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Abstract: Pig diseases seriously threaten the health of pigs and the benefits of pig production.
Previous research has indicated that Chinese native pigs, such as the Min (M) pig, has a better disease
resistance ability than Large White (LW) pigs. However, the molecular mechanism of this resistance
is still unclear. In our study, we used serum untargeted metabolomics and proteomics, interrogated
to characterize differences in the molecular immunities between six resistant and six susceptible
pigs raised in the same environment. A total of 62 metabolites were identified as being significantly
exhibited in M and LW pigs. Ensemble feature selection (EFS) machine learning methods were used to
predict biomarkers of metabolites and proteins, and the top 30 were selected and retained. Weighted
gene co-expression network analysis (WGCNA) confirmed that four key metabolites, PC (18:1
(11 Z)/20:0), PC (14:0/P-18: 0), PC (18:3 (6 Z, 9 Z, 12 Z)/16:0), and PC (16:1 (9 Z)/22:2 (13 Z, 16 Z)),
were significantly associated with phenotypes, such as cytokines, and different pig breeds. Correlation
network analysis showed that 15 proteins were significantly correlated with the expression of both
cytokines and unsaturated fatty acid metabolites. Quantitative trait locus (QTL) co-location analysis
results showed that 13 of 15 proteins co-localized with immune or polyunsaturated fatty acid (PUFA)-
related QTL. Moreover, seven of them co-localized with both immune and PUFA QTLs, including
proteasome 20S subunit beta 8 (PSMB8), mannose binding lectin 1 (MBL1), and interleukin-1 receptor
accessory protein (IL1RAP). These proteins may play important roles in regulating the production or
metabolism of unsaturated fatty acids and immune factors. Most of the proteins could be validated
with parallel reaction monitoring, which suggests that these proteins may play an essential role
in producing or regulating unsaturated fatty acids and immune factors to cope with the adaptive
immunity of different pig breeds. Our study provides a basis for further clarifying the disease
resistance mechanism of pigs.

Keywords: Min pigs; Large White pigs; metabolomic; proteomics; biomarker

1. Introduction

Pork provides humans around the world with about half of their animal protein
resources. Modern pig production has a certain degree of antagonism between production
traits and resistance traits, which show a negative genetic correlation. The pursuit of high-
yield targets often results in reduced disease resistance [1]. At the same time, pig diseases,
especially viral infectious diseases, seriously threaten the health of pigs and the benefits of
pig production. The Min pig is an excellent local breed in China that has high immunity
and strong disease resistance. Studies have shown that the number of red blood cells, the
absolute value of neutrophils, and the percentages of T helper cells (CD4+T lymphocytes)
and cytotoxic T cells (CD8+T lymphocytes) in Min pigs were significantly higher than
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in Large White pigs (p ≤ 0.01) [2,3]. In addition, the SLA class I gene has a stronger
polymorphism in Min pigs [2]. When disease struck a farm, the growth or reproductive
performance of Large White pigs was severely affected while that of the Min pigs in the
same enclosure remained normal [4]. It would be of benefit to understand the molecular
and genetic mechanisms of the immune system in different pig breeds.

Metabolites are effectively the end products of complex interactions occurring between
structures inside the cell (the genome) and events, exposures, or phenomena occurring
outside the cell or organism (the environment). As a result, metabolomics can enable
researchers to obtain a sensitive and more complete description of the phenotype [5]. This
metabolic readout of the phenotype is often called the “Metabotype” [6]. Thus, metabolomics
is widely used to diagnose and prevent animal disease [7]. Proteins are the primary executors
of cell function, and abnormal protein expression or modification in cells plays a vital role
in the occurrence and development of diseases. Proteomics has become a critical technique
for studying intracellular protein composition, activity, and interaction at the protein level.
The porcine immune system has been investigated by profiling the proteomics for disease
resistance research in pigs [8–10]. Blood combines metabolic and transcriptional variation
and carries molecular signatures of system-wide processes, which makes blood widely used
for integrative biomedical research [5,7,11–14]. However, few reports describe an integrated
analysis of proteins and metabolites associated with Chinese domestic and foreign pig
serum under common rearing conditions.

This study aims to comprehensively describe the complex interactions between dif-
ferent omics data using the combined effects of metabolomics and proteomics. To this
end, we analyzed metabolomics and proteomics measurements from 12 individual Min
(M) pigs and Large White (LW) pigs to explore the molecular mechanisms affecting the
different pig breeds’ immune capacities. The results could provide insight into understand-
ing differences in resistance between different breeds of pig and may be helpful for highly
disease-resistant pig production.

