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Abstract: Gomesin is a cationic antimicrobial peptide which is isolated from the haemocytes of the
Brazilian tarantula Acanthoscurria gomesiana and can be produced chemically by Fmoc solid-phase
peptide synthesis. Gomesin exhibits a range of biological activities, as demonstrated by its toxicity
against therapeutically relevant pathogens such as Gram-positive or Gram-negative bacteria, fungi,
cancer cells, and parasites. In recent years, a cyclic version of gomesin has been used for drug design
and development as it is more stable than native gomesin in human serum and can penetrate and
enter cancer cells. It can therefore interact with intracellular targets and has the potential to be
developed as a drug lead for to treat cancer, infectious diseases, and other human diseases. This
review provides a perspective on the discovery, structure–activity relationships, mechanism of action,
biological activity, and potential clinical applications of gomesin.
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1. Introduction

Multidrug-resistant bacteria, also known as superbugs, have become a serious hazard
to public health, and antimicrobial resistance has been declared to be one of the top
ten global public health threats facing humanity. The social and economic impact of
antimicrobial resistance is huge because of prolonged hospital stays and the need for
expensive medications [1,2]. For example, there are more than 2.8 million antibiotic-resistant
infections and more than 35,000 deaths each year in the United States [3]. As a result of
resistance, traditional antibiotics are becoming increasingly ineffective, necessitating the
development of better antimicrobial alternatives. In addition to existing treatment strategies,
such as using conventional antibiotics used to target protein synthesis [4], antimicrobial
peptides (AMPs) are thought to be a feasible alternative for eliminating multidrug-resistant
bacteria because their mode of action differs from that of currently available antibiotics; they
disturb cell membrane integrity [5,6], impede protein [7–11] and cell wall formation [12–15],
and alter enzyme function [10,16,17]. AMPs can be used for simultaneous or subsequent
treatments in many bacterial illnesses as they have independent therapeutic efficacies and
fewer adverse effects than conventional antibiotics [18].

AMPs are found throughout nature and play a vital role in the innate immune systems
of many species. They have a wide spectrum of biological activities (e.g., antimicrobial,
antifungal, antiparasitic, and antiviral properties) and a wide range of secondary structures,
as highlighted in Figure 1 [19]. With rising numbers of drug-resistant bacteria and an
increasing awareness of the misuse of antibiotics, AMPs are being considered as alternative
antimicrobial therapies and are a major focus of research across the world, with promising
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applications in health, food, animal husbandry, agriculture, and aquaculture. Mammals,
amphibians, microbes, and insects are the main source of AMPs, according to statistics
reported by Duwadi et al. [20]. AMPs discovered in aquatic animals (e.g., tachyplesin from
Tachypleus tridentatus and magainin from Xenopus laevis) and terrestrial animals (e.g., an-
droctonin from the scorpion Androctonus australis, and protegrins from porcine leukocytes)
have also received much interest [21].

Figure 1. Classification of AMPs. Schematic representation of sources, activities, and structures
of AMPs.
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Several classes of insect AMPs have been reviewed recently [22]. The current report fo-
cuses on a β-hairpin peptide known as gomesin (Gm), which is still relatively understudied.
This 18-amino-acid antimicrobial peptide is isolated from the haemolymph of the tarantula
spider, Acanthoscurria gomesiana, and inhibits bacterial growth as well as the development
of filamentous fungus and yeast [23]. Apart from its antimicrobial activity, its cytotoxicity
to cancer cells gives Gm anticancer properties. Given some of the drawbacks of current
anticancer chemotherapy, including substantial side effects and/or the development of
drug resistance, there is interest in exploring gomesin as an anticancer drug. To date, there
are many anticancer drugs on the market, but only 10% are in the peptide category [24,25].
Since peptides are generally considered a safer alternative than traditional cytotoxic drugs,
they have recently gained interest as potential anticancer therapeutics.

Since the discovery of Gm in 2000 [23], it has undergone more than 20 years of research,
as summarised in Figure 2. To begin to understand its functions, the first three-dimensional
solution structure of gomesin (PDB ID: 1KFP) was reported in 2002 [26], which was followed
by a structure–activity relationship study in 2006 [27]. From 2007 to 2018, a range of
bioactivities of Gm were characterised (including anticancer and antimalarial activities),
and the chemical synthesis of a series of analogues with various chemical modifications
were reported, including those involving amino acid mutations [28], with/without disulfide
bonds [29], and backbone cyclization [30]. The first backbone cyclization study on gomesin
was reported in 2013 and included a three-dimensional structure of the cyclic form [31].
Several structure–activity studies based on cyclic gomesin were reported thereafter, with a
focus on optimizing antimicrobial and anticancer properties of cyclic gomesin analogues.

