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Abstract: Studying the generation of biomechanical force and how this force drives cell and tissue
morphogenesis is challenging for understanding the mechanical mechanisms underlying embryogen-
esis. Actomyosin has been demonstrated to be the main source of intracellular force generation that
drives membrane and cell contractility, thus playing a vital role in multi-organ formation in ascidian
Ciona embryogenesis. However, manipulation of actomyosin at the subcellular level is impossible in
Ciona because of the lack of technical tools and approaches. In this study, we designed and developed
a myosin light chain phosphatase fused with a light-oxygen-voltage flavoprotein from Botrytis cinerea
(MLCP-BcLOV4) as an optogenetics tool to control actomyosin contractility activity in the Ciona larva
epidermis. We first validated the light-dependent membrane localization and regulatory efficiency on
mechanical forces of the MLCP-BcLOV4 system as well as the optimum light intensity that activated
the system in HeLa cells. Then, we applied the optimized MLCP-BcLOV4 system in Ciona larval epi-
dermal cells to realize the regulation of membrane elongation at the subcellular level. Moreover, we
successfully applied this system on the process of apical contraction during atrial siphon invagination
in Ciona larvae. Our results showed that the activity of phosphorylated myosin on the apical surface
of atrial siphon primordium cells was suppressed and apical contractility was disrupted, resulting in
the failure of the invagination process. Thus, we established an effective technique and system that
provide a powerful approach in the study of the biomechanical mechanisms driving morphogenesis
in marine organisms.

Keywords: Ciona; optogenetics; actomyosin contractility; epidermal cells

1. Introduction

Morphogenesis, as a basis of embryo development, is a pattern formation process via
cell and tissue reshaping and migration. The morphogenetic movement can be regulated
by the genetic blueprint and molecular signaling network, but ultimately, biomechanical
force is required [1–4]. How biomechanical forces are precisely generated to drive cell re-
shaping is a hot topic in developmental and cell biology. Many studies have demonstrated
that actomyosin is an important source of intracellular mechanical force that drives cell
contractility [5–8]. Actomyosin, which is enriched in the cortex of the membrane, is closely
related to cell contractility and cell morphology. Non-muscle myosin II (NM II), consisting
of two heavy chains, two light chains, and two regulatory light chains (RLC) [9,10], is the
main myosin component involved in non-muscle cell contraction [9,11]. The phosphoryla-
tion of myosin light chain (MLC) by myosin light chain kinase (MLCK) and Rho-kinase
(ROCK) is essential for myosin function [12,13]. Myosin light chain phosphatase (MLCP)
can dephosphorylate MLC [14,15]. On the other hand, RhoA-ROCK signaling can abolish
the activity of MLCP by inhibiting the phosphorylation of its myosin phosphatase target
subunit (MYPT) [10,12]. However, how actomyosin localizes at the specific subcellular
position and accurately regulates cell contractility remain unclear.
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In marine organisms, the diversity of species and morphogenesis processes provides
abundant experimental materials for biomechanical force research [16]. For example, during
the development of the Ciona embryonic notochord, actomyosin asymmetrically localizes
on the ventral side of the notochord, providing the force for tail bending [17,18]. In addition,
during the endodermal invagination process in Ciona, actin sequentially localizes on the
apical and basolateral cell interfaces to drive apical contraction and invagination [19,20].
At present, some low-molecular-weight compounds are widely used to inhibit the ac-
tivity of NM II, such as blebbistatin [21], ROCK inhibitor Y-27632 [22], MLCK inhibitor
ML-7 [23], etc. The function of actomyosin can also be blocked by myosin light chain domi-
nant negative mutation [24]. However, disadvantages of these methods limit their applied
range. The inhibition of myosin via inhibitor treatment or dominant negative mutation
shows non-specificity at the subcellular level, it is difficult to eliminate in a short time
period, and there can be side effects or toxicity on tissues and cells. Therefore, a faster
and controllable approach to regulate actomyosin activity at the subcellular level is ur-
gently required. The development of optogenetics provides us with new opportunities for
technological innovation in the Ciona model system.

