homeostasis and pharmacological safety. Dietary Se is generally obtained from
seafood, organs, muscular meat cuts, grains, and seeds [7]. However, differing individual
Se intakes due to local variations in Se soil content (including documented Se deficiency)
has prompted the use of Se supplements to achieve the required daily Se intake [8]. Fur-
thermore, as public health recommendations vary widely and local foods may also vary
in elemental Se levels, the development of Se-based supplementation requires careful
evaluation to ensure safe intake before advice can be publicised to human populations.
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1.1. Selenoproteins

Biologically, Se is incorporated primarily into selenoproteins as the selenomethionine
and selenocysteine amino acids at active sites [9]. For example, glutathione peroxidase
(GPx) and iodothyronine deiodinase (DIO) are notable selenoproteins involved in antioxi-
dant defence and thyroid hormone metabolism, respectively (refer to Figure 1). Current
literature suggests that an adequate level of Se in the body is functionally important for
various aspects, including protection against enhanced oxidative stress and alterations to
physiological metabolic homeostasis. In contrast, individuals with a low Se status may ad-
versely impact selenoprotein activity, where under severe conditions, Se deficiency and high
Se status is coincident with a range of pathologies, including obesity [10,11], cancer [12,13],
arthropathy [14] as well as several immune- and neurological-related disorders [15,16].

Figure 1. The thyroid gland and the role of selenoproteins in the thyroid (adapted from “Thyroid
Gland Anatomy and Histology”, by BioRender.com (on 1 March 2023). Retrieved from https://app.
biorender.com/biorender-templates, accessed on 17 January, 2023) [17]. Glutathione peroxidase (GPx)
selenoprotein found in the colloid of the thyroid is involved in antioxidant defence. GPx degrades
hydrogen peroxide, an endogenous reactive oxygen species (ROS) generated during normal thyroid
hormone synthesis, thereby protecting the thyroid from excessive oxidative stress. Iodothyronine
deiodinase (DIO) selenoprotein is present in thyroid follicular cells. DIO converts inactive thyroxine
(T4) thyroid hormone into its biologically active triiodothyronine (T3) thyroid hormone to regulate
downstream body metabolism in various tissue beds.

There is a growing body of research with a focus on the role of Se in cancer prevention
which indicates a link between high Se exposure and decreased risk of breast, oesoph-
agus, and prostate cancers [12,18,19]. Moreover, selenite has shown therapeutic effects
against cancer, where selenite treatment stimulated cancer cell apoptosis via a mechanism
involving enhanced ROS generation and the accumulation of hydrogen peroxide which,
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ultimately, decreased cell viability [20]. However, some studies show inconsistent results,
where no beneficial effects were determined in intervention studies that increased Se intake
in pathologies, including cancer, diabetes, and cardiovascular disease; moreover, Se supple-
mentation correlated with increased occurrences of prostate cancer and diabetes [21,22].

Associations between Se and several other inflammatory disorders have been eval-
uated. For example, recent research demonstrated the anti-inflammatory role of Se in
the millet-derived selenylated soluble dietary fibre [22] and nanoparticle formulation in
a mouse model of inflammatory bowel disease (IBD) [23–25]. With respect to the latter,
dietary Se was demonstrated to maintain intestinal microbiota homeostasis and barrier
function in mice with DSS-induced colitis, with Se-mediated colon protective activity
characterised by reduced ROS formation, enhanced antioxidant capacity, and dampened
intestinal immune response, thereby protecting cellular functions and mitochondrial struc-
tures from excessive oxidative stress. Other observational studies also showed that IBD
patients had lower Se levels than that of healthy individuals, potentially illustrating the
importance of dietary Se as an antioxidant/micronutrient in the pathogenesis of IBD in
humans [26,27].

Further research has demonstrated that Se status was associated with obesity, a chronic
disease linked to inflammation, where either neutral or beneficial effects were observed
with supplementation [11,28,29]. Interestingly, the available data indicate that sexual di-
morphism plays a role in determining disease outcome; here lower Se status was linked to a
higher BMI and increased risk of diabetes and reported incidences of myocardial infarction
in females, yet the opposite was determined in males [30]. Conversely, contemporary
research found that Se supplementation did not modulate oxidative damage and cellular
proliferation within breast tissues in patients with an increased risk of breast cancer [31].
Other studies have also shown that patients with inflammatory diseases, including rheuma-
toid arthritis (RA), were commonly consuming a relatively high Se intake [32,33]. Yet other
studies that investigated Se serum status correlated RA with lower Se levels in serum,
suggesting that a potential mechanism of action involved the redistribution of Se serum to
tissues to attenuate local oxidative stress and ROS production in RA pathogenesis [34,35].

The inconsistency in outcomes documented above is a complex issue due to inherent
biological and environmental variations, along with the varying (baseline) Se status of
individuals prior to supplementation, and the chemical forms and dosages used in reported
Se supplementation studies. Nonetheless, dietary Se supplementation remains a popular
option used to promote healthier lifestyles and optimise dietary habits, as enrichment with
this micronutrient could potentially promote health benefits in humans [22,36].

1.2. Chemical Forms of Selenium

Dietary Se is available in different chemical forms. Although commercial Se supple-
ments are widely available and easily accessible, the chemical forms of Se and the dosage
across different products are inconsistent and not standardised. Furthermore, the chemical
forms of dietary Se found in food are also diverse, including organic Se (selenomethion-
ine, selenocysteine, and selenium-methyl-selenocysteine) and inorganic Se (selenate and
selenite) of which the organic forms derived from plants are the main dietary source of
Se in the human diet [37]. Therefore, intake of different Se-rich food sources and Se sup-
plements might have distinct effects on metabolic pathways and show different biological
and toxicological impacts on living systems [38–40]. Despite this knowledge gap, there is a
lack of research comparing Se speciation in different chemical forms and their respective
performance on various health aspects in humans, underscoring the need to determine
an optimal chemical form of Se with maximal health benefits that can be endorsed and
publicised in dietary recommendations.