Figure 2. Historical timeline of gomesin studies. Key milestones in understanding the structure and
activities of gomesin are indicated. Abbreviation: SAR: structure–activity relationship.

2. Discovery, Synthesis and Structural Characterization of Gomesin

Figure 3 schematically illustrates the steps involved in the isolation and structural
characterization of gomesin. Through initial peptide sequencing and structural charac-
terization, gomesin was reported to comprise 18 amino acids, including a pyroglutamic
acid residue at the N-terminus, an amidated arginine at the C-terminus, and 4 cysteine
residues that form 2 disulfide linkages (ZCRRLCYKQRCVTYCRGR-NH2), and with a
molecular weight of 2270.4 Da [23]. In that first study Edman degradation was performed
to determine the peptide sequence, but more recent studies of peptides typically use MS
based peptide sequencing.
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Figure 3. Schematic illustration of the isolation of Gm from spiders, hemolymph collection, and
peptide extraction and purification. (A) Hemolymph collection from a spider is typically performed in
sodium citrate buffer (pH 4.6). (B) Hemocytes are collected from the hemolymph. (C) Concentration
and pyrolysis steps are done using vacuum centrifugation. (D) Solid phase extraction using pre-
purified supernatant from ultrasonic treatment is then applied. (E) Aquapore RP-300 C8 column
for peptide elution. (F) Further purification of the active peptide through high performance liquid
chromatography-size exclusion column (HPLC-SEC1) completes the process [23].

While many early studies of gomesin involved the use of natively isolated peptide,
the development of synthesis methods to make gomesin was important for establishing
structure–activity relationships. In general, currently marketed therapeutic peptides, or
those made for laboratory studies, are typically produced by either chemical synthesis
or recombinant DNA technology [32]. So far solid-phase peptide synthesis (SPPS) is the
most used method to produce Gm [27]. Using Fmoc (fluorenyl methoxycarbonyl) based
protection chemistry, peptides are typically assembled from the carboxyl terminus (an
amidated C-terminus in the case of gomesin) to the amino terminus (N-terminus with a
pyro-glutamic acid residue in the case of gomesin) of the amino acid chain. By contrast, in
a natural cell environment, peptides are synthesised from the N- to the C-terminus [33].

The amidated C-terminal arginine residue of gomesin has been reported to be im-
portant for minimizing enzymatic degradation, improving peptide stability, and with the
potential to enhance antimicrobial activity due to the protonation of the sidechain of this
C-terminal residue [20,34]. It is thus of interest to explore the prevalence of this charged
C-terminal motif in other AMPs. Figure 4 shows a comparison of Gm with antimicrobial
peptides from other arthropods (e.g., tachyplesin-I [35,36], polyphemusin-II [37], androc-
tonin [38]) and porcine leukocyte families (e.g., protegrin-I [39]) and reveals high sequence
and structural similarity. These peptides all comprise antiparallel β-sheets which contribute
to their high stability profiles [40]. It is noteworthy that the N- and C-termini of these pep-
tides are close to each other, leading to the possibility that they could be joined chemically
to produce cyclic derivatives, as described later in this article.
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Figure 4. Structures and sequence alignment of β-hairpin AMPs. (A) Natural sources from which
listed peptides were first identified: gomesin was isolated from the spider Acanthoscurria gomesiana;
tachyplesin-I from the horseshoe crab Tachypleus tridentatus; polyphemusin-II from the horseshoe
crab Limulus polyphemus; androctonin from the scorpion Androctonus australis; protegrin-I from the
porcine leukocytes (Sus domesticus). (B) Ribbon representation of the β-hairpin-like structure of Gm
(PDB ID: 1KFP), tachyplesin (PDB ID: 2RTV), polyphemusin (PDB ID: 1RKK), androctonin (PDB ID:
1CZ6), and protegrin (PDB ID: 1PG1). Disulfide bonds are represented as yellow sticks. (C) Surface
representations of Gm, tachyplesin-I, polyphemusin-II, androctonin, and protegrin-I. Non-polar
(hydrophobic), polar, and positively charged residues are shown in green, pink, and blue, respectively.
(D) Sequence alignment and total amino acid (a.a) content of Gm, tachyplesin-I, polyphemusin-II,
androctonin, and protegrin-I. Cysteine residues are highlighted by a grey box, and disulfide bond
connectivities (Cys I-IV, and Cys II-III) are shown in thick black lines. *: There is more than one
variant of this peptide [35–40].