Optogenetics is a technology that combines optics and genetics to control the function
of proteins with light. Due to the rapid switching and ease of subcellular manipulation,
optogenetics can control proteins and subcellular localization with unprecedented spatial
and temporal resolution [25]. The concept can be traced back to the 1970s when Francis
Crick noted that an important challenge facing neuroscience was how to precisely control
the activity of a single type of cell without affecting other cells, suggesting that light could
be a key tool in this process but the method was not found at that time [26]. At the
same time, bacteriorhodopsin, a light-sensitive ion pump, was identified [27,28]. With the
development of science, scientists have identified some similar proteins that receive light
to transport various ions [29,30]. However, it was not until 2005 that anyone achieved
millisecond control of neurons using members of the rhodopsin family [26,31–33]. The
spatiotemporal regulation of signaling molecules is one of the focuses of developmental
biology research and controlling membrane potential alone is not sufficiency to meet
research requirements [34]. To this end, scientists have developed a series of photosensitive
proteins that have different chromophores and exhibit different properties under the
stimulation of different wavelengths of light, such as light-oxygen-voltage (LOV), UV
RESISTANCE LOCUS 8 (UVR8), blue light–using flavin (BLUF), Opsin [34–37], etc. Based
on the properties of different photosensitive proteins, researchers can design a variety of
systems in developmental biology to control the localization, clustering, sequestration, and
release of regulatory signaling molecules.

Among these known photosensitive proteins, the LOV system has been engineered
into various structures and widely used [38,39]. The LOV photoreceptors of these systems
consist of sensor and effector domains, and these two parts are usually connected by an
α-helix domain [40]. Under blue light, the LOV photoreceptors detect and absorb optical
energy and then undergo structural changes that alter their biological function [41,42].
Specifically, the LOV domain belongs to the Per ARNT-Sim (PAS) domain superfamily,
which is about 110 amino acids long and carries a flavin chromophore. These cofactors
noncovalently bind to the surrounding LOV domain in the dark and form covalent bonds
with a cysteine residue after absorbing blue light, thus causing the α-helix to change
conformation and unfold. Moreover, when the blue light was removed, they spontaneously
decayed back into the state of darkness [41,43]. Based on LOV, scientists have built a
series of optogenetic systems that control tissue patterns through regulation of signaling
molecules, gene expression, and cell motility [34,44–46]. One of them, the photosensitive
protein BcLOV4 from Botrytis cinerea, can rapidly bind to the plasma membrane through
electrostatic interaction under blue light [38,44,46–48]. In previous studies, a method has
been established to change the phosphorylation level of myosin in cells by altering the
localization of MLCP using optogenetics [45]. However, the localization of iLID-GFP
proteins could not be examined before illumination because of the similar wavelength
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(488 nm) between GFP excitation and this system. In addition, we found that this system
was highly light-sensitive and easily illuminated under the confocal microscopy when we
tested it in Ciona system.

In this study, we modified MLCP and established an optogenetic system using the pho-
tosensitive protein BcLOV4, which was named the MLCP-BCLOV4 system. We validated
this system in HeLa cells and Ciona embryos and larvae. Finally, we applied this system to
interfere with the localization of phosphorylated myosin in apical contraction during the
morphogenesis of the Ciona atrial siphon. We eventually applied this technique to control
the activity of epidermal myosin and cell contractility of Ciona, which provides a powerful
tool for the study of the biomechanical forces driving morphogenesis in marine organisms.