Previous studies have largely investigated and compared the health impacts of differ-
ent chemical forms of Se on farmed animals, such as poultry. The bioavailability of organic
and inorganic forms of Se differs, with the retention of organic forms being higher and
utilised by the body more efficiently than that of inorganic forms [41]. This differential
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retention of organo-Se forms has been ascribed to organic Se, such as selenomethionine,
being chemically similar to methionine, which is commonly incorporated into the methion-
ine pool within muscle as a form of Se storage. Therefore, on this basis selenomethionine
is commonly used in feed for intensive poultry practices [6,41]. However, the inorganic
forms are readily absorbed and in general the available evidence indicates inorganic Se
displays enhanced protective effects against certain pathologies, including Parkinson’s
disease [42,43]. Thus, sodium selenite has also ameliorated intestinal inflammation and his-
tological damage in colitis mouse models via downregulation of proinflammatory cytokines
and certain T-cell populations, with a concomitant upregulation of anti-inflammatory cy-
tokines [44]. In parallel, selenite has shown to selectively promote apoptosis in prostate and
lung cancer cells in vitro [20,45] suggesting another beneficial activity of this trace element
when administered in this chemical form.

Recently, a raft of synthetic Se compounds with biological activities have been de-
veloped and their therapeutic effects have been studied in animal models that mimic
mental disorders and degenerative diseases. For example, the selenocompound 3-[(4-
chlorophenyl)selanyl]-1-methyl-1H-indole (CMI) has been shown to ameliorate blood–
brain-barrier disturbances and diminish inflammation and oxidative stress in the brain of
postseptic mice with psychological disturbances, including depression, anxiety, and cogni-
tive impairment [46]. In another study, CMI was demonstrated to reverse stress-induced
depression-like behavioural alterations, neuroinflammation, and oxidative imbalance in
mice through a mechanism linked to reduction in corticosterone levels, enhanced antiox-
idant activities, and inhibited oxidative stress [47]. Similar therapeutic effects against
depression-like behaviour and cognitive impairment induced by disease and treatment dis-
tress due to breast cancer have been observed [48]. Furthermore, CMI improved the inability
to feel pleasure and anxiety induced by corticosterone through improved behavioural and
biochemical alterations [49]. With the rising prevalence of depression and anxiety combined
with mounting evidence that indicate Se’s anti-inflammatory and antioxidant properties,
selenium-containing molecules are now considered a promising therapeutic candidate
to potentially combat behavioural and biochemical alterations which are central to the
development of psychological symptoms.

The delivery of bioactive cargo via nanoparticles represents a novel, emerging, and
innovative technology. As an example, the application of nanotechnology in the delivery of
minerals in animal-feed-enhanced absorption and nutrient bioavailability and has since
revolutionised the poultry industry [50]. The available literature has shown that Se in the
form of nanoparticles (SeNPs) has reduced toxicity, higher bioavailability, lower excretion,
and is commonly linked to enhanced biological activities compared to the corresponding
inorganic or organic selenocompounds in animals [51–55]. Therefore, this review highlights
the biological impacts of SeNPs on growth and reproductive performances, its role in
modulating heat and oxidative stress and inflammation, and the varying modes of synthesis
of SeNPs. Although there have been several large-scale observational studies for various
inorganic and organic Se chemical forms as mentioned previously, to the best of our
knowledge there have been no trials using SeNPs in humans other than in vitro studies
using human cell lines.

2. Selenium Nanoparticles

Despite the significance of Se on the physiological metabolic function, including
growth as aforementioned, physiological levels of Se present with a narrow concentra-
tion range between nutritionally deficient, essential, and toxic doses [2]. Therefore, tight
regulation of Se levels within a physiologically optimal range is critical for maintaining
homeostasis and avoiding selenotoxicity. A major benefit of SeNPs is the significantly
lower toxicity while retaining similar physiological impacts and efficacy in enhancing se-
lenoprotein activities in comparison to that of other chemical seleno-forms as documented
in some [3,55,56], though not all [57,58], of the available literature. This enhanced activity
may be ascribed to the targeted delivery of Se to specific tissues. Despite the limited studies
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on SeNP toxicology, a study that investigated and compared the toxicology profiles of
SeNPs with that of organic and inorganic Se demonstrated the significantly reduced risk of
toxicity for the nano-vehicle form of Se [59]. Thus, mice administered with 2 mg SeNPs/kg
body weight per day did not show evidence of suppressed growth unlike those mice
administered organic and inorganic Se at the same dose, with selenite causing the most
damage to the liver and kidneys. Selenium nanoparticles also caused less bone marrow cell
death than other forms of Se and in addition, prevented DNA damage.

As synthesising Se using chemical methods could potentially employ toxic and harm-
ful reagents, there is an increasing interest in the development and production of SeNPs
using processes termed “green synthesis”, which employs microorganisms, including bac-
teria, fungi, and viruses to generate SeNPs, thereby minimising environmental pollution
and potential health issues arising from chemical precursors [60].