The procedures for determining the structures of gomesin [23,26] and related peptides
are shown in Figure 5. For gomesin, capillary zone electrophoresis was used to separate
peptides in a haemolymph extract, and masses were confirmed by MALDI-TOF mass spec-
trometry (Figure 5A,B). Enzyme digestion and alkylation steps were performed on purified
peptides followed by amino acid sequencing for sequence confirmation (Figure 5C–E). Two-
dimensional (2D) proton NMR (Figure 5F,G) was used to confirm the peptide sequence and
3D overall structure. It was found that the global fold of gomesin is made up of two an-
tiparallel β-strands joined by a four-residue non-canonical turn (Figure 5B). The β-strands
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are connected by two interchain disulfide bonds, and six interchain skeleton-framework
hydrogen bonds further stabilise the overall structure [41]. Both disulfide bonds adopt a
right-handed conformation with a twist angle close to the low-energy conformation found
in disulfide bonds bridging antiparallel β-strands, which is similar to other antimicrobial
peptides [27].

Figure 5. Structural characterization workflow. (A) Capillary zone electrophoresis. (B) MALDI-TOF-
MS and electrospray ionization mass spectrometry. (C) Reduction and alkylation steps. -HS (thiol
groups; dithiothreitol was used to reduce disulfide bonds) and -IAA (iodoacetamide was used for
alkylation). (D) Trypsin digestion step. (E) Amino acid sequencing. (F) NMR spectrometer. (G) NMR
two-dimensional (2D) spectrum [23,26].

Detailed analyses of the disulfide bond geometries, β-hairpin geometries, charges,
and bioactivities for a selection of β-hairpin peptides are given in Table 1. The Cysα-Cysα
distances across the two disulfide bonds in gomesin are 0.38 ± 0.10 nm (Cys6-Cys11)
and 0.37 ± 0.10 nm (Cys2-Cys15). These distances are much shorter than typical Cα-Cα

distances connecting other secondary structure motifs or β-sheet disulfide bonds, which
is more than 0.45 nm, as found in larger, more spherical peptides/proteins. This short
Cysα-Cysα distance is thus a useful marker for high stability.

The amphiphilic nature of Gm is another feature commonly shared by other AMP/
anticancer peptides. The stable β-hairpin-like structure of Gm, as well as its positively
charged and amphiphilic properties, make it highly potent with selectivity to certain cancer
cell types, such as melanoma or chronic myeloid leukaemia cells [42]. Based on these
findings and the proximity of the termini in gomesin, cyclic gomesin (cGm) has been
used as a scaffold for drug design. It comprises a cyclic version of the native Gm with a
backbone joined at the N- and C- terminus via the addition of a glycine linker residue [31].
Its structure, shown in Figure 6, has been determined and the cyclic peptide has been
shown to be more stable than its linear counterpart. It enters cancer cells via a mechanism
modulated by electrostatic interactions between its positively charged surface exposed
residues [42,43], illustrated in Figure 6, and the negatively charged phospholipids at the
outer layer of cancer cell membranes.
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Table 1. Structural properties of antimicrobial peptides with β-hairpin-like structure.

Antimicrobial
Peptides Function/Activity Disulfide

Connectivity
Cysα-Cysα

Distances (nm) Types of β-Sheets Total Net Charge

gomesin Antimicrobial,
anticancer

Cys2-Cys15,
Cys6-Cys11

0.37 ± 0.10,
0.38 ± 0.10
(<0.45) [41]

right-handed
rotamer,

antiparallel
β-sheets

+6

tachyplesin-I
Antimicrobial,
antifungal, and

anticancer

Cys3-Cys16,
Cys7-Cys12

0.43 ± 0.20,
0.39 ± 0.20 [40]

right-handed
rotamer,

antiparallel
β-sheets

+6

polyphemusin-II Antimicrobial and
antifungal

Cys4-Cys17,
Cys8-Cys13

0.43 ± 0.50,
0.37 ± 0.10 [40]

right-handed
rotamer,

antiparallel
β-sheets

+7

androctonin
Inhibits the growth
of Gram-positive

bacteria

Cys4-Cys20,
Cys10-Cys13 n.a.

right-handed
rotamer,

antiparallel
β-sheets

+8

protegrins-I Antimicrobial and
antifungal

Cys6-Cys15,
Cys8-Cys13

0.38 ± 0.30,
0.35 ± 0.10 [40]

right-handed
rotamer,

antiparallel
β-sheets

+6

n.a., not available; Cys: cysteine.