2. Results
2.1. Design of an MLCP-BcLOV4 System to Suppress the Activity of Myosin II at the
Cellular Level

MLCP, as a phosphorylase kinase regulated by the RhoA/ROCK signaling pathway
(Figure 1a), consists of a regulatory subunit MYPT1, a catalytic subunit PP1c, and a small
subunit M20 [13,49]. MYPT includes the PP1C binding domain, phosphorylated MLC
binding domain, myosin binding domain, and M20 binding domain (Figure 1b). It has
been reported that the 1–38 amino acids (a.a.) at the N-terminus of MYPT are required
for the functioning of PP1c, and the 170–296 a.a. of MYPT comprise the phosphorylated
MLC binding domain [12,49]. In addition, the 1–169 a.a. of MYPT have high light control
efficiency as a regulatory element, which has been used in conjunction with other opto-
genetic systems (iLID/SspB system) to reduce contractile force in mammalian cells and
Xenopus embryos [45]. Based on this knowledge, we designed the combination of PP1c and
MYPT (1–169 a.a.), which serves the function of myosin dephosphorylation but lacks the
spontaneous myosin-binding activity. The PP1-MYPT (1–169 a.a.) could act as a myosin
inhibiting factor only when it is artificially docked to phosphorylated myosin. Then, we
linked the PP1c-MYPT (1–169 a.a.) to the photosensitive protein BcLOV4 and constructed
the MLCP-BcLOV4 system. Because of the plasma membrane-binding activity of BcLOV4
via electrostatic protein-lipid interaction under 488 nm blue light [46], the PP1c-MYPT
(1–169 a.a.) could spatially localize sufficiently close to the myosin II in the cell cortex,
resulting in endogenous dephosphorylation of MLC and release of the contractility at the
cell cortex (Figure 1c). To visualize the localization of PP1c-MYPT (1–169 a.a)-BcLOV4,
mCherry was linked at the C-terminus of the construct. However, similar to previous
studies [45,50], we found that the fusion protein was localized at the cell nucleus regardless
of light exposure (Figure 1d). To solve this problem, a nuclear export signal (NES) was
added into the C-terminus of the fusion protein. We then found that NES worked and
the construct was located in the cytoplasm after light exposure (Figure 1d). We further
found high sequence identities of human MYPT (1–169 a.a) and PP1C with those in the
Ciona genome (Figure 1e), which provided support that the MLCP-BcLOV4 system could
be tested in Ciona living cells.

2.2. Validation of the MLCP-BcLOV4 System in HeLa Cells

We first tested the excitation effect of the MLCP-BcLOV4 system with the CMV pro-
moter in HeLa cells with gradient laser intensities. The results showed that 0.5% 488 nm
laser confocal microscope (ZEISS LSM 980) was the minimum intensity to activate the
MLCP-BcLOV4 system’s membrane location (Figure 2a), indicating the high sensitivity of
the MLCP-BcLOV4 system to blue light.
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Figure 1. Design of an MLCP-BcLOV4 system to suppress the activity of myosin II at the cellular
level. (a) Schematic illustration of myosin phosphorylation regulatory network; (b) Domain structure
of MLCP holoenzyme; (c) Schematic illustration of the structure and working principle of the MLCP-
BcLOV4 system. PP1C-MYPT169-BcLOV4-mCherry-NES disperses in the cytoplasm. Upon blue
light illumination, BcLOV4 binds to the plasma membrane through electrostatic interaction, and the
fused MYPT169 and PP1C are transferred to the plasma membrane to play their corresponding roles;
(d) Representative images of localization of MYPT169-BcLOV4-mCherry and MYPT169-BcLOV4-
mCherry-NES in HeLa cells in darkness and after 3 min of illumination under 488 nm blue light.
Scale bar, 10 µm; (e) Sequence alignment of MYPT169 and PP1C in human and Ciona genomes.

Then, we tested the working effects of the MLCP-BcLOV4 system in Hela cells. The
MLCP-BcLOV4 construct (CMV>PP1c::MYPT169::BcLOV4::mCherry::NES) and the control
(CMV>PP1c::MYPT169::mCherry::NES) were transfected into HeLa cells, respectively, and
cultured in a dark incubator. Then, we measured the fluorescence intensity of the cell mem-
brane and cytoplasm before and after laser irradiation with 488 nm blue light. Under dark
conditions, mCherry signals dispersed in the cytoplasm in both the MLCP-BcLOV4-expressed
and MLCP-expressed groups. After 15 min of blue light irradiation, the mCherry signal
intensity significantly increased at the cell membrane in the MLCP-BcLOV4-expressed group,
while it decreased in the cytoplasm. No significant change was observed in the MLCP-
expressed group (Figure 2b,c). In addition, we quantified the membrane-to-cytoplasm ratio of
the mCherry signal intensity in the MLCP-BcLOV4 system before and after 0.5% blue light
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exposure for 15 min. The statistic results indicated that the membrane-to-cytoplasm ratio of
the mCherry signal intensity significantly increased in the experimental group compared with
the control group (Figure 2d). These results suggested that the MLCP-BcLOV4 system had
high light-dependent membrane localization efficiency in HeLa cells.
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Figure 2. Validation of the MLCP-BcLOV4 system in HeLa cells. (a) Quantitative statistics of flu-
orescence intensity change of HeLa cell membrane in the MLCP-BcLOV4-expressed group within
30 min under stimulation of blue light at 0 to 2% intensity. The solid line and pale area are nor-
malized statistics of the mean value and SEM of the change in the fluorescence intensity of the cell
membrane. n = 10 cells; (b) Representative images of the expression of the MLCP-BcLOV4-expressed
group (CMV>PP1c::MYPT169::BcLOV4::mCherry::NES, top row) and the MLCP-expressed group
(CMV>PP1c::MYPT169::mCherry::NES, bottom row) in HeLa cells. The left is the image in the dark
and the right is the image after 15 min of illumination under 488 nm blue light. Scale bar, 10 µm;
(c) Quantitative statistics of fluorescence intensity at the white dotted line in panel b. The gray line
is the statistical graph in the dark state and the blue line is the statistical graph after 15 min of
blue light irradiation. The light gray area is the cell boundary; (d) Quantification of membrane-to-
cytoplasm ratio of mCherry signal fluorescence ratios of the MLCP-BcLOV4-expressed group and
the MLCP-expressed group after 15 min of exposure to 0.5% blue light. ****, p < 0.0001 (student’s
t-test). n = 20 cells; (e) Schematic diagram of blue light treatment of HeLa cells with MLCP-BcLOV4
system. The circularity (ratio of the perimeter to the square root of its area) of the cell section through
the nuclear geometric center in the MLCP-BcLOV4-expressed group and MLCP-expressed group
changed at 10, 20, and 30 min after blue light stimulation. *, p < 0.05 (student’s t-test). n = 10 cells.