2. Results
2.1. Metabolic Profiling of Serum Samples from M and LW Pigs

After data preprocessing and metabolite identification, 596 metabolites were extracted
from the raw data acquired in positive and negative ion modes. We utilized a multivariate
statistical analysis to explore the differences in metabolites between M and LW pigs. An
unsupervised principal component analysis (PCA) analysis was performed as the first
step in the separation procedure to visualize the clusters and decrease data dimension
(Figure 1A). The distribution of two pig serum samples and the PCA shows a distinction
between M and LW pigs.
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Figure 1. Principal component analysis (PCA). (A) PCA score plot of the serum of Large White 
(LW) and Min (M) pig metabolites; (B) Orthogonal partial least squares discrimination analysis 
(OPLS-DA) score plot; (C) The 200-response sorting permutation test plot in the OPLS-DA mode. 

Based on pairwise comparisons of LW vs. M groups, 61 metabolites exhibited statis-
tically significant differences at p-values ≤ 0.05 and a variable importance projection (VIP) 
value > 1. Hierarchical clustering analysis of these identified differentially expressed me-
tabolites (DEMs) between the groups indicated two major express trajectories (Figure 2A) 
(Supplementary Table S1). In trajectory I, concentrations of 8-isoprostaglandin F2a, 
thromboxane B2, PC (16:19(9Z)/22:2(13Z,16Z)), 3-Hydroxy-3-methyl-2-oxopentanoic acid, 
adipic acid, 4-hydroxy-2-oxohexanoic acid, fluvoxamine acid, and pregabalin ceramide 
(d18:1/16:0) were upregulated in LW. In trajectory II, M pigs had 42 DEMs with higher 
expression than in LW, including L-glutamine, L-threonine, o-methyl hippuric acid, ara-
chidonic acid, and creatinine. 

A pathway enrichment analysis of differential metabolites showed that most meta-
bolic pathways were involved in immune response or regulation, such as linoleic acid 
metabolism, the Fc epsilon RI signaling pathway, Fc gamma R-mediated phagocytosis, 
and arachidonic acid metabolism (Figure 2B). The kyoto encyclopedia of genes and ge-
nomes (KEGG) network diagram showed that arachidonic acid and sphingolipid metab-
olism, along with the sphingolipid signaling pathway and necroptosis pathway, were the 
core regions residing in all pathways (Figure 2C). 

Figure 1. Principal component analysis (PCA). (A) PCA score plot of the serum of Large White (LW)
and Min (M) pig metabolites; (B) Orthogonal partial least squares discrimination analysis (OPLS-DA)
score plot; (C) The 200-response sorting permutation test plot in the OPLS-DA mode.
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Furthermore, we performed orthogonal partial least squares discrimination analysis
(OPLS-DA) to further differentiate the metabolite features and to screen potential marker
metabolites. In the OPLS-DA score plot, there are clear differences between the LW and M
pigs (Figure 1B). In this study, the parameters R2Y = 0.994 and Q2 = 0.718 and this result
indicated that the OPLS-DA models were not over-fitted and had a satisfactory interpretative
and predictive ability, and so the data can be reliably used for further analysis (Figure 1C).

Based on pairwise comparisons of LW vs. M groups, 61 metabolites exhibited statis-
tically significant differences at p-values ≤ 0.05 and a variable importance projection
(VIP) value > 1. Hierarchical clustering analysis of these identified differentially ex-
pressed metabolites (DEMs) between the groups indicated two major express trajectories
(Figure 2A) (Supplementary Table S1). In trajectory I, concentrations of 8-isoprostaglandin
F2a, thromboxane B2, PC (16:19(9Z)/22:2(13Z,16Z)), 3-Hydroxy-3-methyl-2-oxopentanoic
acid, adipic acid, 4-hydroxy-2-oxohexanoic acid, fluvoxamine acid, and pregabalin ce-
ramide (d18:1/16:0) were upregulated in LW. In trajectory II, M pigs had 42 DEMs with
higher expression than in LW, including L-glutamine, L-threonine, o-methyl hippuric acid,
arachidonic acid, and creatinine.
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are highlighted in red (increased) and blue (decreased); (B) Kyoto encyclopedia of genes and ge-
nomes (KEGG) pathway enrichment analysis of DEMs; (C) KEGG network diagram. The number 
of metabolites enriched into the pathway determines the node size, and the p-value determines the 
node color. 

2.2. Identification of High-Confidence Biomarkers to Predict Immune Molecular Differences be-
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In this study, one of our most important goals was the identification of high confi-
dence biomarkers to predict immune molecular differences between different pig breeds. 
To rank biomarkers, we took an ensemble feature selection (EFS) approach, which applied 
multiple feature selection algorithms then aggregated and ranked the results. The top EFS 
protein (Figure 3A) were ENSSSCG00000037475, alpha-L-fucosidase 2 (FUCA2), comple-
ment C4A (C4A), glutathione peroxidase 3 (GPX3), vascular cell adhesion molecule 1 
(VCAM1), and CD14 molecule (CD14). The top-ranked EFS metabolites included 6-phos-
phogluconic acid, PC(16:1(9z)/22:2(13z,16z)), 9,10-12,13-diepoxyoctadecanoate, and 9(S)-
HPODE (Figure 3B). The EFS approach ensures that the top-ranked biomarkers are not 
correlated to one another and, therefore, could be used in combination for the enhanced 
prediction of immune differences in different pig breeds [15]. 