Figure 6. Structures of Gm and cGm. (A) Ribbon representation of the β-hairpin structure of Gm
with disulfide bonds highlighted in yellow. PDB structure ID: 1KFP. (B) Surface representation of Gm.
Non-polar (hydrophobic) residues are shown in green, polar residues in pink, and positively charged
residues in blue. (C) A schematic view of Gm sequence. (D) Three-dimensional structure of cGm.
Disulfide bonds are represented with yellow ball and sticks, and two antiparallel β-sheets are shown
in purple. BMRB ID: 17986. (E) Surface representation of cGm. Non-polar (hydrophobic) residues are
shown in green, polar residues in pink, and positively charged residues in blue. (F) A schematic view
of cGm sequence. Positively charged residues are indicated with a ‘+’ symbol, hydrophobic residues
are indicated with a ‘Φ’ symbol on (A,D).



Int. J. Mol. Sci. 2023, 24, 5893 8 of 15

3. Chemical Methods to Derive Structure–Activity Relationships

Establishing SAR within a peptide family is a basis for designing peptides with higher
potency and selectivity against bacteria or cancer cells than native peptides alone [41]. The
majority of Gm SAR investigations have focused on the role of disulfide bonds on biolog-
ical activity and conformation [27], as well as the influence of hydrophobicity or charge
alterations on membrane binding, cleavage, or cytotoxic action [41]. Approaches that have
been applied include substituting cysteine residues with serine or tyrosine, adding Acm
protecting groups on cysteine residues, creating lactam mono or bicyclic analogues [27], and
the use of cysteine-free analogues. Some of these approaches improved the antimicrobial
activity, and others confirmed that the disulfide bridges are required to maintain β-hairpin
structure and bioactivity of Gm [44]. Figure 7 summarises amino acid modifications to
cGm that have been reported and are more stable than native Gm [23,27,31,42,45–50].

Figure 7. Residue modifications of Gm and cGm analogues. (A) Gm sequence with modified residues.
(B) cGm sequence with modified residues. The coloured circles represent modified residues. The
two disulfide bonds in each peptide are shown (yellow). Three residues replacement are highlighted
with a green circle and four residues replacement are highlighted with a purple circle. A, alanine;
B, diaminopropionic acid; C, cysteine; D, aspartic acid; E, glutamic acid; F, phenylalanine; G, glycine;
I, isoleucine; K, lysine; L, leucine; N, asparagine; O, ornithine; Q, glutamine; R, arginine; S, serine;
T, threonine; U, selenocysteine; V, valine; W, tryptophan; Y, tyrosine.

4. Biophysical Studies to Elucidate the Mechanism of Action Gomesin on Bacterial
and Mammalian Cell Membranes
4.1. Membrane Binding and Peptide–Lipid Interactions

Most AMPs, including Gm, exert their cytotoxic effects via membrane permeabiliza-
tion. Since membrane binding is required for permeabilization, researchers have investi-
gated the binding of Gm and its variants to cell membranes using a range of techniques [41].
The cytoplasmic membrane is widely established to be a target of cationic AMPs. Typically,
such cationic AMPs interact with negatively charged phospholipid head groups and enter
the cell via direct membrane permeation [32]. Thus, like most other AMPs, Gm has a higher
binding affinity and specificity for negatively charged bacterial membrane surfaces [31].

4.2. Permeabilization of Cell Membranes and Leakage Activity

Gm permeabilises cell membranes, as has been demonstrated with membrane leakage
experiments using lipid vesicles, bacteria, yeast, and cancer cells [42]. Gm seems to perme-
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abilise membranes via a lipid-dependent process without the participation of cell surface re-
ceptors or other membrane proteins found in the plasma membrane [51,52]. This membrane
permeabilization has also been used to investigate Gm activity and selectivity on certain
cancer and/or bacterial cells [53]. Gm induced LDH release in a concentration-dependent
manner on murine melanoma cells (B16F10) [45], human neuroblastoma cells (SH-SY5Y),
and rat pheochromocytoma cells (PC12) [54], confirming disruption of cell membranes.