The potential for SeNPs to be used as therapeutic agents is now being investigated with
emerging evidence supporting a therapeutic advantage in diseases, such as Alzheimer’s
disease, hepatic injury, and antimicrobial resistance [61–63]. These activities may be associ-
ated with SeNP’s improvement of drug delivery by enhanced selectivity and differentiation
between diseased and healthy cells, thereby allowing for targeted release of the cargo in
specific tissues and therefore, reducing the side effects [64].

In addition to improving diseased states, SeNPs are also being investigated in agricul-
ture and food crop production. Presently, the accumulated evidence indicates that SeNPs
represent a promising biological agent, where enhanced animal growth [65,66], improved
feed conversion ratio [41,67], enhanced immunity (which imparts increased resistance to
diseases and heat stress) [51,56,65,68,69], improved fertility [70,71], and preservation of
meat quality [56,72] for human consumption have all been demonstrated in the aquacul-
ture and poultry industries [52]. However, SeNP supplementation remains a challenge
as Se supplementation with SeNPs is a relatively new concept and SeNPs needs to be
manufactured at different concentrations to suit the dietary requirements of a wide range
of animals with different baseline Se status to ultimately achieve optimal dietary supple-
mentation. Further research is essential to establish supplementary dietary regimes for
animal nutrition to produce Se-enriched meats and therefore, increase Se content in food
for human consumption.

2.1. Mechanisms of Bioactivity for Selenium Nanoparticles

Despite the promising results with SeNPs, there is limited knowledge of mechanisms
of SeNP absorption and metabolic conversion in the body, which has led to concerns
surrounding the potential long-term toxicity of SeNP use [52]. Selenium nanoparticles show
an enhanced uptake post-ingestion as these SeNPs are smaller in size with larger surface
areas and are more permeable through capillary walls, leading to superior epithelial cell
uptake and enhanced bioactivity. Notably, SeNPs exhibit lower rates of excretion compared
to other forms of Se [73]. These combined properties of elevated uptake and decreased
excretion facilitate the accumulation of SeNPs in the breast and duodenum tissues, due to
the formation of nanoemulsion droplets with spherical and noncrystalline structures, with
a lower accumulation in the liver involved in detoxification and clearance [74,75]. The same
study also showed that SeNPs were nontoxic which was demonstrated by the absence of
histological abnormalities in liver and brain tissues and paralleled findings from another
study demonstrating significantly lower toxicity of SeNPs compared to other Se forms [56].

2.2. Impacts of Selenium Nanoparticles on Fertility

Infertility is a multifactorial disease that has increased among young males and fe-
males worldwide during recent decades [76]. Contemporary evidence demonstrates that
reproductive disorders are commonly associated with genetic, lifestyle, and environmental
factors, including dietary habits, use of recreational drugs, alcohol and caffeine consump-
tion, and exposure to environmental pollutants during natural ageing [77,78] (refer to
Figure 2). Chronic diseases, including diabetes, are often characterised by an unregulated
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production of ROS and consequential oxidative damage linked to DNA fragmentation,
cytotoxicity, and death of sperm cells. This contributes to infertility, which could be at-
tenuated by SeNPs in mouse models through a mechanism that includes the inhibition of
lipid peroxidation and subsequent DNA damage [79]. Another contributing factor is that
females in developed countries tend to delay childbearing and conception beyond peak
fertility, even though the notion that human fertility declines with increasing age is well
established [77].

Figure 2. Schematic highlights various lifestyle factors that contribute to unfavourable physiological
effects, including increased oxidative stress, and pathological conditions leading to male infertility
in the long term (retrieved from https://app.biorender.com/biorender-templates, accessed on 17
January 2023). Poor lifestyle, including radiation, alcohol, smoking, exposure to toxins, and obesity
could impact sperm capacitation, acrosome reaction, hyperactivation, and sperm-oocyte binding
via molecular actions, including lipid peroxidation, DNA damage, and apoptosis, contributing to
male infertility. Conversely, adequate Se intake can promote pathways leading to optimal activity of
antioxidants, including GPx which alleviates oxidative stress involved in male infertility.

Ample research has linked reproductive disorders and infertility to low Se status/Se
deficiency while the outcome of assisted reproductive technologies (ARTs) in animals
and humans with appropriate Se serum levels were associated with positive outcomes
in conception, suggesting that an appropriate level of Se is essential for reproductive
health [65,80–82]. This knowledge has directed contemporary research interests into explor-
ing Se supplementation in both experimental animal models and in animal farming practice
to enhance reproductive abilities. Notably, a significant body of this type of research has
been focused on Se in the form of SeNPs due to its high bioavailability and relatively low
toxicity compared to other Se forms (as mentioned previously) and therefore, this section
of the review details the use of SeNPs in fertility research.

In vitro fertilisation (IVF) is a commonly used technique in various animal husbandry
industries, such as the poultry industry, to enhance the desirable genetic qualities and
increase the number of offspring. One of the main challenges for successful IVF in animals
is the failure of oocyte maturation—a crucial step prior to fertilisation, due to oxygen expo-
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sure that manifests as enhanced oocyte oxidative stress [71,83]. Studies have demonstrated
that supplementation with SeNPs enhanced the maturation rate in oocytes in vitro via
upregulation of GPx4 and superoxide dismutatse (SOD) antioxidants, where the effect
was more prominent in oocytes treated with SeNPs of 40 nm compared to that of 67 nm
due to the relatively larger surface area and higher degree of cellular internalisation of
the smaller SeNPs particles. Interestingly, SeNPs also improved the pluripotency and
oocyte reprogramming, as marked by the upregulation of the developmental competence
gene [71]. In further support of the potential bioactivity for vehicular delivered Se, in vitro
bovine oocyte maturation, oocyte DNA integrity, and GSH concentration, characterised by
increased re-expansion rate of blastocytes in vitro, were all demonstrated postsupplemen-
tation with 1 µg/mL of each of SeNPs or nano-zinc oxide [83]. Collectively, these reports
underscore the significance of SeNPs in processes linked directly to in vitro maturation
and fertilisation through a mechanism of enhanced antioxidant capacity and decreased
oxidative stress.