Int. J. Mol. Sci. 2023, 24, 5707 6 of 15

Next, we examined the effects of the MLCP-BcLOV4 system on the suppression of
myosin activity and inhibition of cell contractility in HeLa cells. We measured and quanti-
fied the circularity (ratio of the perimeter to the square root of its area) of the cell section
through the nuclear geometric center, reflecting myosin activity and cell contract. To reduce
the effect of cell connections on cell morphology, individual cells without contact with
other cells were chosen for the measurement (Figures 2e and A1). The results showed that
after 30 min of blue light exposure, the circularity of cells in the MLCP-BcLOV4-expressed
group significantly decreased compared with that in the MLCP-expressed group. This
result indicated that the MLCP-BcLOV4 system could effectively suppress cell contractility,
which lead to cell reshaping in HeLa cells.

2.3. MLCP-BcLOV4 System Suppressed the Contractility of Epidermal Cells in Ciona Embryos

To test the efficiency of the MLCP-BcLOV4 system in vivo, we next expressed MLCP-
BcLOV4 and MLCP-only driven by an epidermis-specific promoter Epi1 in Ciona embryos.
An F-actin marker lifeact-eGFP was co-expressed in the Ciona epidermis to visualize the
cell boundary [51–55]. We measured the fluorescence intensity of the cell membrane
and cytoplasm before and after irradiating with 488 nm blue light. The results showed
that the mCherry signals were dispersed in the cytoplasm of both the MLCP-BcLOV4-
expressed group and the MLCP-expressed group under dark conditions. After 15 min
of blue light irradiation, the signal intensity of mCherry on the cell membrane in the
MLCP-BcLOV4-expressed group significantly increased, while there was no significant
change in the MLCP-expressed group (Figure 3a,b). Next, we compared the membrane-
to-cytoplasm ratio of the mCherry signal intensity in the MLCP-BcLOV4-expressed group
and MLCP-expressed group before and after 15 min of blue light irradiation. It can be
seen that the membrane-to-cytoplasm ratio of the mCherry signal intensity in the MLCP-
BcLOV4-expressed group was higher than that before light irradiation, while there was no
significant change in the MLCP-expressed group (Figure 3c). This result indicated that the
MLCP-BcLOV4 system had a better blue light-dependent membrane localization effect in
the epidermis cells of Ciona embryos.

Because of the cell junction and surrounding basal membrane, the mechanical action
of epidermal cells is more complex than that of cultured cells. Therefore, we measured
and quantified the length changes of the cell membrane (boundary change ratio) of Ciona
epidermal cells in the MLCP-BcLOV4-expressed and MLCP-expressed groups, respectively.
The results exhibited that the cell boundary length of the MLCP-BcLOV4-expressed group
significantly increased after 30 min of blue light exposure compared to the MLCP-expressed
group (Figure 3d–f), indicating a defect in cytoskeletal contractility in the MLCP-BcLOV4-
expressed group. This result suggested that the MLCP-BcLOV4 system could effectively
suppress the cell contractile force in the epidermis of Ciona embryos.