5. Modifications of Gm and cGm

The design of new Gm and cGm analogues is an emerging topic in the field of β-
hairpin peptides. In an early study, Fazio et al. [27] were interested in the structure-activity
relationships of Gm and noted that monocyclic disulfide-bridged analogues exhibited
different antimicrobial activities. More recently, Henriques et al. [42] focused on cGm-
modified analogues and reported several that had higher toxicity against melanoma and
leukaemia cells than cGm itself. Most recently, Nadal-Bufi et al. used cGm as a scaffold
to design grafted analogues [49]; the grafted peptides potently inhibited the enzymatic
activity of LDH, a biomarker for many cancers that is involved in altered metabolism
and tumour proliferation. Some recent examples from the studies of Henriques et al. [42]
and Nadal-Bufi et al. [49] with applications to anticancer and antimicrobial activities are
summarised in Table 2.

Table 2. Examples of Gm and cGm analogues with anticancer or antimicrobial activities.

Peptide Applications CC50/IC50/MIC * References

gomesin anticancer,
antimicrobial,
antifungal

K-562; 3.8 ± 0.3 µM
E. coli ATCC 25922; 4 µM
C. albicans ATCC 90028; 8–16 µM

[42]

cyclic gomesin anticancer,
antimicrobial,
antifungal

K-562; 2.7 ± 0.1 µM
E. coli ATCC 25922; 4 µM
C. albicans ATCC 90028; 4–8 µM

[42,49]

[Y7W]cGm
anticancer
antimicrobial

K-562; 3.9 ± 0.2 µM
E. coli ATCC 25922; 1–2 µM [42,49]

[Y14W]cGm
anticancer,
antimicrobial

K-562; 2.7 ± 0.1 µM
E. coli ATCC 25922; 1–2 µM [42]

[K8R]cGm
anticancer,
antimicrobial

K-562; 3.1 ± 0.1 µM
E. coli ATCC 25922; 1–2 µM [42]

[Y7W,K8R,Y14W]cGm
anticancer,
antimicrobial

K-562; 3.9 ± 0.1 µM
E. coli ATCC 25922; 1 µM [42]

[R4A,R18A]cGm anticancer,
antimicrobial,
antifungal

K-562; 11.5 ± 0.6 µM
E. coli ATCC 25922; 8 µM
C. albicans ATCC 90028; 32 µM

[42]

[G1K,K8R]cGm anticancer,
antimicrobial,
antifungal

K-562; 2.1 ± 0.2 µM
E. coli ATCC 25922; 0.5–1 µM
C. albicans ATCC 90028; 2 µM

[42]
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Table 2. Cont.

Peptide Applications CC50/IC50/MIC * References

[C/U]cGm anticancer,
antimicrobial,
antifungal

K-562; 1.4 ± 0.2 µM
E. coli ATCC 25922; 4–8 µM
C. albicans ATCC 90028; 4–8 µM

[42]

[L5W]cGm
anticancer,
antimicrobial

K-562; 1.0 ± 0.1 µM
E. coli ATCC 25922; 2–4 µM [42]

[DPLP]cGm anticancer,
antimicrobial,
antifungal

K-562; 3.9 ± 0.2 µM
E. coli ATCC 25922; 4 µM
C. albicans ATCC 90028; 8 µM

[42]

[G1K,L5Y,K8R]cGm anticancer,
antimicrobial,
antifungal

K-562; 1.3 ± 0.1 µM
E. coli ATCC 25922; 0.5–1 µM
C. albicans ATCC 90028; 4 µM

[42]

[C/U,G1K,L5Y,K8R]cGm anticancer,
antimicrobial,
antifungal

K-562; 6.4 ± 0.6 µM
E. coli ATCC 25922; 1–2 µM
C. albicans ATCC 90028; 4 µM

[42]

cGmC4
anticancer LDH5 inhibitor; 27.3 µM [49]

cGmC5

anticancer LDH5 inhibitor; 24.0 µM [49]

cGmN5

anticancer LDH5 inhibitor; >40 µM [49]

cGmN6

anticancer LDH5 inhibitor; 41.4 µM [49]

cGmC6

anticancer LDH5 inhibitor; 10.4 µM [49]

cGmC7

anticancer LDH5 inhibitor; >40 µM [49]

cGmC8

anticancer LDH5 inhibitor; 24.8 µM [49]

cGmC9

anticancer LDH5 inhibitor; 2.5 µM [49]

cGmC10

anticancer LDH5 inhibitor; >40 µM [49]
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Table 2. Cont.