Another key step in IVF for both humans and animals is semen cryopreservation—a
process that necessarily involves repeated freezing and thawing cycles, which manifests
the production of damaging ROS and causes oxidative stress which together reduces sperm
viability by more than 35% [84]. Under these conditions, studies have shown that SeNP
supplementation markedly improves gamete quality during IVF procedures [83,85]. For
example, bovine semen supplemented with 0.5 and, 1.0 µg/mL of SeNPs prior to cryop-
reservation recorded enhanced post-thawing sperm motility and membrane integrity with
reduced DNA damage and importantly, a higher fertility rate than that of the control [70].
These protective effects were attributed to the improved total antioxidant capacity in semi-
nal plasma accompanied by decreased malondialdehyde concentration (MDA; a common
marker of oxidative damage to polyunsaturated fatty acids of cell membranes) in the pres-
ence of supplemented Se. Therefore, the addition of an SeNP supplement to semen/ovum
extenders in IVF protocols likely enhances the antioxidant status and preserves the quality
of gametes and ultimately improves fertility rates.

As mentioned previously, chronic exposure to environmental pollutants could lead to
permanent and irreversible damage to reproductive systems through induction of oxidative
stress, DNA damage, loss of cell viability, and increased apoptosis, all of which could be
attenuated by Se [86]. For example, aflatoxin, an environmental toxin found in the muscles
and liver due to bioaccumulation from consuming agricultural products, including milk and
eggs, has been attributed to inducing procarcinogenic and immunosuppressive effects [87].
A recent study showed that SeNPs attenuated testicular injury in aflatoxin B-exposed male
mice due to its role in increasing the capacity of scavenging free radicals and diminishing
the burden of ROS, thereby protecting spermatozoa and testis from lipid peroxidation and
apoptosis [88]. The bioactivity of SeNPs also manifested as improved embryo production
when sperm of aflatoxin B-exposed male mice was fused with healthy oocytes during
in vitro fertilisation [88]. Similarly, another study showed that SeNPs rescued nickel-
induced necrosis in seminiferous tubules via an upregulation of GPx enzymatic activity
and downregulation of proapoptotic factors which inhibited caspase-mediated apoptosis,
demonstrating the antioxidant potential and protective role of SeNPs against testicular
injury induced by metal environmental pollutants [89]. In recent years, there has been an
increased focus on combination therapies combining cisplatin with antioxidants to combat
various side effects, including testicular dysfunction linked to infertility. Interestingly, SeNP
administration improved the histological features and weight of testes in the presence of
cisplatin-induced testicular toxicity [90]; once again indicating the potential for SeNPs to
preserve viable sperm.

Another major reason for infertility is the presence of industrial chemicals in many
consumer products that are endocrine disruptors, where long-term exposure to such chemi-
cals is associated with reproductive dysfunction [91,92]. For example, bisphenol A (BPA) is
an environmental toxin associated with plastics and has been linked to promoting infertil-
ity [77]. However, coadministration of Se to mice exposed to BPA improved the antioxidant
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activity and decreased ER-2 expression of gene involved in modulating apoptosis during
spermatogenesis, thereby rescuing BPA-induced testicular damage and toxicity [93]. In fact,
the protective effects of SeNPs surpassed that of supplemented (inorganic) sodium selenite
as demonstrated by the ability to decrease proapoptotic mechanisms, DNA fragmentation,
and selected gene expression levels, offering a potent strategy for reproductive protection
against exogenous toxins.

Another common endocrine disruptor linked with reproductive toxicity and exten-
sively used in consumer goods is di-n-butyl phthalate (DBP). Pregnant female rats exposed
to DBP and administered with SeNPs gave birth to male offspring with enhanced testos-
terone levels, improved INSL3 and MR genes linked to Leydig cell functionality, improved
antioxidant capacity, and reduced levels of MDA through the inhibition of lipid peroxida-
tion, compared to those animals exposed to DBP alone [76]. Therefore, SeNPs could be a
potential protective supplement used against reproductive toxicity induced by environ-
mental toxins in the general population especially during the critical stages of pregnancy.

2.3. Impacts of Selenium Nanoparticles on Growth

It is a well-established fact that nutrition intervention affects the growth and fertility
performance and antioxidant status of the progeny [50]. Importantly, the increasing demand
for fish and meat as primary dietary source and the pursuit for high-quality foods with
advantageous health features have instigated new research in nutritional enhancement
to supply the world with an improved quality of food at higher production rates [72].
Recently, attention has been focused on supplementation with SeNPs as one of the primary
dietary approaches used in the aquaculture, agriculture, and poultry industries [94].