Figure 2. Quantitative metabolomics of LW and M pig serum samples. (A) Hierarchical cluster-
ing based on differential metabolites in the serum of LW and M pigs. The differentially expressed
metabolites (DEMs) were identified with a VIP > 1 and p-value ≤ 0.05. Significantly altered metabo-
lites are highlighted in red (increased) and blue (decreased); (B) Kyoto encyclopedia of genes and
genomes (KEGG) pathway enrichment analysis of DEMs; (C) KEGG network diagram. The number
of metabolites enriched into the pathway determines the node size, and the p-value determines the
node color.

A pathway enrichment analysis of differential metabolites showed that most metabolic
pathways were involved in immune response or regulation, such as linoleic acid metabolism,
the Fc epsilon RI signaling pathway, Fc gamma R-mediated phagocytosis, and arachidonic
acid metabolism (Figure 2B). The kyoto encyclopedia of genes and genomes (KEGG) net-
work diagram showed that arachidonic acid and sphingolipid metabolism, along with the
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sphingolipid signaling pathway and necroptosis pathway, were the core regions residing
in all pathways (Figure 2C).

2.2. Identification of High-Confidence Biomarkers to Predict Immune Molecular Differences
between Different Pig Breeds

In this study, one of our most important goals was the identification of high confidence
biomarkers to predict immune molecular differences between different pig breeds. To rank
biomarkers, we took an ensemble feature selection (EFS) approach, which applied multiple
feature selection algorithms then aggregated and ranked the results. The top EFS protein
(Figure 3A) were ENSSSCG00000037475, alpha-L-fucosidase 2 (FUCA2), complement C4A
(C4A), glutathione peroxidase 3 (GPX3), vascular cell adhesion molecule 1 (VCAM1), and
CD14 molecule (CD14). The top-ranked EFS metabolites included 6-phosphogluconic acid,
PC(16:1(9z)/22:2(13z,16z)), 9,10-12,13-diepoxyoctadecanoate, and 9(S)-HPODE (Figure 3B).
The EFS approach ensures that the top-ranked biomarkers are not correlated to one another
and, therefore, could be used in combination for the enhanced prediction of immune
differences in different pig breeds [15].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 3. Identification of high-confidence biomarkers for predicting adaptive immune differences 
between pig breeds. (A) Top 30 ensemble feature selection (EFS) proteins (LW versus M); (B) Top 
30 EFS metabolites (LW versus M). 

2.3. WGCNA Analysis to Identify Metabolite Modules Significantly Associated with Cytokines 
In this study, we aimed to determine the relationship between serum metabolites and 

cytokine production in different pig breeds. We constructed a one-step metabolite-cyto-
kine co-expression matrix to obtain nine modules. The blue module had the highest posi-
tive correlation with four cytokines (Figure 4A, B). It is worth noting that four cytokines, 
including cytokines interleukin 10 (IL10), cytokines interleukin 6 (IL6), tumor necrosis fac-
tor alpha (TNFα), and granulocyte-macrophage colony stimulating factor (GM-CSF), 
were discovered by our research group in previous studies to be differentially expressed 
in M pigs and LW pigs. The blue, turquoise, brown, and yellow modules also showed 
significant positive or negative correlations with different pig breeds. We identified highly 
significant metabolites with a high module membership in the above four modules using 
gene significance (GS) and module membership (MM) measures. Regarding the four mod-
ules significantly linked to different pig breeds and cytokines, each showed a significantly 
high correlation between GS and MM (Figure 4C–F). Our results identify metabolite mod-
ules that may directly affect cytokine expression, and these metabolites may contribute to 
immune differences in different pig breeds. In addition, KEGG and protein–protein inter-
action networks (PPI) interaction network analysis were also conducted to understand the 
complete picture of the metabolite functions in the four modules significantly related to 
immunophenotype (Supplementary Figures S1 and S2). 

Figure 3. Identification of high-confidence biomarkers for predicting adaptive immune differences
between pig breeds. (A) Top 30 ensemble feature selection (EFS) proteins (LW versus M); (B) Top 30
EFS metabolites (LW versus M).