Peptide Applications CC50/IC50/MIC * References

cGmC11
anticancer LDH5 inhibitor; 4.5 µM [49]

Fonts in red represent amino acid replacement; Z, pyroglutamic acid; U, selenocysteine; p, D-proline. * Selected
examples for each application.

6. Biological Activity of Gomesin and Analogues
6.1. Antimicrobial Activity

Gm, cGm, and analogues exhibit strong activity against almost all Gram-negative
bacteria tested (e.g., Escherichia coli, Pseudomonas aeruginosa, Salmonella, and Klebsiella pneu-
moniae) and some Gram-positive, including Staphylococcus aureus [23,27,31,42,47] in plank-
tonic state. Recently, the [G1K,R8K] cGm analogue was shown to also display against
biofilms of Staphylococcus aureus [50]. The antimicrobial potency of Gm and analogues is
thought to be modulated by several structural properties, including: (i) double-stranded
antiparallel-sheet structure; (ii) disulfide connectivity; and (iii) amphipathic properties and
overall charge. Alterations in the peptide sequence modifying these properties typically
changes the antimicrobial potency [27,42,50,55].

6.2. Anticancer Activity

Data from a range of tested cancer cell lines suggest that Gm has anticancer activity [42],
but displays selectivity for certain types of cancers, as it is more effective against melanoma
cell lines (e.g., MM96L; the concentration required to induce cytotoxicity to 50% of cells
(CC50) is 5.5 ± 1.1 µM) and against chronic myeloid leukaemia cells (i.e., K562; CC50 is
5.5 ± 1.1 µM) compared to other cancer cell lines (e.g., CC50 of 72.7 ± 1.5 µM against
cervical cancer cells HeLa). The capacity of Gm to selectively target and disrupt negatively
charged cancer cell membranes appears to be linked to its anticancer activity, but other cell
membrane properties seem to further improve sensitivity towards melanoma and chronic
myeloid leukemia [42].

cGm is a stable peptide that targets and enter cancer cells with higher efficacy than
well-characterized cell-penetrating peptides such as TAT. cGm binds to the cell mem-
brane via electrostatic interactions between positively charged peptides and negatively
charged phospholipid head groups exposed on the cell surface; it enters cells via endocytic
mechanisms and direct membrane penetration [43]. The analogue, [R/r] cGm, where
the fourth (R4), tenth (R10), and eighteenth (R18) arginine residues were replaced with
the enantiomeric residue, D-arginine [43], retains the capacity to bind with high affinity
to negatively charged lipid membranes; it enters cancer cells and has the advantage of
being non-membrane disruptive and non-toxic against tested cell lines [43]. Based on
these findings, [R/r] cGm would be an excellent scaffold to target and deliver therapeutic
compounds into cancer cells while causing minimal harm to healthy cells.

6.3. Antiprotozoal Activity

In addition to antimicrobial and anticancer activities, Gm has antiprotozoal activity.
Specifically, Gm has activity against epimastigote forms of Trypanosoma cruzi, two flag-
ellate protozoa (i.e., Leishmania amazonensis and Leishmania mayor) and against ookinetes
of plasmodium [48]. Its anti-parasitic mechanism is likely to involve permeabilization of
cell membranes, as suggested in a study by Moreira et al. with Plasmodium falciparum and
P. berghei [48]. Furthermore, in an in vivo mode, Gm was found to have the ability to inhibit
the growth of oocysts of Plasmodium falciparum and P. berghei species in Anopheles stephensi
mosquitoes [48]. Given the increasing resistance of plasmodium parasites to commonly
used drugs and the resistance of mosquitoes to insecticides [48], Gm was proposed as a
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promising anti-plasmodium candidate and an excellent candidate for transmission blockers
of mosquito genetic engineering [32].