2.4. MLCP-BcLOV4 System Disrupted Atrial Siphon Invagination via Abolishing the Apical
Contraction in Ciona Larvae

The formation of the atrial siphon in Ciona experiences an apical contraction in the
central epidermal cell and subsequent invagination. The immunofluorescence experiment
exhibited the enrichment of active myosin II in the apical surface of atrial siphon pri-
mordium cells compared to that in the basal surface (Figure 4a), which gave us a chance to
test whether the MLCP-BcLOV4 system can effectively change the localization and activity
of myosin in organ morphogenesis during Ciona larval development.



Int. J. Mol. Sci. 2023, 24, 5707 7 of 15
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW  7  of  15 
 

 

 

Figure 3. MLCP‐BcLOV4 system suppressed the contractility of epidermal cells in Ciona embryos. 

(a)  Representative  images  of  the  expression  of  the  MLCP‐BcLOV4‐expressed  group 

(Epi1>PP1c::MYPT169::BcLOV4::mCherry::NES,  top  two  rows)  and  the MLCP‐expressed  group 

Figure 3. MLCP-BcLOV4 system suppressed the contractility of epidermal cells in Ciona em-
bryos. (a) Representative images of the expression of the MLCP-BcLOV4-expressed group
(Epi1>PP1c::MYPT169::BcLOV4::mCherry::NES, top two rows) and the MLCP-expressed group
(Epi1>PP1c::MYPT169::mCherry::NES, bottom two rows) in the epidermis of Ciona embryos. On the
left are images in the dark and on the right are images after 15 min of illumination under 488 nm
blue light. Scale bar, 5 µm; (b) Quantitative statistics of fluorescence intensity at the white dotted line
in panel a. The gray line is the statistical graph in the dark state and the blue line is the statistical
graph after 15 min of blue light irradiation. The light gray area is the cell boundary; (c) Quantification
of membrane-to-cytoplasm ratio of mCherry signal fluorescence of the MLCP-BcLOV4-expressed
group and the MLCP-expressed group after 15 min of exposure to 0.5% blue light. ****, p < 0.0001
(student’s t-test). n = 20 cells; (d) Representative images of epidermal cell boundary length over time
in Ciona embryos from the MLCP-BcLOV4-expressed group and MLCP-expressed group during a
30 min period. White dots show the location of tricellular junctions. Scale bar, 5 µm; (e) Schematic
diagram of boundary change ratio calculation; (f) The boundary change ratio of epidermal cells in the
MLCP-BcLOV4-expressed group and MLCP-expressed group after 30 min of blue light irradiation.
****, p < 0.0001 (student’s t-test). n = 100 cells.
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Figure 4. MLCP-BcLOV4 system disrupted atrial siphon invagination via abolishing the apical
contraction in Ciona larvae. (a) Representative image of myosin immunofluorescence assay of Ciona
atrial siphon in wild type. Scale bar, 10 µm; (b) Representative image of myosin immunofluorescence
assay of Ciona atrial siphon in MLCP-BcLOV4 system group. Scale bar, 10 µm; (c) Quantification of
fluorescence intensity of active myosin II signal of wild type and MLCP-BcLOV4-expressed group
after 60 min of exposure to 0.5% blue light. *, p < 0.05, ****, p < 0.0001 (student’s t-test). n = 14 cells;
(d) Schematic diagram of blue light treatment of Ciona atrial siphon of wild type and MLCP-BcLOV4-
expressed group. Red indicates the apical surface of the cell.

We expressed the MLCP-BcLOV4 system in Ciona larval siphon cells with the Epi1
promoter. After 488 nm blue light exposure to activate the system, the larvae were fixed and
the active myosin in atrial siphon primordium cells was examined using the active myosin
II (S19) antibody (Figure 4b). After imaging, we intercepted the side section through the
center of the atrial siphon invagination (Figure 4d). Then, we measured the myosin II
signal on the apical and basal cell boundaries of both MLCP-BcLOV4 and wild-type siphon
cells. The results showed that the activity of phosphorylated myosin was suppressed in the
MLCP-BcLOV4-expressed siphon cells (Figures 4c and A2). Our results demonstrated that
the MLCP-BcLOV4 system we developed could control the activity of epidermal myosin
and cell contractility in Ciona.
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3. Discussion

In this study, we designed and developed a MLCP-BcLOV4 system to regulate the
activity and polarity of myosin II and the cell contractility of the Ciona epidermis. This
system was then successfully applied to interfere with the localization and polarity of
phosphorylated myosin in apical contraction during the morphogenesis of the Ciona siphon.
Our results demonstrated that the MLCP-BcLOV4 system is a powerful tool for the study
of biomechanical mechanisms during organ morphogenesis compared with chemical
inhibitor [21–23] and dominant negative mutation approaches [24,56], which have high
inhibition efficiency on the activity of myosin but still have limitations on the working
range and time. The MLCP-BcLOV4 system could rapidly change the localization and
polarity of myosin II at the subcellular level, which greatly improved the accuracy and
reduced the potential side effects of the experimental manipulation.

