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Abstract: Mitochondrial metabolism plays an important role in the occurrence and development of
cancers. Cytochrome C oxidase assembly factor six (COA6) is essential in mitochondrial metabolism.
However, the role of COA6 in lung adenocarcinoma (LUAD) remains unknown. Here we report that
the expression of COA6 mRNA and protein were upregulated in LUAD tissues compared with lung
normal tissues. We found that COA6 had high sensitivity and specificity to distinguish LUAD tissues
from normal lung tissues shown by a receiver operating characteristic (ROC) curve. In addition,
our univariate and multivariate Cox regression analysis indicated that COA6 was an independent
unfavorable prognostic factor for LUAD patients. Furthermore, our survival analysis and nomogram
showed that a high expression of COA6 mRNA was related to the short overall survival (OS) of LUAD
patients. Notably, our weighted correlation network analysis (WGCNA) and functional enrichment
analysis revealed that COA6 may participate in the development of LUAD by affecting mitochondrial
oxidative phosphorylation (OXPHOS). Importantly, we demonstrated that depletion of COA6 could
decrease the mitochondrial membrane potential (MMP), nicotinamide adenine dinucleotide (NAD)
+ hydrogen (H) (NADH), and adenosine triphosphate (ATP) production in LUAD cells (A549 and
H1975), hence inhibiting the proliferation of these cells in vitro. Together, our study strongly suggests
that COA6 is significantly associated with the prognosis and OXPHOS in LUAD. Hence, COA6 is
highly likely a novel prognostic biomarker and therapeutic target of LUAD.

Keywords: cytochrome C oxidase assembly factor 6 (COA6); lung adenocarcinoma; prognosis;
mitochondrion; oxidative phosphorylation

1. Introduction

Lung cancer is a common malignant tumor worldwide. In 2020, more than two
million new lung cancer cases occurred globally and the number of deaths was the highest
among all cancers, up from 1.8 million cases [1]. Nonsmall cell lung cancer (NSCLC)
accounts for about 85% of all lung cancers [2] and lung adenocarcinoma (LUAD) is the most
common histological subtype of NSCLC [3]. Current therapies for LUAD include surgery,
chemotherapy, radiotherapy, molecular targeted therapy, and immunotherapy [4]. LUAD
patients usually lack symptoms in the early stage and many patients are in the middle
and late stages when their symptoms appear. Hence, early diagnosis can significantly
reduce the mortality of LUAD patients [5]. Although some progress has been made in the
treatment of advanced patients, drug resistance often occurs, leading to treatment failure.
In China, the 5-year survival rate of patients with lung cancer is less than 30% [6]. Therefore,
identifying new biomarkers and therapeutic targets is important for the diagnosis and
therapy of LUAD.
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Mitochondrial metabolism is important for the occurrence and development of lung
cancer. By using radiotracers and positron emission tomography to measure the mitochon-
drial membrane potential (MMP) in a mouse model of lung cancer, Momcilovic M et al.
discovered that LUAD tissues possessed high MMP [7]. Analysis with data from The
Cancer Genome Atlas (TCGA) indicated that the content of mitochondrial DNA in lung
cancer tissues is higher than that in adjacent normal tissues [8]. Interestingly, metformin
could reduce the production of cellular ATP by inhibiting mitochondrial respiratory chain
complex I [9]. In addition, in phase II clinical trial, metformin combined with an epidermal
growth factor receptor-tyrosine kinase inhibitor significantly improved progression-free
survival and overall survival (OS) of patients with advanced LUAD [10].

The cytochrome C oxidase assembly factor six (COA6) protein is a 14 kDa protein with
a conservative motif CX9CXnCX10C. COA6 is mainly located in the inner mitochondrial
membrane space. Importantly, COA6 is involved in the formation of cytochrome C oxidase
(COX) [11]. Mutation or lack of COA6 can cause COX deficiency, adenosine triphosphate
(ATP) synthesis disorder, and fatal neonatal cardiomyopathy [12]. These suggest that
COA6 plays an important role in mitochondrial metabolism, yet the role of COA6 in LUAD
remains unclear.

