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Abstract: Aldosterone and cortisol serve important roles in the pathogenesis of cardiovascular dis-
eases and metabolic disorders. Epigenetics is a mechanism to control enzyme expression by genes
without changing the gene sequence. Steroid hormone synthase gene expression is regulated by
transcription factors specific to each gene, and methylation has been reported to be involved in steroid
hormone production and disease. Angiotensin II or potassium regulates the aldosterone synthase
gene, CYP11B2. The adrenocorticotropic hormone controls the 11b-hydroxylase, CYP11B1. DNA
methylation negatively controls the CYP11B2 and CYP11B1 expression and dynamically changes the
expression responsive to continuous stimulation of the promoter gene. Hypomethylation status of
the CYP11B2 promoter region is seen in aldosterone-producing adenomas. Methylation of recog-
nition sites of transcription factors, including cyclic AMP responsive element binding protein 1 or
nerve growth factor-induced clone B, diminish their DNA-binding activity. A methyl-CpG-binding
protein 2 cooperates directly with the methylated CpG dinucleotides of CYP11B2. A low-salt diet,
treatment with angiotensin II, and potassium increase the CYP11B2 mRNA levels and induce DNA
hypomethylation in the adrenal gland. A close association between a low DNA methylation ratio and
an increased CYP11B1 expression is seen in Cushing’s adenoma and aldosterone-producing adenoma
with autonomous cortisol secretion. Epigenetic control of CYP11B2 or CYP11B1 plays an important
role in autonomic aldosterone or cortisol synthesis.
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1. Introduction

Steroid hormones play a pivotal role in regulating blood pressure, cardiac function,
water and electrolyte balance, and stress response [1–4]. Mineralo- and glucocorticoids are
synthesized through de novo steroidogenesis in the adrenal gland. Aldosterone synthesis
occurs in numerous tissues including cardiovascular tissues [5], the brain [6], adipose
tissues [7], and the peripheral nerves [8]. Extra adrenal production of cortisol is reported in
the immune system, skin, and intestine [9,10].

The adrenal gland utilizes cholesterol and lipoproteins for the biosynthesis of preg-
nenolone and the following steroids in the mitochondria. Some of the steps in steroidoge-
nesis occur in microsomes (the endoplasmic reticulum). The adrenal cortex is able to de
novo biosynthesize cholesterol [11,12].

The adrenal cortex is composed of three functional zones. The zona glomerulosa, the
outer zone of the gland, expresses aldosterone synthase, CYP11B2, which catalyzes the
synthesis of aldosterone [13]. The renin-angiotensin system (RAS) and potassium regulate
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CYP11B2 expression. The zona fasciculata produces cortisol. CYP11B1 (11-hydroxylase) is
highly expressed in the zona fasciculata and is regulated by ACTH [12]. The innermost layer,
the zona reticularis, expresses CYP17 and produces DHEA and is also a source of androstene-
dione (A4, delta4), which is the primary adrenal androgen in some species (Figure 1). The
hypothalamus–pituitary–adrenal axis, via a negative or positive feedback system, controls
cortisol and DHEA production [14]. The 11Beta-hydroxylase gene, CYP11B1 expression, is
regulated by ACTH and a cAMP-regulated signaling pathway involving the CREB protein
family [15]. Although CYP11B2 and CYP11B1 are highly conserved, there are significant
differences between the CYP11B1 and CYP11B2 5′upstream region, which may explain the
different control of the mechanism of transcription [16].
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Figure 1. Steroid pathway. StAR, steroidogenic acute regulatory protein; P450scc, cholesterol side-
chain cleavage enzyme; CYP17, 17α-hydroxylase; DHEA, dehydroepiandrosterone; 3β-HSD, 3β-
hydroxysteroid dehydrogenase; CYP21, 21-hydroxylase; 17β-HSD, 17β-hydroxysteroid dehydroge-
nase; CYP11B1, 11 β-hydroxylase; CYP19, aromatase; CYP11B2, aldosterone synthase.