2.3. WGCNA Analysis to Identify Metabolite Modules Significantly Associated with Cytokines

In this study, we aimed to determine the relationship between serum metabolites
and cytokine production in different pig breeds. We constructed a one-step metabolite-
cytokine co-expression matrix to obtain nine modules. The blue module had the highest
positive correlation with four cytokines (Figure 4A,B). It is worth noting that four cytokines,
including cytokines interleukin 10 (IL10), cytokines interleukin 6 (IL6), tumor necrosis
factor alpha (TNFα), and granulocyte-macrophage colony stimulating factor (GM-CSF),
were discovered by our research group in previous studies to be differentially expressed
in M pigs and LW pigs. The blue, turquoise, brown, and yellow modules also showed
significant positive or negative correlations with different pig breeds. We identified highly
significant metabolites with a high module membership in the above four modules using
gene significance (GS) and module membership (MM) measures. Regarding the four mod-
ules significantly linked to different pig breeds and cytokines, each showed a significantly
high correlation between GS and MM (Figure 4C–F). Our results identify metabolite mod-
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ules that may directly affect cytokine expression, and these metabolites may contribute
to immune differences in different pig breeds. In addition, KEGG and protein–protein
interaction networks (PPI) interaction network analysis were also conducted to understand
the complete picture of the metabolite functions in the four modules significantly related to
immunophenotype (Supplementary Figures S1 and S2).
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glycerophospholipid acid, and sphingolipid metabolism pathways (Figure 5B). 

 

Figure 4. Weighted gene correlation network analysis (WGCNA) of all metabolites identified from
different pig breeds. (A) Module clustering tree; (B) Phenotypic and modular correlation diagrams;
(C–F) A scatterplot of gene significance (GS) vs. module membership (MM) in the four modules that
showed the closest relationship with phenotypes.

To better understand the function of the relevant metabolites in these four mod-
ules, we first identified the differential metabolites within these modules and performed
KEGG analysis. There were 5, 26, 8, and 9 metabolites differentially expressed in the blue,
turquoise, brown, and yellow modules, respectively (Figure 5A). KEGG enrichment results
showed that the metabolites in blue, turquoise, brown, and yellow modules were mainly
enriched in five pathways, namely linoleic acid, alpha-linolenic acid, arachidonic acid,
glycerophospholipid acid, and sphingolipid metabolism pathways (Figure 5B).

The top KEGG enriched terms in these modules were mainly involved in fatty acid-
related pathways. Interestingly, four metabolites belonging to phosphatidylcholine or
lecithin, named PC (18:1(11Z)/20:0), PC (14:0/P-18:0), PC (18:3(6Z,9Z,12Z)/16:0), and PC
(16:1(9Z)/22:2(13Z,16Z)), and were enriched in these four same pathways and deserve atten-
tion (Table 1). We analyzed the expression abundance (Figure 6B,D,F,H) of these four hub
metabolites and plotted the receiver operating characteristic (ROC) curve (Figure 6A,C,E,G).
The area under the curve (AUC) values of the four hub metabolites were all above 0.8,
with the values of PC (16:1(9Z)/22:2(13Z,16Z)) reaching 1 (Figure 6). Therefore, we think
that these four hub metabolites have high sensitivity and specificity for distinguishing
differences in immunity between the two pig breeds.
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metabolites in the serum of M pigs and LW pigs; red represents M pig, and blue represents LW pig.
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2.4. Metadata Association Analysis of Biomarkers

Confounding factors have an important impact on the accuracy of biomarker anal-
ysis [16]. To investigate this issue, we performed a metadata-wide assessment for every
multi-omic feature detected to investigate the confounding factors (Figure 7). The results
showed that biomarkers (up and down-regulated) are predominantly associated with four
cytokines and the breed of pig.
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Figure 7. Metadata assessment of major biomarkers. The green line indicates a positive correlation,
and the grey lines indicate a negative correlation. The thickness or thinness of the lines indicates
strong and weak correlations between metabolites and phenotypes, respectively. p-values ≤ 0.05
were considered significant; p-values ≤ 0.01 were considered extremely significant. R2 ≥ |±0.5|,
represents strong correlation.

2.5. Correlation Network Analysis to Screen Key Proteins Affecting Cytokine and
Metabolite Expression

In order to know whether proteins could regulate the induction of cytokines, protein-
cytokine interaction network analysis was employed based on differentially expressed
proteins (DEPs) and cytokines. A total of 540 correlations were found between 135 proteins
and 4 cytokines. Among the 540 correlations, 54 were significant (p-value ≤ 0.05, including
30 proteins), of which 33 were negative and 21 were positive, R2 ≥ |±0.5| (Figure 8A).
In order to investigate whether proteins regulate cytokines by affecting the expression of
metabolites, we performed a correlation analysis on 135 proteins and 4 metabolites. A
total of 540 correlations were found between 135 DEPs and 4 metabolites. Among the
540 correlations, 145 were significant (p-value ≤ 0.05, including 97 proteins), of which
88 were negative and 57 were positive, R2 ≥ |±0.5| (Figure 8B). A KEGG enrichment
analysis was used to explore the potential biological functions of the proteins in the correla-
tion network. The 30 proteins from the protein-cytokine network were mainly enriched
in complement and coagulation cascades, Staphylococcus aureus infection, and antigen
processing and presentation (Supplementary Figure S3A). The 97 proteins from the protein-
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cytokine network were primarily involved in cell adhesion, prion disease, staphylococcus
aureus infection, the NF-kappa B signaling pathway, and the complement and coagulation
cascades pathways (Supplementary Figure S3B). These results suggest that these proteins
may play an important role in some diseases or immune responses.
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2.6. Co-Location Analysis of Key DEPs and QTLs