In this research, we found that COA6 was overexpressed in LUAD tissues. We
then investigated the impact of COA6 on the diagnosis and prognosis of LUAD patients.
Furthermore, we discussed the underlying mechanism of COA6 in LUAD. Finally, we
verified the effect of COA6 on mitochondrial function and the proliferation of lung cancer
cells in vitro.

2. Results
2.1. The Expression of COA6 Was Upregulated in LUAD

To probe whether COA6 is a potential marker of LUAD, we first examined the COA6
expression in LUAD from multiple databases. We found that the level of COA6 mRNA
expression was higher in LUAD tissues than in normal lung tissues both in ONCOMINE
and TCGA databases (p < 0.05) (Table 1 and Figure 1A). Our receiver operating characteristic
(ROC) curve showed that COA6 had high sensitivity and specificity to distinguish LUAD
and lung normal tissues in the TCGA database (area under the ROC curve (AUC) = 0.903,
p < 0.0001) (Figure 1B). The level of COA6 protein expression was also higher in LUAD
tissues than normal lung tissues in the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) database (p < 0.05) (Figure 1C). In the Human Protein Atlas (HPA), as LUAD
tissues were from five patients, and lung normal tissues were from two patients, it is
difficult to compare the expression of COA6 protein in LUAD tissue and normal lung tissue
with statistical significance due to the small sample size. We also observed that COA6 was
located in the cytoplasm and membrane. (Figure 1D,E and Table S1).

Table 1. Significant difference between COA6 mRNA expression in LUAD tissues and normal lung
tissues (ONCOMINE).

Dataset LUAD Cases Normal Cases Fold Change p-Value t-Test

Garber Lung 6 40 1.83 0.004 3.395
Hou Lung 65 45 1.698 5.33 × 10−13 8.652
Okayama Lung 20 226 1.673 3.08× 10−12 10.077
Selamat Lung 58 58 1.167 0.002 2.954

2.2. Associations of COA6 Expression Level with Clinical Parameters in LUAD

We then compared the COA6 mRNA expression in different clinical subgroups of
LUAD patients in TCGA (Table S2). In age and gender subgroups, there were no significant
differences in COA6 mRNA expression (Figure 2A,B). In the T (the size of the tumor) stages,
the COA6 mRNA expression was higher in T2, T3, and T4 than in the T1 groups (p < 0.05)
(Figure 2C). In N (lymph node metastasis) stages, the COA6 mRNA expression was higher
in N1/2/3 than in N0 groups (p < 0.05) (Figure 2D). In M (distant metastasis) stages, the
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COA6 mRNA expression was higher in the M1 than in the M0 groups (p < 0.001) (Figure 2E).
In tumor (the size of the tumor, lymph node metastasis, and distant metastasis) stages, the
COA6 mRNA expression was higher in the II, III, and IV groups than the I group (p < 0.05)
(Figure 2F). These data strongly suggest that the higher level of COA6 is related to the late
stages of LUAD.
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Figure 1. Expression of COA6 in LUAD and lung normal tissues. (A) COA6 mRNA expression in
LUAD shown in TCGA; (B) ROC curve showing the diagnostic value of COA6 in LUAD shown in
TCGA; (C) COA6 protein expression of LUAD in the University of Alabama at Birmingham cancer
data analysis Portal (UALCAN); (D,E) Immunohistochemical staining of COA6 in normal lung tissues
and LUAD tissues in HPA. COA6 antibody was labeled with DAB (3,3′-diaminobenzidine), the brown
color indicates the expression of COA6 protein, magnification: 50× (upper panel), 200× (lower panel).
t-test of independent samples was used in comparing the means of two groups, *** p < 0.001.
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Figure 2. COA6 mRNA expression in different clinical subgroups of LUAD patients in TCGA. (A) Age;
(B) Gender; (C) T (the size of the tumor) stage; (D) N (lymph node metastasis) stage; (E) M (distant
metastasis) stage; (F) Tumor (the size of the tumor, lymph node metastasis, and distant metastasis)
stage. t−test of independent samples was used in comparing the means of two groups, * p < 0.05,
** p < 0.01, *** p < 0.001.