Fish is a primary source of animal protein in many countries [95]. However, the
rising consumer demand and increase in environmental pollution have led to challenges
in aquaculture and nutritional research which is essential for a sustainable supply of fish
and future food security globally [96]. Nile tilapia, rich in omega-3 fatty acids, is one of
the most widely consumed fish worldwide [97]. Studies investigating supplementation
of Nile tilapia with 1 mg SeNPs /kg body weight have demonstrated improved growth
performance as measured by a greater weight gain compared to that of the control; however,
this beneficial action of SeNPs was limited, as fish supplemented with a dose above or
below 1 mg/kg showed no enhanced weight gain [72]. In addition, fish supplemented with
1 mg SeNPs /kg body weight exhibited a desirable fatty acid profile and simultaneous
enhancement to antioxidant potential as demonstrated by a higher polyunsaturated fatty
acid content and a significantly increased GPx activity, respectively. These outcomes further
elucidate the importance of the dose of Se used in animal feed and the growth-promoting
potential of SeNPs and the results were also corroborated in intensive poultry farming [65].
Another similar study compared the effects of SeNPs to that of the traditional Se forms
(organic and inorganic) using Nile tilapia [51]. Outcomes from this study indicated that
fish supplemented with SeNPs showed the optimal haematological profile using measure-
ments of haemoglobin, red blood cells, and circulating IgM levels, suggesting improved
health and immunological status when using this form of dietary Se. Furthermore, SeNPs
simultaneously improved SOD, catalase (CAT), and GPx activities and reduced MDA
levels in the liver, suggesting enhanced hepatic antioxidant defence which was consistent
with a previous study [72]. Additionally, SeNPs improved intestinal health, which was
demonstrated by a greater villus length and the number of goblet cells in the colon mucosa
indicating more efficient digestion and utilisation of food and enhanced mucosal protection
for the underlying intestine.

Importantly, research has also show that dietary Se improved the gut microbiome
favourably by enhancing the abundance of beneficial bacteria and limiting the growth of
undesirable pathogens [98]. In comparison with other metallic nanoparticles, such as silver
and gold nanoparticles with antimicrobial properties, SeNPs are relatively less toxic as
they are intrinsically essential for metabolic processes and are present in the biological
system [99,100]. Broiler birds fed with 0.9 mg SeNPs /kg body weight impacted the gut
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bacterium genus and enhanced intestinal health, demonstrating an increased abundance of
beneficial bacteria, including Lactobacillus and Faecalibacterium; a phenotype that is linked
to favourable metabolite production, including butyrate [101]. Under these same dietary
supplementation conditions, the production of short-chain fatty acids was also enhanced,
and this was associated with improved immunity and colonic mucosal function, with
commensurate reduction in the risk of inflammation, diabetes, and IBD. Taken together,
these results suggested the potential application of SeNPs in poultry feed to produce
beneficial health outcomes via the modification of the gut microbiota.

Global warming causes a rise in sea temperature which negatively impacts growth,
metabolism, and various physiological functions of aquatic animals, and ultimately reduces
survival rates. Under these conditions, the mechanism involved increases free radical
production and reduces tissue damage which could be attenuated by SeNP supplemen-
tation [102]. Furthermore, a recent study found that SeNP supplementation alleviated
heat stress and improved thermal tolerance in rainbow trout through upregulation of GPx
and CAT activities and activation of glutamate-glutamine pathways linked to reduced
ROS production and inflammation [103]. Microscopically, the phospholipid membrane of
rainbow trout was more integral due to SeNP-induced mitigation of oxidative damage. An-
other similar study showed that SeNPs promoted protein repair and inhibited apoptosis in
rainbow trout via upregulation of heat stress proteins and downregulation of proapoptotic
proteins and cholesterol synthesis [104].

In the agriculture industry, SeNPs ameliorated heat stress in underdeveloped piglets,
characterised by enhanced plasma SOD, CAT, and GPx activities, increased anti-inflammatory
IL-10 cytokine, and decreased levels of the oxidation biomarker MDA [68]. Another recent
study established the role of SeNPs in improving resistance to biological stress in plants
with the aim of limiting the use of chemical pesticides where potential toxicity in humans
was an inherent risk [105]. Furthermore, SeNPs improved resistance to pathogen invasion
in melon plants via increased SOD and CAT activities and their mRNA levels along with
increased APX and POD activities suggesting improved antioxidant capacity and ROS
scavenging [106]. Enhanced photosynthesis in melons was accompanied by the detection
of increased abundance of mitochondria, chlorophyll, and demonstrable thickening of cell
walls. Taken together, these results demonstrated the significance of SeNPs in mediating
tolerance of heat stress via enhanced antioxidant capacity and thermal and biological stress
tolerance, thereby improving the viability of biological organisms.

Numerous studies have documented that maternal dietary intervention with SeNP
supplementation affects the growth and fertility performance and antioxidant status of
the progeny [52,107]. Compared to sodium selenite and selenium yeast, SeNPs were most
effective in enhancing egg production, egg weight, and feed conversion ratio in laying
hens, accompanied by significantly increased Se concentration in eggs, GPx1 liver mRNA
levels and serum GPx activity, and lower MDA levels [66]. Interestingly, SeNPs enhanced
the tolerance of laying hens to deoxynivalenol (DON; a fungal toxin) most likely through
a mechanism of SeNP-mediated enhancement of antioxidant activity [65]. Thus, laying
hens exposed to DON and fed with SeNP supplemented feed demonstrated increased
antioxidant defence and immune response to DON, characterised by improved GPx levels,
higher egg production, and protection against oxidative damage and soft-shelled or cracked
egg rates.