2. Epigenetic Control of Gene Expression

Epigenetic changes are inherited modifications that are not present in the DNA se-
quence. Gene expression is regulated at various levels, not only in response to DNA
modification. Histone acetylation modifications regulate gene expression [17]. Gene silenc-
ing is induced by DNA hypermethylation [18]. Gene expression is also regulated by RNA
modifications which mediate RNA metabolism [19].

3. DNA Methylation

DNA methylation at the 5′-cytosine of CpG dinucleotides is a major epigenetic mod-
ification in eukaryotic genomes and is required for mammalian development [20]. It is
associated with the formation of heterochromatin and gene silencing.

Dysregulation of DNA methylation of RAS genes has been involved in the pathogen-
esis of hypertension and cardiovascular diseases [21]. DNA methylation is established
during usual development and disease progression. However, the DNA methylation
pattern is in part dynamic in response to environmental changes [22,23]. Cardiovascular
disorders, diabetes mellitus, and dyslipidemia, as well as lifestyle changes, dynamically
affect DNA methylation.
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4. Histone Modifications

Histone modification is an epigenetic modification characterized by the addition of an
acetyl group to histone proteins, specifically to the lysine residue within the N-terminal
tail [24]. This histone modification is catalyzed by histone acetyl transferases (HATs) or
histone deacetylases (HDACs), which are associated transcription factors (TFs) [25,26].
Huang et al. [27] reported that histone demethylase lysine-specific demethylase 1 (LSD1)
deficient rodents showed increased aldosterone production.

5. Epigenetic Control of CYP11B2

Figure 2 shows the CpG sites of the CYP11B2 promoter region. In human and rodent
adrenal glands, CYP11B2 expression is regulated by not only RAS but also by endothe-
lin and atrial natriuretic hormones [28–31]. Although potassium stimulates aldosterone
biosynthesis [32–34], its pathophysiological roles are unclear. Angiotensin II and potassium
can activate a number of cis-acting elements in the promoter of this gene, including the
cAMP response element (CRE), nerve growth factor-induced clone B (NGFI-B) response ele-
ment (NBRE-1), activating transcription factor 1 (ATF1), or CRE-binding protein 1 (CREB1)
binding to Ad1/CRE, increasing CYP11B2 transcription [35,36] (Figure 3).
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Figure 3. Coactivator and corepressor complexes of CYP11B2 promoter region. Binding activities
of coactivator complexes, such as CREB (cyclic AMP responsive element binding protein), NURR1
(nuclear receptor-related factor 1), and corepressor complex MECP2 (methyl-CpG-binding protein
2) are regulated by DNA methylation. Methylation of CpG1 greatly decreased CREB1 binding to
Ad1 (cis-acting element 1). DNA methylation at CpG2 reduced basal binding activities of NGF1B
(nerve growth factor-induced clone B) (NR4A1) and NURR1 (NR4A2) with Ad5. DNA methylation
increased MECP2 binding to CpG1 and CpG2. NR4A, nuclear receptor 4 group A; Sin3A, SIN3
transcription regulator family member A.
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We have reported that angiotensin II dynamically changed DNA methylation patterns
in the CYP11B2 promoter [37]. DNA methylation patterns are unstable in CpG in several
circumferences [38]. However, where and how do changes in DNA methylation take
place in non-CpG promoter sites? We reported that stimulatory signals of potassium
treatment led to DNA demethylation around transcription factor binding sites and a
transcription start site, where the chromatin structure was relaxed [39] (Figure 4). DNA
demethylation was observed during two days of potassium treatment, while the highest
level of demethylation was evident by seven days. The CYP11B2 promoter demethylation
increased gene expression [39] (Figure 5A).
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Figure 5. (A) Effect of potassium on CYP11B2 mRNA and protein level. In CYP11B2 mRNA level,
results are given as fold change normalized to ACTB. * p < 0.01 and ** p < 0.005 vs. K(−). K(−)
indicates H295R cells treated with no additional potassium. (B) Potassium-induced recruitment of
CREB1 and NR4A1 in the CYP11B2 promoter. (a), CREB1 recruitment to Ad1; (b), NR4A1 (NGFI-B)
recruitment to Ad5. ** p < 0.005 and *** p < 0.0001 vs. K(−).