Immune and polyunsaturated fatty acid-related traits from the pig quantitative trait
loci database (QTLdb) were used for QTL co-location analysis of proteins significantly
associated with cytokines and unsaturated fatty acid metabolites (30 and 97 proteins, respec-
tively). We found that 19 of 30 DEPs co-localized with immune-(17 immune-related QTL)
or PUFA-associated QTL (12 fatty acid-related QTL) traits (Figure 9). In addition, 53 of
97 proteins co-localized with immune- (42 immune-related QTL) or PUFA-associated
QTL (45 fatty acid-related QTL) traits (Figure 9) (Supplementary Table S2). Interestingly,
15 proteins were found to be strongly correlated with 4 cytokines and 4 metabolites simul-
taneously in both groups (Supplementary Figure S4). In addition, 12 of 15 DEPs, such
as MBL1, IL1RAP, and PSMB8, co-localized with immune- (10 immune-related QTL) or
PUFA-associated QTL (9 fatty acid-related QTL) traits (Figure 9). Their expression levels
were verified by parallel reaction monitoring (PRM). The results indicate that these proteins
may play an important role in producing or regulating unsaturated fatty acids and immune
factors to regulate the immunity of different pig breeds.

2.7. PRM Validation of Key DEPs

We selected some critical candidate proteins from 112 DEPs, including MGAM, PSMB8,
THBS1, and HABP1, and performed parallel reaction monitoring (PRM) for expression
validation (Figure 10). The results are consistent with the data-independent acquisition
(DIA) results, indicating the reliability and repeatability of the DIA-derived proteomics
results in our study.
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3. Discussion

The economic loss to pig production caused by disease accounts for about 12–15%
of the total output value. Exploring the mechanisms of differential disease resistance in
Chinese local and foreign pig breeds may help us to improve pig health and productivity.
In-depth analysis of serum proteomics and metabolites using “omics” methods can help
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to identify biomarkers that contribute to differences in immunity levels in animals and
study the molecular mechanisms of the pathogenesis, which could be applied to disease
resistance breeding in the future. In our study, PCA analysis results showed that M pigs and
LW pigs could be distinguished, indicating significant differences in metabolites between
them. The OPLS-DA score map is a supervised pattern recognition method, and the results
further suggest that the serum metabolites of M pigs are significantly different from those
of LW pigs, and this warrants further investigation.

Metabolic reprogramming plays an essential role in the development and activation of
immune cells in response to pathogen challenges or environmental changes [17]. Emerging
evidence suggests a key role of metabolic regulation in cytokine release [18–20]. Research
shows that lipopolysaccharide (LPS) induces the release of succinate in macrophages, which
further induces IL-1β production in an autocrine manner [21]. Dietary supplementation
with alpha-ketoglutaric acid induces the production of IL10, which inhibits chronic inflam-
mation and extends life span [22]. Extensive studies have proved that metabolites and
pro-inflammatory cytokines are inextricably linked. In our previous study, cytokines IL6,
IL10, TNFα, and GM-CSF were highly expressed in LW pigs. Thus, we used all metabolites
supplemented with cytokines and pig breeds as phenotypes to construct WGCNA and to
further infer the potential relationship between metabolites and differences in immunity be-
tween different pig breeds. Among the nine modules, a total of four significant correlation
modules were identified. The blue module metabolites were significantly correlated with
four cytokines, indicating a special relationship and the importance of these metabolites in
immunity. Combined with differential metabolite analysis, we identified the metabolite
subsets responsible for the differences in pig breed immunity. A KEGG enrichment analysis
of these differential metabolites showed that these metabolites were generally involved
in lipid metabolism-related pathways. In particular, the metabolites PC(18:1(11Z)/20:0),
PC(14:0/P-18:0), PC(18:3(6Z,9Z,12Z)/16:0), and PC(16:1(9Z)/22:2(13Z,16Z)) participate in
linoleic acid (LA), alpha-linolenic acid (ALA), arachidonic acid (AA), and glycerophos-
pholipid metabolism pathways, suggesting that these four key metabolites have potential
predictive roles in distinguishing immunity differences between pig breeds.