Although a suitable amount of heat is key in embryonic development and growth,
high incubation temperatures could adversely impact hatchability and growth performance
of broilers [65]. Yet, in ovo injection of SeNPs during late incubation in broilers significantly
enhanced antioxidant capacity and attenuated oxidative stress, which manifested as de-
creased cortisol levels and an increased T3/T4 ratio, suggesting reduced heat stress and
increased thyroid hormone metabolism. Again, these results reinforce the importance and
potential application of SeNP supplementation to enhance food production and quality in
the poultry industry.
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2.4. Impacts of Selenium Nanoparticles on Diseases and Human Health

As aforementioned, Se possesses anti-inflammatory and antioxidant properties. Thus,
a body of research has investigated the effects of Se specifically in the form of SeNPs on
alleviating diseases, including diabetic nephropathy [108], Alzheimer’s disease [61], and
leukemia [109] in vitro and in animal models.

The most common chronic diseases linked to natural aging, including diabetes,
Alzheimer’s disease (AD), and cardiovascular disease, and cancers are characterised by in-
creased ROS production, oxidative stress, and chronic inflammation. In diabetic rats, SeNPs
have shown to reduce proinflammatory markers, including IL-1β and TNF levels and renal
MDA levels leading to lower oxidative stress, indicated by improved renal functions due
to lower serum urea and creatinine along with reduced glucose level [108]. Furthermore,
resveratrol (RSV) a naturally occurring chemical found in grapes with neuroprotective
properties showed maximal therapeutic effects against AD when delivered to rats in an
RSV-SeNPs cocktail [110]. In terms of biological mechanisms of action, the synergistic
interaction of RSV and SeNPs could better attenuate lipid peroxidation, alleviate mitochon-
drial membrane disruptions, and restore the levels of antioxidant enzymes in AD-affected
brain tissues. Rats with AD administered with the RSV-SeNPs cocktail displayed improved
AD symptoms, shown by improved acetylcholine levels and disrupted formation of Aβ

aggregates accompanied by enhanced clearance of Aβ peptides, thereby inhibiting the local
inflammatory responses.

The potential therapeutic benefit of SeNP activity against oxidative stress and inflam-
mation has also been demonstrated in a model of cardiac oxidative damage and fibrosis
induced by the low thyroid hormone levels in hypothyroid rats [111]. Here, SeNPs admin-
istered at 150 µg/kg attenuated cardiac fibrosis and hypertrophy of cardiomyocytes via
enhanced CAT and SOD activities and thiol levels, with dampened MDA levels in cardiac
tissues. Similarly in a model for vascular endothelial cell dysfunction and injury in rats
induced by homocysteine, SeNPs, sodium selenite, and selenomethionine improved the
vascular phenotype through the rescue of local GPx1 and GPx4 levels [112]. Notably, under
these conditions SeNPs exhibited lower toxicity compared to other Se forms while main-
taining a similar level of vaso-protection. The lower toxicity of SeNPs was corroborated in
another study where the LD50 of SeNPs was 18-fold more than that of selenite in mouse
models, with less Se retention [113]. Nevertheless, SeNPs when administered at the same
dose as selenite not only reduced the levels of TBARS (another secondary marker of lipid
peroxidation), but also elevated GSH levels.

In addition to SeNP’s therapeutic properties in chronic diseases, vehicular transport
of Se is reported to display either synergistic effects with cancer drugs or show anticancer
activity specific to cancer cells, suggesting less toxicity and collateral damage to healthy
cells and tissues. For example, SeNPs promoted swelling and cell lysis in acute myeloid
leukaemia (AML) cells via cell cycle arrest and apoptosis, while displaying minimal toxicity
to haematopoietic stem cells and T cells [109]. Notably, the SeNPs used in this study
were embedded in nanotubes consisting of triple helix β-d-glucan (BFP) polysaccharide
extracted from black fungus which encouraged adhesion to biological tissues, consequently
increasing BFP-SeNP absorption and retention rates. Similarly, SeNPs encapsulated in gold
nanocages were released into target tissues upon radiation and stimulated local apoptosis
due to ROS-induced mitochondrial dysfunction, when used alongside with a cancer drug,
suggesting the potential targeted release of SeNPs [64]. Importantly, SeNPs enhanced the
elimination efficacy of cancer cells compared to normal healthy cells which was confirmed
by another study [114]. Furthermore, the enhancement of selective apoptosis using SeNPs
has also been demonstrated in breast cancer, under experimental culture conditions where
SeNPs were added to breast cancer cells in vitro 24 h prior to irradiation treatment [115].

To enhance the selectivity of SeNPs in a cancer-targeted drug delivery system, research
has shown that SeNPs attached to folate (FA) prior to loading the cancer drug ruthenium
polypyridyl (RuPOP), effectively enhanced the drug specificity so that RuPOP was only
released in an acidic microenvironment (e.g., the stomach) to facilitate drug release in an
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on-demand fashion [116]. Altogether, these results suggest the potential application of
SeNPs as a synergistic cancer treatment due to its selectivity in promoting cancer cell death,
likely through SeNPs’ activation on cell cycle arrest at the G2/M phase, metabolic stress,
and increased intracellular ROS production in cancer cells. In addition to the apoptotic
activity of SeNPs against cancer cells, SeNPs conjugated to quercetin (Qu) and acetylcholine
(ACh) presenting antibacterial activity against multidrug-resistant superbugs (MDRs) by
causing irreversible damage to the bacterial cell wall upon adhesion [63].

As mentioned previously, SeNPs could attenuate the negative impacts of environmen-
tal toxins and chemicals commonly present in commercial products on fertility, and their
beneficial effects could also be demonstrated in other diseases. Selenium nanoparticles
could restore neurotoxicity and motor deficits in rats induced with cypermethrin (CYP)
pesticide by mitigating the oxidative stress due to CYP metabolism in the liver which yields
ROS and oxidative stress [117]. Neurotoxic mice treated with SeNPs displayed normal be-
havioural outcomes which was linked to the increased levels of GABA and glutathione and
lower levels of MDA and inflammatory markers (TNF-α and IL-1β), thereby preventing
the excessive CYP-induced excitation of the neuronal system. In addition, SeNPs protected
the liver and kidneys against the toxic effects induced by a widely used analgesic drug,
acetaminophen, via the maintenance of DNA integrity and improved hepatic antioxidant
capacity as supported histologically by reduced hepatic oxidative lesions and restored
hepatic cellular structure [62].