2.3. Prognostic Impact of COA6 Expression in LUAD

To investigate whether COA6 expression can be a potential prognostic marker in
LUAD, we performed bioinformatic analysis using datasets from TCGA (485 patients) and
GSE31210 (204 patients) (Table 2). Our univariate and multiple Cox regression analysis of
these two databases indicated that COA6 and tumor stage were independent unfavorable
prognostic factors of LUAD patients (Figure 3A–D). Notably, our survival analysis showed
that patients with a higher level of COA6 had a shorter OS (Figure 3E,F). In TCGA, we built
a nomogram based on the two independent prognostic factors (COA6 and tumor stage) for
OS of LUAD patients and found that the increase of COA6 is related to a reduction of the
survival rate of patients (Figure 4A). Therefore, our ROC curve showed certain specificity
and sensitivity of the nomogram for prognosis (AUC of 1, 2, 3-year survival: 0.732, 0.705,
0.701) (Figure 4B). Furthermore, our calibration curve showed a good prediction accuracy
of the nomogram for one, three, and five-year survival (Figure 4C). The C-index of the
nomogram based on COA6 and tumor stage was 0.684 (0.661–0.706), and the c-index of a
nomogram based only on tumor stage was 0.664 (0.643–0.684). Taken together, we suggest
that an increased COA6 level could be used to predict the prognosis of LUAD patients.

2.4. Difference of Biological Pathways between High and Low COA6 Groups in LUAD

Next, to identify the difference between biological pathways of high and low COA6
groups, we compared global gene expression differences between the two groups in TCGA.
We found that there were a total of 19,101 genes with log2foldchange (Figure 5A,B and
Table S3). We then performed a GSEA with the rank of log2foldchange. We discovered
that there were 19 activated and 6 suppressed hallmark pathways in the high COA6
group if compared with the low COA6 group, (normalized enrichment score (NES)|>1,
p.adjust < 0.05) (Figure 5C,D and Table S4). Notably, in the high COA6 group, the main ac-
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tivated pathways were OXPHOS, MYC targets, and mTORC1 signaling, whereas, the main
suppressed pathways were UV RESPONSE DN, myogenesis, and IL6-JAK-STAT3 signaling.

Table 2. Clinical data of the LUAD patients in TCGA and test GSE31210.

Clinical Factor TCGA (n = 485) GSE31210 (n = 204)

Survival time (days) 868.99 ± 872.11 1764.70 ± 683.65
Status
Live 307 172
Dead 178 32
Age
<65 216 145
≥65 269 59
Gender
Female 262 109
Male 223 95
Tumor stage
I 263 162
II 116 42
III 80 0
IV 26 0

2.5. Biological Pathways Correlated with COA6 in LUAD

To find key module eigengenes related to COA6, we performed a WGCNA with the
data of 485 LUAD patients from TCGA. We identified 4802 genes (top 25% of all genes
according to variance) extracted by WGCNA (Table S5). We used clinical parameters and
COA6 to construct a trait heatmap (Figure 6A). The soft threshold power was set as six
(scale Rˆ2 = 0.92) (Figure 6B) and mergeCutHeight was set as 0.25 (Figure 6C). We identified
twenty modules (Figure 6D), in which the brown modules were most correlated with COA6
(Pearson coefficient = 0.47 and p = 9 × 10−27) (Figure 6E). We found 341 brown module
eigengenes in a scatter plot (Figure 6F and Table S6). We also performed gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis with
the brown module eigengenes. We found that these eigengenes were mainly correlated with
the cellular component (CC) of the ribosome and mitochondrial inner membrane. Their
molecular functions (MF) were focused on related electron transfer activity, cytochrome-
c oxidase activity, and oxidoreductase activity. Moreover, the biological processes (BP)
in which they participate included ribosome biogenesis and oxidative phosphorylation.
Finally, the KEGG pathway closely associated with them contained ribosome, oxidative
phosphorylation, chemical carcinogenesis-reactive oxygen species, and so on (Figure 7A–D
and Tables S7 and S8). These data clearly demonstrate that COA6 plays essential roles in
mitochondrial metabolism.