The CREB1/ATF and NR4A family members lead to the activation of transcription.
In our study, DNA demethylation, CREB1 recruitment, and chromatin relaxation at Ad1
were detected within two days after potassium treatment (Figure 5B). In contrast, Ad5
lagged two days behind Ad1 in chromatin accessibility. CREB1/ATF family members start
chromatin remodeling by DNA demethylation at Ad1. CREB1/ATF family members may
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help NR4A family members initiate chromatin remodeling. This combination leads to
gained gene expression with DNA demethylation about the transcription start site (TSS)
in this gene. Cooperative action collectively undertaken by the CREB1/ATF family and
NR4A family plays a pump-priming function in the control chromatin remodeling and
DNA methylation in the CYP11B2 promoter [37].

After potassium withdrawal, DNA methylation, NR4A1 (NGFI-B) recruitment, and
chromatin accessibility at Ad5 immediately returned to normal levels. In contrast, DNA
hypomethylation, CREB1 recruitment, and chromatin relaxation at Ad1 continued for
several days after the stop of the stimulation. CREB1/ATF family members are retained
at Ad1, acting to hold the DNA hypomethylation and chromatin relaxation. A memory
of the potassium stimulation in the CYP11B2 promotor is functioning by the epigenetic
mechanism [39].

DNA methyltransferases (DNMTs), DNMT3A and 3B, establish and maintain DNA
methylation. DNMT1 serves DNA methylation patterns through sequential rounds of cell
division [40]. In our study, DNA demethylation of the CYP11B2 promoter was associated
with decreased DNA methylation activities. The balance between DNA demethylation and
methylation activities is a major factor in the DNA methylation pattern.

A low-sodium diet or treatment with Angiotensin II increases CYP11B2 mRNA levels
and aldosterone production in the cardiovascular tissues as well as in the adrenal gland [41].
We reported that an angiotensin II infusion in rats decreased the methylation ratio of
CYP11B2 and increased the gene expression in the adrenal gland [37]. Treatment with
angiotensin II in the cultured adrenal cells showed the same results. A low-salt diet
induces hypomethylation of rat CYP11B2 and increases CYP11B2 mRNA levels parallel with
aldosterone synthesis. A high-salt diet or treatment with a type 1 angiotensin II receptor
blocker increases the methylation ratio of this gene. Taken together, angiotensin II is a
major contributing factor to CYP11B2 methylation. The rat zona glomerulosa transcriptome
is changed by dietary sodium intake, involving more than 280 differentially regulated
genes [42]. Nishimoto et al. [42] suggest that a change in salt intake affects the transcriptome
by neurological responses as well as by RAS activation.

Aldosterone plays an important role in the pathogenesis of cardiovascular and renal
disease in experimental and clinical studies [43–46]. Treatment with angiotensin-converting
enzyme (ACE) inhibitors or angiotensin II type 1 receptor blockers (ARBs) for a long
time increases plasma aldosterone to above pretreated levels, which is called “aldosterone
breakthrough” [47]. This phenomenon has important clinical consequences, especially
in congestive heart failure [48]. Involvement of various in vivo factors such as ACTH,
electrolytes, endothelins, and angiotensin II type 2 receptor actions [49] have been proposed
to explain this breakthrough phenomenon; however, details concerning the underlying
mechanism remain unknown. We have reported that although both the direct renin
inhibitor and ARB caused aldosterone breakthroughs, plasma endothelin levels were
not increased [50]. Treatment with ARB influences CYP11B2 methylation. It would be
interesting to know whether or not the treatment with an ACE inhibitor or ARB for a long
time influences the methylation status of CYP11B2 and leads to aldosterone breakthrough.