Phosphatidylcholine (PC), also named lecithin, is a lipid class of fundamental biologi-
cal importance, constituting the major structural component of cellular membranes and
as a precursor that mediates essential fatty acid metabolism. Phospholipase A2 (PLA2)
mediates the hydrolysis of phosphatidylcholine at the Sn -2 position on the phospholipid
backbone and is involved in the metabolism of omega-3 and omega-6, also directly yielding
a free AA molecule in one single step [23]. At present, there are few reports about lecithin
being directly involved in disease or the immune response. Phosphatidylcholine is often
used as an important precursor in the metabolism of lysophosphatidylcholine (Lyso PC),
sphingomyelin (SM), and polyunsaturated fatty acids (PUFA). PCs are a major source of
Lyso PC and play an essential role in regulating cellular lipid metabolism and homeostasis
through the Lands cycle. Lyso PC binds to the G protein-coupled receptors (G2A), which
activate MAPK, including ERK1/2, p38MAPK, JNK, and Toll-like receptors, thereby in-
ducing oxidative stress, chemokine expression, and inflammation [24]. In the cis-Golgi
apparatus, sphingomyelin synthase 1 (SMS1) catalyzes the transfer of a phosphorylcholine
group from PC to ceramide to generate sphingomyelin (SM) [25]. SM is transported to the
plasma membrane in vesicles and forms lipid rafts with cholesterol, participating in the de-
velopment of atherosclerosis, cancer, and other diseases [26]. PC is also the main precursor
molecule of arachidonic acid (AA) [27]. As a second messenger, AA is involved in signal
transduction in the physiological processes of different diseases. AA can not only activate
NADPH oxidase and induce oxidative stress, but can also be converted into prostaglandin
D2 or prostaglandin E2 to form compounds with anti-inflammatory properties [28]. All in
all, phosphatidylcholine, as an important precursor, plays an important role in different
types of fatty acid metabolism.

Omega-3 and omega-6 regulate the differentiation of immune cells (B and T cells) [29].
Both cells require abundant nutrients to undergo expansion, proliferation, and differen-
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tiation upon immune challenge [30]. In our KEGG enrichment analysis of differential
metabolites and WGCNA significance modules, multiple fatty acid metabolic pathways
were identified, suggesting that fatty acid metabolism may be related to differences in
immunity between different pig breeds. We found that phosphatidylcholine is strongly
associated with the expression of cytokines and with the breed of pig. In fact, phosphatidyl-
choline acts as a precursor in the metabolism of different types of lipids, most importantly
in the metabolism of polyunsaturated fatty acids (PUFAs). PUFAs are known as special-
ized pro-resolving lipid mediators (SPMs) and are mainly involved in the regression of
inflammation and the promotion of adaptive immunity [31,32]. Arachidonic acid, linoleic
acid, and α-linoleic acid belong to the omega-6 and omega-3 group of polyunsaturated
fatty acids, respectively. Eicosanoids arising from arachidonic acid (omega-6) induce a
pro-inflammatory response via 2-series and 4-series prostaglandin, inflammatory cytokine
(IL6, TNFα), and leukotriene synthesis. ALA (omega-3) is the precursor of eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA) and so is converted into EPA and DHA [33].
EPA and DHA can partly inhibit aspects of inflammation, including leucocyte chemotaxis,
cytokines (IL10), adhesion molecule expression, and leucocyte-endothelial adhesive in-
teractions, and ultimately achieve inflammatory resolution (Figure 11). ARA, EPA, and
DHA are converted into lipid mediators under the catalysis of lipoxygenase, inhibiting the
inflammatory process [34]. Inflammatory resolution or extinction is an important active
stage that is mediated by small molecules that are the products of omega-6 and omega-3
acid metabolism.
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Targeted MS-based protein quantification, such as multiple reaction monitoring
(MRM)-MS and parallel reaction monitoring (PRM)-MS, is the commonly used valida-
tion method in proteomics. In this study, we used PRM technology to quantify some
proteins identified in the correlation network. PRM results confirmed that PSMB8 was
upregulated in LW pigs. The PSMB8 gene encodes an essential subunit of a specialized
immunoproteasome complex. The generated peptides have a higher affinity with major
histocompatibility complex (MHC) I molecules and in turn enhanced antigenicity to CD8+
T cells [35,36]. Interleukin-1 receptor accessory protein (IL1RAP) is an innate immune me-
diator that regulates the activation of pro-inflammatory and mitogenic signaling pathways.
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Because of funding issues, we did not perform PRM analysis on all proteins screened in
the correlation network. However, that does not mean they do not play an important role
in molecular immunity. IL1RAP is involved in three signaling pathways that influence
the expression of many IL-1 family cytokines (IL-1α, IL-1β, IL-33, IL-36β, and IL-36γ) in a
variety of diseases [37]. MBL is a pattern-recognizing serum protein that participates in the
innate immune system of mammals as an opsonin [38]. The antimicrobial function of MBL
includes opsonization, neutralization, and complement activation [39]. MBL1 in pigs and
cattle is considered as a candidate gene for mastitis resistance [40,41]. Our results suggest
that differential expression of these proteins may regulate the secretion of cytokines by
immune cells that are involved in the body’s innate and adaptive immune responses that
maintain homeostasis. In general, under the same growing environment, the physiological
state of M pigs was relatively stable and had stronger tolerance.