2.6. Down-Regulation of COA6 Inhibited the Proliferation of LUAD

To validate that COA6 is crucial in mitochondrial metabolism and LUAD, we used
siRNA against COA6 to knock down the expression of COA6 in LUAD cells (A549 and
H1975). Our qRT-PCR results showed that the COA6 mRNA level was significantly de-
creased by COA6 siRNA (p < 0.001) (Figure 8A). Our Western blot further confirmed
that the protein levels of COA6, together with COX2, were decreased by COA6 siRNA
in the LUAD cells (Figure 8B,C). In addition, our immunofluorescence affirmed that the
expression of COA6 protein, which was mainly expressed in the cytoplasm in LUAD cells,
was decreased upon COA6 RNAi (Figure 8D). Importantly, our MTT analysis indicated
that the knockdown of COA6 significantly reduced the proliferation rate of LUAD cells
(Figure 8E). Our colony formation assays also showed that the knockdown of COA6 could
inhibit the formation of a colony of LUAD cells (Figure 8F,G). These results suggest that the
knockdown of COA6 could decrease COX2 protein level and inhibit the proliferation of
LUAD cells in vitro.
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analysis in TCGA and GSE31210; (C,D) Multivariate Cox regression analysis in TCGA and GSE31210.
(E,F) Kaplan–Meier survival curve for impacts of COA6 on overall survival of LUAD patients in
TCGA and GSE31210.

2.7. Down Regulation of COA6 Affected the MMP, Reactive Oxygen Species (ROS), and
Nicotinamide Adenine Dinucleotide (NAD) + Hydrogen (H) (NADH) of LUAD

To further investigate the role of COA6 in mitochondrial metabolism, we measured
mitochondrial membrane potential and intracellular ROS by the fluorescent probe. Our
results indicated that knockdown of COA6 significantly decreased the MMP of LUAD
cells (p < 0.05) (Figure 9A,C,D) and also inhibited the production of ROS of H1975 cells
(p < 0.05) since the ROS level in A549 cells was lower in the COA6 siRNA group than in
the control siRNA group, although without significant difference between the two groups
(Figure 9B,E,F). We also observed that the NADH/NAD+ ratio in the COA6 siRNA group
was lower than in the control siRNA group (p < 0.001) (Figure 9B,G,H). These suggest that
the knockdown of COA6 can significantly reduce NADH production in LUAD cells.
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gram based on COA6 and tumor stage. (B) ROC curve respecting specificity and sensitivity of
nomogram for prognosis. (C) Calibration curve of the nomogram for overall survival at 1 year,
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Figure 6. Screening for key modules related to COA6 in TCGA- LUAD through WGCNA. (A) Sample
dendrogram and trait heatmap; (B) Calculation of the scale-free fit index of various soft-thresholding
powers; (C) Clustering of module eigengenes. The red line indicates mergeCutHeight (0.25); (D) Clus-
tering dendrograms; (E) Correlation heatmap between module eigengenes and clinical parameters
and COA6; (F) Scatter plot of brown module eigengenes.
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2.8. Down Regulation of COA6 Deceased the Production of ATP in LUAD