Several optogenetic systems have been established to regulate myosin activity at the
cell and tissue levels. For example, optogenetic systems were applied to control RhoA
activity [36,44,46]. Light-dependent recruitment of RhoGEF triggers RhoA activation, which
induces myosin phosphorylation and increases the cell contractile force [57]. In addition,
the OptoMYPT system has been utilized in mammalian cells and Xenopus embryos to reduce
the cell contractile force [45]. However, so far, none of optogenetic manipulation systems
were established and applied to ascidian and marine animals. Marine organisms provide a
series of biomaterials for the study of developmental biology and biomechanics because of
the diversity of their morphogenesis [16,58]. For example, during the morphogenesis of the
Ciona embryonic notochord, the asymmetrically localization of actomyosin on the ventral
side of notochord provides the force for tail bending [17,18,59]. During the endodermal
invagination process of Ciona, actin sequentially localizes on the apical surface to drive
apical contraction and invagination [19,20]. In addition, the morphogenesis of the Ciona
atrial siphon is a typical example of invagination caused by apical contraction (Figure 4).
The MLCP-BcLOV4 system is the first one that can be applied to marine organisms. It
exhibited a good ability to regulate myosin activity in Ciona epidermis cells, providing a
powerful tool to help answer developmental and cell biology questions, especially those
about the biomechanical mechanisms of organ morphogenesis.

There are several advantages of this system. Firstly, the MLCP-BcLOV4 system has
subcellular level resolution, which enabled us to achieve precise control of the localization
of protein and reduce the cell contractile force. This system allowed us to make not only cell-
to-cell comparisons but also intracellular comparisons to explore how regional aggregation
of myosin affects cellular behavior, which is particularly important in the study of some
biological processes involved in the polarized distribution of phosphorylated myosin,
such as the apical contraction process during Ciona siphon morphogenesis. Secondly, the
MLCP-BcLOV4 system can be quickly and repeatedly activated. Taking advantage of this
property, we could repeatedly relax the cell contractile force. Instantaneous stimulation
can observe how cells respond to changes in mechanical force without impeding normal
tissue development. This transient perturbation can be used to explore the direct effects
of perturbation rather than the indirect effects [34]. Finally, using a tissue-specific driver,
the system realized tissue-specific manipulation to minimize the impact on other tissues
during experiments in stereoscopic embryos. Therefore, we could explore the mechanical
interactions between multiple tissues.

Together, we designed and established an optogenetic manipulation MLCP-BcLOV4
system to regulate the activity and polarized distribution of myosin II. We have demon-
strated that the system could interfere with the polarity of phosphorylated myosin II in
apical contraction during Ciona atrial siphon morphogenesis, leading to failure of epidermal
cell invagination. Our technique is expected to be a powerful tool for studying the unique
morphogenesis of marine organisms.
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4. Materials and Methods
4.1. Experimental Animal Preparation and Electroporation

Ciona adults were collected from the sea area of Qingdao and Rongcheng, Shandong,
China. They were maintained in the laboratory seawater circulation system under constant
light to stabilize their state. Mature eggs and sperm were collected from adults separately
after dissection and then mixed in vitro for fertilization. Fertilized eggs were dechorionated
in seawater containing 1% sodium thioglycolate (T0632; Sigma), 0.05% protease E (P5147;
Sigma), and 0.032 M NaOH. Dechorionated eggs were used for plasmid electroporation [60].
Finally, they were cultured in an agar-coated dish with microporous-filtered seawater
(MFSW) at 18 ◦C for further observation.