The cyclic derivative, cGm, displays higher anti-parasitic potency than linear Gm, as
shown by the work of Moreira et al. [48] and Chan et al. [31]. For example, Chan et al.
demonstrated higher anti-parasitic activity for cGm when tested on the chloroquine-
resistant W2 strain of P. falciparum [31]. Once again, this illustrates that the backbone
cyclization of gomesin is a convenient and efficient way to improve its properties for
pharmaceutical applications.

6.4. Therapeutic Efficacy and Safety Profile on Human Red Blood Cells

Gm has some toxicity to human red blood cells (16% haemolysis at 1 µM) [23]; however,
this undesired activity can be reduced or eliminated by structural modification, while
increasing the desired activity (e.g., antimicrobial activity) and thereby the therapeutic
index. For instance, cGm is less haemolytic than Gm [31], which means the therapeutic
index of cGm is greater than native Gm. Moreover, the disulfide bonds of Gm have been
shown to play an important role in haemolytic activity, and the removal of one or two
bridges reduces the haemolytic activity of both linear and monocyclic analogues [27].

7. Future Outlook and Conclusions

The applications of natural peptides as therapeutics have in the past been hampered by
their poor pharmacokinetic features, since they have a low capacity to traverse physiological
barriers and are rapidly destroyed by digestive enzymes [56,57]. Furthermore, when
compared to traditional small molecule drugs, peptides are potentially more expensive to
produce chemically, and may not be as stable [57,58]. However, Gm is a unique type of
AMP with some useful advantages. It is naturally produced in spiders but is expressed in
limited amounts. Therefore, optimizing its chemical synthesis yield is important for the
future scalable production for pharmaceutical applications. Due to its relatively small size
(i.e., only 18 aa residues), large-scale production may be feasible at a low cost. Overall,
the benefits and multifunctional biological properties of Gm and its derivatives suggest a
promising future in pharmaceutical applications.

cGm offers several benefits over Gm. For example, some analogues have been devel-
oped with greater specificity against microorganisms than human red blood cells [32], so
they can exert antimicrobial effects without haemolysis. The most notable consideration is
that cGm is a more stable and less toxic analogue than Gm. This enhanced analogue has
better capability to enter cancer cells and can be employed as a scaffold for designing new
anticancer peptide therapeutics [43].

It has been more than two decades since the initial discovery and isolation of Gm;
however, it is still mainly involved in preclinical stages, indicating more in vivo model
research is needed to achieve further progression as a lead for microbial infections or cancer
treatments [41]. Some peptides, similar in structure to Gm, have progressed into clinical
trials or are on the market as anti-infectious peptide drugs. For example, IntraBiotics
Pharmaceuticals (IBPI), a US-based company, produced a synthetic version of protegrin
called Iseganan (IB367, protegrin IB367), which is a new generation of antimicrobial for
the prevention and treatment of major infectious illnesses. Protegrin is a small soluble
β-hairpin peptide derived from swine leukocytes. IBPI reported the successful comple-
tion of a Phase II clinical investigation of Iseganan as a mouthwash for the prevention
and treatment of oral mucositis. Currently, it is in Phase III clinical trial (clinical trial ID:
NCT00022373) under investigation for head and neck cancer patients who received radio-
therapy [59,60]. Iseganan also entered Phase I clinical trials as an aerosol for the treatment
of respiratory infections in cystic fibrosis patients [32]. Based on this example, apart from
its antimicrobial activity, Gm could be used to target respiratory diseases in the future
since ongoing pandemic diseases, such as COVID-19, have not been fully resolved, and
complications include pneumonia and severe lung inflammation. Current major preclinical
studies on Gm have been heavily focused on antimicrobial, antiprotozoal, and anticancer
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applications. Other applications, such as respiratory diseases, wound healing and skin
infections, intestine infection, and inflammation, could be further explored to maximize its
success in progressing to clinical stages.

Gomesin could also be further improved for future drug delivery purposes depending
on the desired route of administration and treatments needed in actual clinical settings. For
example, chemical strategies such as N-methylation could be employed to enhance oral
bioavailability if an oral administration route is required [61]. Other chemical strategies,
such as lipidation, PEGylation, and albumin fusion, could play a role in the half-life
extension of biopharmaceuticals such as gomesin [62].

In conclusion, this review has provided an in-depth analysis of gomesin in terms of its
discovery, structure–activity relationships, and mechanisms of action. Future studies on this
peptide are still required to further progress into clinical trials for medicinal applications.
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