Hughes-Austin et al. [51] reported that serum high potassium levels are associated
with an increased risk for all-cause mortality independent of renal function or other car-
diovascular risk factors. Weir et al. [52] reported that patiomer, a nonabsorbed potassium
binder, decreased circulating aldosterone as well as serum potassium levels in patients with
chronic kidney disease (CKD) taking renin-angiotensin system (RAS) inhibitors. These data
suggest that potassium regulates aldosterone synthesis independent of RAS. It is interesting
to look at whether treatment with patiomer prevents cardiovascular events in CKD patients.
Sakthiswary et al. [53] reported that urinary potassium excretion was increased in patients
with aldosterone breakthrough. Potassium may be important for aldosterone synthesis
during treatment with RAS inhibitors. The pathophysiologic importance of epigenetic
modification of CYP11B2 by potassium should be further studied.
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6. Epigenetic Modification of CYP11B2 in Aldosterone-Producing Adenoma

Primary aldosteronism (PA) is recognized as a common secondary hypertension and
accounts for approximately 5–15% of the hypertension population [54]. The most common
clinical subtypes of PA are aldosterone-producing adenoma (APA) and bilateral adrenocor-
tical hyperplasia [55]. We and others previously reported a lower degree of methylation
of CYP11B2 in APAs than in adrenal tissues or non-functioning adrenal adenomas. A
negative correlation between the CYP11B2 methylation ratio and mRNA levels was iden-
tified [37,56,57]. Di Dalmazi et al. [58] evaluated DNA methylation levels of CYP11A1,
CYP11B1, CYP11B2, CYP17A1, CYP21A2, HSD3B, NR5A1, and STAR in benign adrenocorti-
cal tumors. They found that the methylation rates of CYP11B2 were decreased in APAs
compared with non-functioning adenomas. Epigenetic control of CYP11B2 expression
may play an important role in aldosterone synthesis in APA. Yoshii et al. [59] reported
that the methylation rate in several CpG sites was lower in APAs than in non-functioning
adrenocortical adenomas. They found no significant relationship between methylation
rates and mRNA levels. They also reported that KCNJ5 mutation in APAs did not affect
the methylation status. Nishimoto et al. [60] reported an interesting case of a patient
with PA. The patient’s adrenal subcapsular aldosterone-producing cell clusters (APCCs)
developed into nodules, which caused hyperaldosteronism. Some of the APCCs possess
somatic gene mutations known to increase aldosterone synthesis [61,62]. These findings
suggest that APCCs may play a part in the pathogenesis of PA. However, Omata et al. [63]
reported that APCCs are frequent in the adrenal glands of nonhypertensive Japanese
individuals in which somatic mutations (most commonly in the calcium voltage-gated
channel subunit alpha1 D (CACNA1D)) were detected. We found the KCNJ5 mutation in
aldosterone-producing microadenoma and APCCs, in which methylation rates of CYP11B2
were decreased compared with adjacent adrenal tissues. However, Di Dalmazi et al. [58]
reported that the methylation status of CYP11B2 did not differ markedly between APCCs
and adjacent adrenal tissues or non-functioning tumors. Sun et al. [64] reported specific
subgroups of APCCs with markedly variant distribution patterns of metabolites. Further
study is necessary to clarify the mechanism of overproduction of aldosterone in the APCC
and APA, including epigenome and metabolome.

Mineralocorticoid receptors (MRs) are expressed in cardiovascular tissues and the
kidneys. MR antagonists (MRA) (spironolactone, eplerenone, esaxerenone) have been used
for the treatment of PA [65,66]. Several papers have reported cases of idiopathic hyperal-
dosteronism with spontaneous remission during MRA therapy [67]. We have reported a
case of APA with remission after long-term spironolactone therapy [68]. We compared the
remission rate between spironolactone and eplerenone therapy in essential hypertension
and found no difference between the two groups (unpublished data). Ye et al. [69] reported
that spironolactone inhibited basal- and angiotensin-II-stimulated aldosterone synthesis in
human adrenal cells. However, eplerenone did not inhibit aldosterone synthesis in H295R
cells. We have reported that eplerenone inhibited tissue RAS [49]. The effect of MRA on
the methylation of CYP11B2 in the cardiovascular tissues as well as in the adrenal gland
should be clarified.