Interestingly, a recent study investigated the potential analgesic effects of SeNPs in
inflammatory disorders, as inflammation promotes the release of inflammatory mediators
which excite nociceptive neurons leading to local inflammation and pain [118]. Despite
SeNPs’ anti-inflammatory activity supported by reduced leukocyte numbers and proin-
flammatory cytokines, including prostaglandin, TBAR and NOx markers, SeNPs had no
impact on the nociceptive threshold in rat models.

2.5. Synthesis of Selenium Nanoparticles

The daily requirement of Se intake that the body needs can be obtained by eating
Se-enriched foods, including vegetables, grains, and meat; yet the daily requirement of Se
might not be sufficiently met through dietary consumption alone [119]. Compared with
the conventional Se supplementation forms available in the market, SeNPs outperform the
organic and inorganic Se forms in terms of bioactivity and toxicity. In light of the potential
application of SeNPs in the aquaculture, poultry, and human supplement industries, SeNPs
could become a novel form of Se supplementation [76]. There are several pathways to syn-
thesise SeNPs, of which the most common types are chemical synthesis which uses various
reagents, and biosynthesis involving plants or microorganisms to produce the encapsulated
trace element [120]. For the chemical methodology, preparation methods of SeNPs and
the characterisation methods of both synthetic methodologies are generally standardised,
however the preparation for the biosynthesis of SeNPs varies widely depending on the
type of plants and microorganisms used, which are summarised and discussed herein.

For the preparation of SeNPs by chemical synthesis, the standard protocol utilised
by most studies involved the addition of 1 mL of 25 mM NaSe solution into 4 mL of glu-
tathione (GSH) of the same concentration containing 15 mg of bovine serum albumin (BSA),
following the supplementation of a stabilising polymer and pH adjustment to 7.2 [41,117].
It is worth noting that the size and surface charge of SeNPs could be manipulated by alter-
ing the pH of the solution and the BSA amount used in the manufacturing process [3,121].
The final solution containing the SeNP product was purified by dialysis against double-
distilled water for 4 days, and the water was replaced daily to isolate the by-product GSH
from the final product. The morphology and identity of the final product was characterised
and verified using X-ray diffraction, placing a small sample stained with phosphotungstic
acid (2%) on a copper grid and viewing the sample under transmission electron microscopy
(TEM). Another preparation method employed selenium dioxide (SeO2) dissolved in dis-
tilled water containing 0.2% polyvinylpyrrolidone (PVP) to obtain selenious acid solution,
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which turned clear upon cooling in an ice bath [118]. The addition of an ice-cold 0.1 mol/L
reducing agent, potassium borohydride, initiated a colour change in the SeO2 solution from
clear to a yellow–orange, which was indicative of the formation of SeNPs. Similar to the
characterisation method mentioned previously, the resultant solution containing SeNPs was
then characterised using dynamic light scattering (DLS) and electrophoretic light scattering
(ELS) techniques to determine the zeta potential value and provide the morphology of
the SeNPs. Higher zeta potential, regardless of the sign (i.e., +/−) is indicative of particle
stability and this manifests as an increased resistance for aggregation. This is explained
by a lower value for the zeta potential, meaning that attractive forces might exceed the
interparticle repulsion and the dispersion might break and form small clumps/masses.
Therefore, an appropriate zeta potential value is critical to the formation and stability of
SeNPs [122].

For the biosynthesis of SeNPs, several studies employed a technique similar to the
chemical syntheses (described above) but instead used plants and ascorbic acid as a chem-
ical reductant [76,113,123]. Water-soluble and natural polymer polysaccharides, such as
chitosan, konjac glucomannan, acacia gum, carboxymethyl cellulose, glucan derived from
plants, such as black fungus [109] and Lentinus Edodes (shiitake mushroom) [114], and
plant roots, including Withania Somnifera [79], were employed, as they are excellent
stabilisers in the synthesis of dispersed colloidal SeNPs [123]. Selenium nanoparticles
manufactured using this protocol used seleniuous acid solution in a mixture containing
polysaccharides, such as cellulose, yielding a Se/cellulose aqueous suspension which was
mixed with ascorbic acid. The ascorbic acid solution was slowly added into the Se/cellulose
suspension and vigorously stirred until the suspension changed colour from white to brick
red/orange as the Se/cellulose colloids and SeNPs began to form. The final product could
then be separated, purified by dialysis, and washed with water and 70% ethanol to re-
move excess ascorbic acid and other low molecular weight by-products, then dried using a
spray-drying process to remove residual moisture.

Another similar study investigating the antimicrobial actions of SeNPs against super-
bugs utilised quercetin (Qu), an essential plant flavonoid present in many fruits, flowers,
and vegetables due to its inherent antibacterial properties, and also an acetylcholine (ACh)
neurotransmitter due to its ability to combine with the receptor present on bacteria cell
wall, thereby promoting the binding of Qu-ACh-SeNPs to bacteria [63]. To synthesise
Qu-ACh-SeNPs, NaSe was mixed with Qu dissolved in methanol and ACh chloride in the
presence of acetic acid for 10 min in cold conditions. Following the addition of a reducing
agent, sodium borohydride, the mixture was vigorously stirred. The final red solution was
centrifuged to collect the red precipitate, followed by repeated washing with PBS to obtain
the final complex Qu-ACh-SeNP product.