We performed a real-time ATP rate assay to uncover whether COA6 has a role in
ATP production, We found that the total ATP and the ATP produced by mitochondrial
OXPHOS were lower in the COA6 siRNA group than in the control siRNA group (p < 0.05),
whereas there was no significant difference of ATP produced by glycolysis between the
two groups (Figure 10A–D). In contrast, in H1975 cells, the total ATP, ATP produced by
mitochondrial OXPHOS, and ATP produced by glycolysis were all lower in the COA6
siRNA group than in the control siRNA group (p < 0.05) (Figure 10E–H). These results
suggest that the knockdown of COA6 could decrease the production of ATP in LUAD cells
in vitro.
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Figure 8. COA6 regulates the proliferation of LUAD cells (A549 and H1975). (A) Histogram showing
the known down of COA6 mRNA by siRNA (mean ± SD, n = 3); (B,C) Western blot showed
that the decreased protein level of COA6 and COX2 by the knockdown of COA6 (mean ± SD,
n = 3); (D) Immunofluorescence staining showing the inhibition of the COA6 protein expression,
Magnification: 400×; (E) MTT showing the inhibited proliferation of cells by the knockdown of
COA6, the optical density (OD) values of two groups were compared at the 96th hour (mean ± SD,
n = 3); (F,G) Colony formation assay showing the reduced number of colonies by the knockdown of
COA6 (mean ± SD, n = 3). t−test of independent samples was used in comparing the means of two
groups, * p < 0.05, ** p < 0.01, and *** p < 0.001.
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Figure 9. COA6 regulates the MMP, ROS, and NADH of LUAD cells (A549 and H1975). (A) Flu-
orescence staining showing the MMP affected by siRNA, Magnification: 200×; (B) Fluorescence
staining showing the ROS affected by siRNA, Magnification: 200×; (C,D) The histograms showing
that knockdown of COA6 decreased MMP of LUAD cells (mean ± SD, C: ncontrol = 11, ncoa6 = 13, D:
ncontrol = 17, ncoa6 = 11); (E,F) The histograms showing that knockdown of COA6 did not decrease
the ROS in A549 cells significantly, but decreased the ROS in H1975 cells significantly (mean ± SD, C:
ncontrol = 30, ncoa6 = 32, D: ncontrol = 22, ncoa6 = 13); (G,H) The histograms showing that knockdown
of COA6 decreased NADH in LUAD cells (mean ± SD, n = 3). Independent samples t−test was used
in comparing the means of two groups, * p < 0.05 and *** p < 0.001.
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groups, * p < 0.05, ** p < 0.01, and *** p < 0.001. 
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guish LUAD tissues and normal lung tissues. In addition, the expression of COA6 was 
correlated with the clinical parameters of LUAD patients. Our analysis indicated that 
COA6 is an independent risk factor for the prognosis of LUAD patients. Patients with a 
higher expression of COA6 had a shorter OS. These strongly suggest that COA6 is an 
important gene for the development of LUAD. 

As a cytochrome C oxidase assembly factor, COA6 can interact with the copper-con-
taining catalytic domain to maintain the stability of the newly synthesized COX subunit 
two (COX2) structure [13]. Loss of COA6 can lead to the rapid degradation of newly syn-
thesized COX2. Subsequently, the level of COX decreases and the mitochondrial metabo-
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Figure 10. COA6 regulates the production of ATP in LUAD cells (A549 and H1975). (A,E) Line
graphs showing the impact on OCR by OLI and Rtn/AA in different groups; (B,F) The histograms
showing that knockdown of COA6 decreased ATP produced by mitochondrial OXPHOS (mean ± SD,
n = 3); (C,G) The histograms showing that knockdown of COA6 did not decrease ATP produced
by glycolysis significantly in A549 cells, but decreased ATP produced by glycolysis significantly in
H1975 cells (mean ± SD, n = 3); (D,H) The histograms showing that knockdown of COA6 decreased
total ATP in LUAD cells (mean ± SD, n = 3). OCR, oxygen consumption rate; OLI, oligomycin;
Rtn/AA, Rotenone/Antimycin A. Independent samples t-test was used in comparing the means of
two groups, * p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Discussion

In this research, we first reported that both COA6 mRNA and protein expression
were overexpressed in LUAD and COA6 had high sensitivity and specificity to distinguish
LUAD tissues and normal lung tissues. In addition, the expression of COA6 was correlated
with the clinical parameters of LUAD patients. Our analysis indicated that COA6 is
an independent risk factor for the prognosis of LUAD patients. Patients with a higher
expression of COA6 had a shorter OS. These strongly suggest that COA6 is an important
gene for the development of LUAD.