7. Extra-Adrenal Mineralo- and Glucocorticoid Synthesis

Aldosterone synthesis at extra-adrenal sites is regulated by the RAS [70]. The mRNA
of the StAR gene, CYP11A, 3β-hydroxysteroid dehydrogenase, CYP21, CYP11B1, and
CYP11B2 are expressed in blood vessels and the heart [71,72]. We found that the CYP11B2
mRNA levels were lower in renal arteries than in the adrenal gland and a hypermethylation
status was seen in renal arteries [37].

Briones et al. [7] reported that the aldosterone synthase gene and protein were detected
in 3T3-L1 and mature adipocytes, which produce aldosterone basally and in response to
angiotensin II. In 3T3-L1 “adipocytes”, angiotensin II increased the CYP11B2 expression.
Treatment with ARB or inhibitors of calcineurin blunted the angiotensin II effects. FAD286
(an aldosterone synthase inhibitor) inhibited adipocyte differentiation.
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We previously reported that the expressions of protein and mRNA of the mineralo-
corticoid receptor in the peripheral nerve were equal to those in the kidney. The nerve
conduction velocity (NCV) in diabetic rats was significantly improved by treatment with a
mineralocorticoid receptor antagonist [73]. Mohamed et al. [8] reported that aldosterone
immunoreactivity, CYP11B2 gene expression, and MR protein were abundant in peptidergic
nociceptive neurons of the dorsal root ganglia. Furthermore, aldosterone and CYP11B2
were significantly upregulated in peripheral sensory neurons under inflammatory con-
ditions. They also showed that inhibition of aldosterone synthesis in peripheral sensory
neurons attenuated nociceptive behavior after hind paw inflammation.

Aldosterone synthesis and the CYP11B2 gene expression are upregulated in cardiac
tissues during hypertrophic cardiomyopathy (HCM), which are recognized as major HCM
phenotype modifiers [74]. Aldosterone directly affects cardiac hypertrophy and fibrosis.
We previously reported that aldosterone locally produced in cardiovascular tissues exerts
its effects via paracrine or intracrine mechanisms [75]. Garnier et al. [76] reported that
transgenic mice overexpressing CYP11B2 in the heart showed coronary endothelium-
independent dysfunction without hypertrophy. Alesutan et al. [77] showed CYP11B2
expression in the human coronary arteries as well as smooth muscle cells. CYP11B2 mRNA
levels were higher in the aortic tissues of klotho-hypomorphic (kl/kl) mice than in control
mice. Spironolactone ameliorated aortic osteoinduction occurred in adrenalectomized
(kl/kl) mice. We have reported that the treatment with spironolactone improved cardiac
hypertrophy in adrenalectomized hypertensive rats [78]. Yoshimura et al. [79] reported
increased CYP11B2 expression in the hearts of patients with cardiac failure. We found
a clear association between the CpG methylation and the CYP11B2 gene expression in
the cardiac tissues of HCM [57]. We predict that DNA methylation at CpGs 1 and 2 is
a key determinant of the CYP11B2 mRNA levels in the heart. Hypomethylation of the
CYP11B2 promoter causes an aberrant increase in CYP11B2 gene expression, which induces
cardiac hypertrophy or cardiomyopathy [57]. The molecular mechanisms regulating the
demethylation of CpGs 1 and 2 in the heart should be established.

Cortisol, a life-sustaining adrenal hormone, is an endogenous glucocorticoid (GC)
that maintains human homeostasis. This hormone is synthesized from cholesterol in the
adrenal cortex by five enzymatic steps, and CYP11B1 catalyzes the final step of cortisol
biosynthesis [11]. Cortisol exerts its action through binding to a GC receptor (GR) expressed
in a variety of organs, and regulates hydro-mineral metabolism, blood pressure, and
carbohydrate, protein, and fat metabolisms [12]. Cortisol also serves a pivotal role in
anti-inflammation and immunosuppression [80].