Synthesis of SeNP can also utilise bacterial cell lysates [124] or anaerobic granular
sludge containing bacteria to biologically reduce selenite forming biogenic SeNPs [3]. Steps
for this protocol include gathering granular-sludge biofilms from an anaerobic sludge
blanket reactor treating paper mill wastewater which can then be used in the microbial
conversion of soluble Se oxyanions to insoluble elemental Se, which is incorporated into bio-
genic SeNPs as confirmed by the appearance of a red-coloured substance. Mechanistically,
the bacteria synthesised SeNPs by either selenite denitrification involving nitrate reductases
and cellular cofactors (present in E. coli), the reduction of Se (IV) compounds involving
nitrite reductases (present in Rhizobium), and selenate reductase involved in the chemical
reduction of selenate, or selenite reduction by reduced thiols, such as GSH (present in
eukaryotic cells, cyanobacteria, and the α-, β- and γ-groups of the proteobacteria) [60].
This process has the added potential benefit of reducing the discharge of Se-contaminated
sludge into the aquatic environment considering the increasing concerns around Se toxicity
in aquatic animals [57]. Interestingly, biogenic SeNPs were found to be 3.2-fold less toxic
than selenite and 10-fold less toxic than chemically synthesised SeNPs in zebrafish embryos
when comparing LC50 values [3]. Despite the lower toxicity of biogenic SeNPs compared
to that of the chemically synthesised SeNPs, one inherent risk associated with this mode of
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synthesis is that a substantial amount of biogenic SeNPs could remain in the bioreactor due
to its colloidal structure resulting in discharge to the aquatic environment [3]. Nonetheless,
biogenic SeNPs are less toxic with lower bioavailability due to the presence of extracellular
polymeric substances, which decreases the interactions between nanoparticles and biologi-
cal organisms. In contrast to using biological sludge in producing biogenic SeNPs, other
studies have utilised fish organs, such as gills [57]. In these studies, homogenised fish gills
were centrifuged to collect the supernatant, which was mixed with 200 mL of 2M sodium
selenite and shaken continuously for 36 h. After centrifugation, the harvested pellets were
dried and stored at room temperature so that they could later be crushed to form a gross
colloid as required for dietary supplementation.

As mentioned previously, designated SeNPs could be used as a drug delivery system
to enhance the selectivity of the cargo between diseased and healthy cells, where synthesis
of SeNPs often involves the use of metal nanocages, including gold. This manufacturing
process involves two steps, (i) the synthesis of gold nanocages, and (ii) the loading of sele-
nious acid and phase change materials (PCM), such as lauric acid, into the nanocages [64].
Firstly, silver nanocubes of 45 mm are converted to gold nanocages (AuNCs) through
galvanic replacement reaction with HAuCl4. Secondly, 1 mL AuNCs is dispersed in 0.5 mL
of methanol containing 0.3 g of PCM (lauric acid) and 0.2 g of selenious acid, which is
stirred at 50 ◦C for 5 h and then centrifuged at 14,000 rpm to obtain SeNPs encapsulated
in gold nanocages which can then be redispersed in 1 mL of deionised water to obtain
the final product. Similarly, another study prepared two types of selenium nanoparti-
cles with quantum mechanical properties that showed growth inhibition on cancer cells
through the induction of mitochondria-mediated apoptosis and necrosis [125]. Another
study investigating the therapeutic enhancement effects of SeNPs for the cancer drug,
ruthenium polypyridyl (RuPOP) conjugated folate (FA) and SeNPs to RuPOP, producing
FA-RuPOP-SeNPs, which was synthesised in a similar fashion using ascorbic acid, sodium
selenite, and polysaccharide polymers [116]. FA receptors are commonly overexpressed in
cancer cells, which is a characteristic that could be leveraged when devising cancer drug
treatments to facilitate the delivery and uptake of FA-RuPOP-SeNPs by cancer cells.

3. Conclusions

Dietary supplementation of SeNPs have demonstrated a range of benefits in agricul-
ture and humans, with superior performance over traditional chemical forms of dietary
Se. Therefore, it is increasingly seen as an innovative and novel alternative. Recognising
the antioxidant properties of dietary Se, the benefits ascribed to SeNPs include lower
toxicity, enhanced growth performance, improved nutritional quality, immune functions,
improved overall reproductive performance, reduced oxidative stress and inflammation,
ameliorated heat stress, neurotoxicity and environmental pollutants, increased resistance
to infections, assistive effects in chemotherapy, selective apoptosis of cancer cells, selective
delivery of cancer drugs, and antibacterial actions against superbugs. However, further
studies are still required to elucidate pharmacological activity and safe dosages due to
inherent biological and environmental variations, and the different (baseline) Se status for
animals and humans in different regions of the world. The advantages mentioned above in
combination with the multiple synthetic pathways used to develop tailored SeNPs for use
in intensive agriculture, and as potential therapeutics for human pathologies, make this
form of Se a prime candidate for further research. However, in addition to limited toxicity
data, currently there is a paucity of complete pharmacokinetic data, including SeNP uptake
vs. half-life and metabolism, and the accumulation of the SeNPs or a metabolite in tissue
vs. dosage. Once a more complete pharmacokinetic study is available for optimal forms of
SeNPs, further testing of these optimal Se delivery systems will require extensive future
studies on humans using randomised control trials.
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