4. Materials and Methods
4.1. Subjects and Tissue Collection

We selected 12 piglets from 2 littermates of different pig breeds (Min pig (n = 6) and
Large White (n = 6) from Changping Breeding Pig Farm, Institute of Animal Sciences,
Chinese Academy of Agricultural Sciences). From each litter, piglets were selected based
on their weight at 28 days (the average weight of M pigs was 8 ± 1.52 kg, and LW pigs
was 10.50 ± 1.54 kg), avoiding underweight or overweight individuals. The piglets were
raised for 35 days in the farrowing house and 45 days in the nursery house. The pigs were
raised in the same environment and were fed the same diets. These diets consisted of
2270 kcal/kg net energy, 19.5% crude protein, 2.5% crude fat (the ingredient composition of
diets added in Supplementary Table S3). The average daily feed intake during the feeding
period was 520 g for M pigs and 650 g for LW pigs. The average weight of 80-day-old
M and LW pigs was 25.2 ± 2.3 kg, and 33.4 ± 2.9 kg, respectively. Serum samples were
collected at 80-day-old and stored at −80 ◦C until use.

4.2. LC-MS/MS for Analysis of Metabolomics

A Dionex ultimate 3000 ultra-high-performance liquid chromatographic (UPLC) system
was used to perform the chromatographic separation. One microliter of the sample was
injected into a Thermo Syncronis C18 column (1.7 µm, 2.1 mm × 100 mm) under a flow
rate of 0.3 mL/min at 35 ◦C). The mobile phases consisted of 0.1% formic acid and 2 mmoL
ammonium formate in water (mobile phase A) and acetonitrile (mobile phase B). The gradient
elution conditions were performed as follows: 0−1 min, 95−40% A; 5−8 min, 40−0% A;
8−11 min, 0% A; 11−14 min, 0−40% A; 11−15 min, 40−95% A; and 15−18 min, 95% A.
A random order was adopted for continuous analysis of samples to avoid the influence of
instrument detection signal fluctuation.

4.3. Mass Spectrometry Conditions

Both negative and positive ionization modes were selected using the electrospray
ionization (ESI) interface. The electrospray voltage was 2.8 kV, the sheath gas flow rate was
35 arb, the auxiliary gas flow rate was ten arb, and the capillary temperature was 320 ◦C.
The resolution of the full scan was 70,000, and the scanning range was 70~1050 (m/z). For
the second-level data dependence scan (Full MS/DD-MS), the resolution was 17,500, and
the stepped NCE values were 20, 40, and 60 V.

4.4. Data Quality Control and Pre-Processing

Highly consistent data processing pipelines and analytical methods are used to improve
the accuracy of metabolomics studies. TraceFinder 3.2.0 software was used to process the
original data to obtain a data matrix, with information including retention time and peak
intensity. A support vector regression method was used to correct filtered peaks. All detected
ions were normalized based on the relative intensity between the area of the detected feature
and the area of the QC samples (equation: area[feature]/area [QC]). In addition, variables



Int. J. Mol. Sci. 2023, 24, 5924 13 of 16

with a relative standard deviation (RSD) of ≥30% for QC samples were removed. Log10
converted data were used to obtain the data matrix for subsequent analysis.

4.5. Identification of Differential Expressed Metabolites (DEMs) and Related Pathway

Differential metabolites were identified based on variable importance in projection
(VIP) ≥ 1 (generated by the OPLS-DA model) and p-value ≤ 0.05. Differential metabolites
were mapped into the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database (http://www.kegg.jp/kegg/pathway.html, accessed on 8 November 2022) to
analyze their metabolic pathways.

4.6. Construction of the Data-Independent Acquisition (DIA) Spectral Library and Library Searches

This was as described in our previous study [4].

4.7. Identification of High-Confidence Biomarkers Based on Machine Learning EFS

The ensemble feature selection (EFS) approach, which can reduce the biases of any
individual feature selection method, was implemented in R using the EFS package [42]. The
EFS approach combines MWU tests, logistic regression, Pearson and Spearman correlations,
and two random forest algorithm implementations (forest and random forest) into a single,
rankable score. The average score from both binary comparison analyses ultimately ranked
the biomarkers.

4.8. Screening of Candidate Biomarkers

The differential metabolite data from the Large White and Min pigs were imported
into GraphPad Prism 7.0 software to draw the receiver operating characteristic (ROC) curve.
The ROC curve was plotted at each point with the true positive rate (TPR, sensitivity) as
the ordinate and the false positive rate (FPR) as the abscissa, and then, the area under the
curve (AUC) was calculated. An indicator biomarker group distinguishes between two
groups, usually between 0.5 and 1.0, and the larger the area, the better the prediction. A
metabolite with AUC > 0.7 is considered to have high predictive effect on disease and can
be used as a potential biomarker for further study.