Extra-adrenal GC synthesis has been reported in blood vessels, the skin, the brain, the
immune system, and the intestine [9,10,81,82]. Circulating GC levels often do not reflect
local GC levels. An adrenalectomy eliminates serum GC but not in the hippocampus or
cerebral cortex [83]. The potential clinical importance of tissue GC synthesis should be
further clarified.

8. Epigenetic Control of CYP11B1

Excess cortisol causes various disorders. Cushing’s syndrome is caused either by ex-
cessive medication of cortisol-like compounds or by tumors, such as pituitary and adrenal
adenomas, which express high levels of the cortisol synthase gene CYP11B1 and thereby
produce a high level of cortisol [84,85]. Previous reports have demonstrated the overexpres-
sion of CYP11B1 in adrenal Cushing’s syndrome [86]. However, the molecular mechanism
underlying the CYP11B1 overexpression in adrenal Cushing’s syndrome remains unclear.

The DNA methylation inhibitor, 5′-aza-2 deoxycytidine, increases CYP11B1 expression
in the adrenocortical cells [87], which suggests that its expression is regulated by DNA
methylation. Figure 6A shows the CpG sites of the CYP11B1 promoter region. When we
treated cultured adrenal cells with the cAMP analog, 2′-O-dibutyladenosine 3′, 5′-cyclic
monophosphate (dibutyric cAMP; dbcAMP), CYP11B1 mRNA levels were increased in
parallel with a decreased DNA methylation ratio [88].
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9. Epigenetic Modification of CYP11B1 in Cortisol-Producing Adenoma

Cortisol-producing adenoma (CPA) expresses CYP11B1 entirely but not CYP11B2 [87].
Kubota-Nakayama et al. [85] reported that gene and protein expression of CYP11B1 were in-
creased in CPAs. We reported higher mRNA levels of CYP11B1 in concomitant with a lower
methylation ratio in CPAs compared to adrenal tissues or nonfunctioning adenomas [88]
(Figure 6B). However, Di Dalmazi et al. [58] reported that the CYP11B1 mRNA levels and
methylation status did not differ between Cushing’s adenoma and non-functioning adrenal
adenoma. According to previous studies, the heterogeneity of the molecular and gene
abnormalities exist in Cushing’s syndrome or subclinical Cushing’s syndrome (SCS) [89],
in which epigenetic regulatory mechanisms of CYP11B1 play an important role in cortisol
overproduction.

10. Epigenetic Modification of CYP11B1 in Aldosterone-Producing Adenoma with
Autonomous Cortisol Secretion

SCS is an adrenal incidentaloma with autonomous cortisol secretion. The current
diagnostic criteria of SCS in Japan are proposed by Yanase et al. [90]. They reported
14.4% of patients with adrenal incidentalomas [91]. SCS is much more complicated with
obesity, diabetes mellitus, hypertension, and cardiovascular diseases compared with non-
functioning adrenal adenomas [92]. Katabami et al. [93] reported 26% of patients with
PA had mild autonomous cortisol secretion in a recent Japanese large cohort study. They
reported that PA with SCS increases renal complications compared to PA without SCS.
Autonomous cortisol secretion in PA also contributes to metabolic risk or cardiovascular
complications [94,95]. We found that six of the sixteen APAs evaluated were associated with
autonomous cortisol secretion [88]. These APAs tended to be larger in size and associated
with an increased prevalence in cerebrovascular diseases than APAs without autonomous
cortisol secretion. The KCNJ5 gene mutation was found in six APAs with autonomous
cortisol secretion and eight of the ten APAs without autonomous cortisol secretion. The
CYP11B1 promoter region was less methylated in APAs with autonomous cortisol secretion
than in those without autonomous cortisol secretion. These findings further suggest the
significant role of DNA methylation of the CYP11B1 promoter on gene expression.
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Inoue et al. [96] recently reported the correlation between plasma aldosterone concen-
tration and blood pressure in patients with SCS. We did not find any differences in the
DNA methylation state of CYP11B2 between APAs with autonomous cortisol secretion and
those without autonomous cortisol secretion. The mechanism of aldosterone synthesis in
SCS with hypertension should be clarified.