4.2. Plasmids Construction

The BcLOV4-mCherry module was amplified with primers 5′-ATGGCCACAGA
CGCAATCG-3′ and 5′-GATTATGATCTAGAGTCGCGGCCGC-3′ from opto-RhoA-mCherry
_pcDNA3.1 [46] (Addgene plasmid # 164472). The PP1c module was amplified with primers
5′-ATGGCGGACGGGGAGC-3′ and 5′-CCTTTTCTTCGGCGGA-3′. The MYPT169 module
was amplified from HeLa cDNA with primers 5′-ATGAAGATGGCGGACGCG-3′ and
5′-AGCTGCTTCTATATCAACCCCTTG-3′. These modules were subcloned into pEGFP-C1
to construct the optogenetic expression vector.

4.3. Cell Transfection

HeLa cells in this program were purchased form the National Collection of Authenti-
cated Cell Culture (https://www.cellbank.org.cn, accessed on 22 June 2021). Cell trans-
fection experiments were performed using Lipofectamine™ 3000 Transfection Reagent
(L3000015; Thermo Fisher). After transfection, the cells were cultured overnight in abso-
lutely dark conditions until observation. Then, the cells were placed in a 5% CO2 humidified
incubator at 37 ◦C in the dark for 12 h.

4.4. Immunofluorescence

Ciona embryos were fixed with stationary liquid [19] (100 mM HEPES, pH = 6.9;
100 mM EGTA, pH = 7.0; 10 mM MgSO4; 2% formaldehyde; 0.1% glutaraldehyde; 300 mM
dextrose; and 0.2% Triton X-100) for 40 min at room temperature. After three washes with
PBS, the embryos were incubated in PBST (PBS with 0.1% Triton X-100) for 30 min to achieve
permeabilization. Then, the embryos were treated with 0.1% sodium borohydride in PBS for
20 min at room temperature. Next, a 1:250 dilution of phospho-myosin light chain 2 (Ser19)
antibody (#3671; Cell Signaling) was added and incubated at room temperature for 24 h.
After three washes with PBS, a 1:200 dilution of Alexa Fluor 568 anti-Rabbit IgG (A11011;
Invitrogen) was added and incubated for 48 h at room temperature. As needed for cell
boundary visualizing, a 1:200 dilution of Alexa Fluor 488 Phalloidin (A12379; Invitrogen)
was added. Finally, after three washes, the embryos were coated with mounting medium
with DAPI and mounted for further observation.

4.5. Imaging and Optogenetics

Live imaging, photo-activation experiments, and image acquisition were carried out
using a Zeiss LSM 980 (Carl Zeiss). The nominal power of the diode laser 488 nm was
30 mW. Living HeLa cells and Ciona embryos were placed in a 35 mm glass-bottom dish
for imaging. To prevent unnecessary photoactivation, a plasmid with mCherry was co-
electroporated to locate the embryos and select the test sites. Then, the selected testing area
was exposed to the 488 nm laser to activate the optogenetic system.

https://www.cellbank.org.cn
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Figure A1. Variation in the circularity of cell sections through the nuclear geometric cen-
ter. (a) Representative images of the expression of the MLCP-BcLOV4-expressed group
(CMV>PP1c::MYPT169::BcLOV4::mCherry::NES, top row) and the MLCP-expressed group
(CMV>PP1c::MYPT169::mCherry::NES, bottom row) in HeLa cells. The left is the image in the
dark and the right is the image after 30 min of illumination under 488 nm blue light. The white
triangle indicates a protrusion, which significantly retracted. Scale bar, 10 µm; (b) The circularity
(ratio of the perimeter to the square root of its area) of the cell section through the nuclear geometric
center in the MLCP-BcLOV4-expressed group and MLCP-expressed group changed with time. The
thin and bold lines indicate the individual and averaged data, respectively.
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Figure A2. MLCP-BcLOV4 system disrupted atrial siphon invagination via abolishing apical con-
traction in Ciona larvae. (a) Quantification of fluorescence ratio (apical/basal) of active myosin II
signal of wild type and MLCP-BcLOV4-expressed group after 60 min of exposure to 0.5% blue light.
****, p < 0.0001 (student’s t-test). n = 14 cells. (b) The ratio of the apical length to basal length of
vertical section of atrial siphon apical contraction in the MLCP-BcLOV4-expressed group and wild
type after 60 min of exposure to 0.5% blue light. ****, p < 0.0001 (student’s t-test). n = 14 cells.
(c) Five representative images of myosin immunofluorescence assay of the Ciona atrial siphon in the
MLCP-BcLOV4 system group. Scale bar, 10 µm.
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