4.9. Weighted Gene Correlation Network Analysis (WGCNA) for the Determination of
Critical Modules

The WGCNA R-package was used for co-expression network analysis. Screening
modules are significantly related to pig breed phenotype. The Pearson method was used to
calculate the correlation coefficients between genes. The adjacency matrix was transformed
into the topological overlapping matrix (TOM), and hierarchical clustering was used to
generate a hierarchical clustering tree of genes. Gene significance (GS) and modular
significance (MS) were calculated to measure the importance of genes and pig breed and to
analyze the significant association between modules and models.

4.10. Construction of the Protein–Protein Interaction Networks (PPI) Network

The metabolite data in the core module was uploaded to the search tool STRING (http:
//string-db.org, accessed on 11 November 2022) to search for interacting genes/proteins.
The node and edge information exported as a .txt file and visualized using Cytoscape
software (http://cytoscape.org/, version 3.7.2, accessed on 11 November 2022). The cy-
toHubba plugin was used to analyze degree scores, and the metabolites with the highest
score were used to build the PPI sub-network.

4.11. KEGG Enrichment Analysis of Metabolomics Data

MetaboAnalyst (https://www.metaboanalyst.ca/, accessed on 11 November 2022) was
used to perform KEGG enrichment analyses for differentially expressed metabolites (DEMs).
KEGG pathways with corrected; p-values ≤ 0.05 were considered significantly enriched.

http://www.kegg.jp/kegg/pathway.html
http://string-db.org
http://string-db.org
http://cytoscape.org/
https://www.metaboanalyst.ca/
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4.12. Correlation Analysis between the Proteins and Metabolites

OmicStudio tools (https://www.omicstudio.cn/tool, accessed on 14 November 2022)
were used to calculate the correlation of continuous data between differentially expressed
proteins and four metabolites based on Pearson correlation (p-value ≥ 0.05: no marks;
p-value ≤ 0.05 represents significant correlation; p-value 0.05, representing extremely
significant correlation). The yellow dashed line indicates a positive correlation, and the
blue and gray dashed lines indicate a negative correlation. The judgment interval for strong
or weak correlation is as follows: R2 ≥ |0.5|, represents strong correlation; R2 =|0.3~0.5|,
represents moderate correlation; R2 =|0.1~0.3|, represents low correlation.

4.13. Differentially Expressed Proteins (DEPs) and QTL Co-Location Analysis

A total of 35,846 QTLs from 773 publications containing 693 phenotypic traits were
collected in the current release of the Pig QTLdb (https://www.animalgenome.org/cgi-
bin/QTLdb/SS/index, accessed on 16 November 2022). DEPs overlapped with QTLs in
the pig QTLdb, and previous reports of the immune trait were used to screen the DEPs for
the candidate genes associated with a pig’s adaptive immunity.

4.14. Parallel Reaction Monitoring (PRM) Analysis

The peptide digests of serum were separated and analyzed using Easy nLC 1200 and Q-
Exactive HFX, respectively. The target protein data were imported into Skyline 4.1 software
to obtain the chromatographic peak comparison for each peptide in different samples. The
raw file was imported into the original DDA data by MaxQuant software v2.3.1.0 to screen
the matching peptides with high ionic strength and fewer heteropeaks. Database retrieval
parameters were as follows: missed cleavage was set to 0 and the reliability of the peptide
was greater than 95%. Finally, the database search results were imported into Skyline 4.1
software to compare the selected candidate peptides.

4.15. Statistical Analysis

Principal component analysis (PCA) was performed using MetaboAnalyst 5.0 (https:
//www.metaboanalyst.ca/, accessed on 16 November 2022). Orthogonal projections to
latent structures discrimination analysis (OPLS-DA) and variable importance in projection
(VIP) values were generated using MetaboAnalyst R. Fisher’s exact test was applied to
identify the significant KEGG pathways, p-value ≤ 0.05.

5. Conclusions

In conclusion, in this study, we screened four core metabolic pathways, four key
metabolites, and 15 key proteins that affect molecular immunophenotypes (cytokines).
Some metabolites, such as PC(18:1(11Z)/20:0), PC(14:0/P-18:0), PC(18:3(6Z,9Z,12Z)/16:0),
and PC(16:1(9Z)/22:2(13Z,16Z)), may be critical biomarkers for immune responses and are
expected to be helpful for future breeding of disease-resistant pigs. Fifteen key proteins,
including PSMB8, MBL1, and IL1RAP, may play an important role in the production or
metabolism of unsaturated fatty acids and immune factors.
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