11. MicroRNAs (miRNAs) in Post-Transcriptional Regulation

There is increasing evidence that miRNAs play an important role in the regulation of
CYP11B1 and CYP11B2 gene expression as well as for the derived proteins [97]. miRNAs
are single-stranded noncoding RNA molecules of approximately 22 nucleotides. They
target specific nucleotides on the mRNA of protein-coding genes and directly repress
post-transcription [98,99]. Recently, the role of miRNAs was investigated with a focus on
genes of the human CYP11B subfamily [12]. Dicer1 is a key enzyme in miRNA maturation.
It affects the function of miRNA miR-24, which binds to the 3′-untranslated region of
CYP11B1 and CYP11B2 mRNAs [98]. Lenzini et al. [99] reported that components of
the Wnt/-catenin pathway, which were downregulated by miR-23 and miR-43a, change
aldosterone synthesis. Vetrivel et al. [100] reported that miR-1247-5p was upregulated
in cortisol-producing adenoma (CPA). MiR-379-5p was upregulated in primary bilateral
macronodular adrenocortical hyperplasia (PBMAH). Both miR-1247-5p and miR-379-5p
targeted specific components in the WNT signaling pathway. Whether or not the silencing of
CYP11B2 or CYP11B1 using siRNAs can be applied for treating PA or Cushing’s syndrome
should be studied.

12. Epigenesis of the Other Steroid Hormone Synthase Genes
12.1. Steroidogenic Acute Regulatory Protein (StAR)

The epigenetic regulation of the StAR in the ovary is reported. Luteinizing hormone
(LH) stimulation increases StAR gene expression and histone modifications are involved in
its regulation. Methylation has been reported to be involved in the regulation of StAR gene
expression by changes in the ovarian cycle [101].

12.2. Cytochrome P450 Family 11, Subfamily A, Polypeptide 1 (CYP11A1)

Okada et al. [102] examined methylation and histone modification of CYP11A1 by
acute stimulation of hCG in ovarian granulosa cells and reported that both were affected
by hCG and thus involved in gene expression. In a rat model of multiple cystic ovary
syndrome, hypomethylation of a portion of the CpG site of the CYP11A1 promoter region
has been reported [103].

12.3. Aromatase (CYP19A1)

An increased CYP19A1 expression and hypomethylated state in the follicle are re-
ported [104]. In the corpus luteum, CYP19A1 is highly methylated and gene expression is
low. CpG islands were found in the CRE (cAMP-responsive element) region, suggesting a
relationship between cAMP-stimulated CYP19A1 gene expression and methylation [105].

12.4. 17α-Hydroxylase (CYP17A1)

In humans, CYP17A1 plays an important role in cortisol biosynthesis, while in rodents,
3β-HSD is important for corticosterone biosynthesis. CpG islands are reported to be present
in rodents but absent in humans, and methylation and gene expression are reported to be
related in rodents. However, the homology of genes between humans and rodents is about
45% and they share a common regulatory mechanism [106]. It is possible that some kind of
methylation regulatory mechanism exists in humans as well.
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13. Conclusions

The gene expression of CYP11B2 and CYP11B1 in the adrenal gland is regulated
by epigenetic modification. Salt intake and potassium influence the methylation of the
CYP11B2 gene. A negative correlation between DNA methylation and CYP11B1 expression
is seen in Cushing’s adenoma and APA with autonomous cortisol secretion. These results
suggest that the epigenetic regulation of both CYP11B2 and CYP11B1 contributes to the
pathogenesis of autonomous aldosterone and cortisol synthesis.
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