As a cytochrome C oxidase assembly factor, COA6 can interact with the copper-
containing catalytic domain to maintain the stability of the newly synthesized COX subunit
two (COX2) structure [13]. Loss of COA6 can lead to the rapid degradation of newly synthe-
sized COX2. Subsequently, the level of COX decreases and the mitochondrial metabolism
is impaired [14]. Since COX is essential for the process of OXPHOS as a terminal enzyme
in the respiratory chain, a lack of COX usually leads to severe early-onset neuromuscular
diseases and cardiomyopathy [15–18]. Current research on COA6 has mainly been con-
centrated on its role in mitochondrial metabolic diseases. Calvo SE et al. found that the
mutation of COA6 was complicated by combined deficiency of mitochondrial complexes
I and IV in the myocardial tissue of a patient with hypertrophic cardiomyopathy [19].
Subsequent studies confirmed that the deficiency of COA6 can disrupt COX assembly,
reduce mitochondrial OXPHOS, and cause neonatal hypertrophic cardiomyopathy. Copper
treatment can repair COX defects partially [12,20]. Recently, it has been proved that COA6
mainly acted as a thiol reductase in maintaining the structure’s stability of COX2, reducing
the disulfide bond of the key cysteine residues in the copper metal chaperones (especially
Sco1 and Sco2), and participating in the transport of copper [21,22]. Consistent with these
findings, our results showed that the genes correlated with COA6 were mainly concentrated
in the mitochondria, related to the activities of oxidoreductase, NADH dehydrogenase,
and COX. In KEGG enrichment analysis, these genes were mainly related to oxidative
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phosphorylation. These strongly indicate that COA6 also has a crucial role in mitochondrial
metabolism in LUAD.

Glycolysis was once considered to be the main metabolic pathway for the rapid prolif-
eration of cancer cells, while mitochondrial metabolism was dispensable [23]. However, in
recent years, research has proven that mitochondrial metabolism plays an important role
in the occurrence and development of tumors. In mouse lung cancer driven by the KRAS
gene, ROS, which is required for the growth of cancer, is mainly produced in mitochondrial
metabolism and the deletion of mitochondrial transcription factor A could disrupt mito-
chondrial function and decrease tumor incidence [24]. In patients with lung cancer, tumor
tissues had higher levels of glucose oxidation and tricarboxylic acid cycle than adjacent
normal tissues [25]. In mouse lung cancer models, tumor tissues had a high MMP level,
suggesting a high level of OXPHOS [7]. Decreased expression of heat shock protein family
D member one could reduce mitochondrial OXPHOS, leading to inhibition of the growth
of A549 cells [26]. Consistently, our research found that higher levels of COA6 mRNA and
protein in LUAD tissues and a large number of genes positively correlated with COA6 were
enriched in the OXPHOS gene set, suggesting that COA6 is closely related to OXPHOS
in LUAD. The OXPHOS pathway was significantly activated in the high COA6 group.
These may explain why the expression of COA6 was associated with tumor stage and T
stage in LUAD and patients with a higher expression of COA6 were of shorter OS. Our
in vitro data also affirmed that the depletion of COA6 could decrease the mitochondrial
membrane potential (MMP), NADH, and ATP production of LUAD cells, thus inhibiting
the proliferation of these cells. Together, we propose that the uplifted COA6 level is closely
related to the enhanced OXPHOS, which is beneficial to tumor growth and leads to the
poor prognosis of LUAD patients.

Our gene-set enrichment analysis (GSEA) also showed COA6 is associated with MYC
targets, ROS, mTORC1 signaling, glycolysis, E2F targets, DNA repair, and G2M checkpoints.
As a transcription factor, MYC can enhance the growth and survival of lung cancer and other
tumors [27–29]. Interestingly, MYC is important to activate mitochondrial biogenesis in can-
cer and could promote the growth of LUAD cells by regulating the structure and function of
mitochondria [30,31]. Thus, we propose that COA6 is possibly involved in MYC-mediated
tumor promotion. Intracellular ROS are mainly produced in mitochondrial metabolism
and there are eight sites in the mitochondria that can produce superoxide [32,33]. ROS
can activate the PI3K pathway by inhibiting PTEN (a PtdIns(3,4,5)P3 phosphatase) and
increase the activity of AKT. Activation of the PI3K–AKT–mTOR pathway affects many
cell biological processes, such as cell growth, proliferation, and differentiation [34,35]. For
instance, activation of the mTOR pathway is related to the clinical outcome, invasiveness,
and metastasis of LUAD [36]. Under hypoxia, ROS could activate hypoxia-inducible factors
(HIFs) which can increase glycolysis and activate angiogenesis genes, and then promote the
growth of the tumor [37,38]. In addition, E2F targets, DNA repair, and G2M checkpoints
are important signal pathways in tumorigenesis and the development of LUAD [39–41].
Our result also showed that depletion of COA6 could decrease glycolysis-produced ATP
and ROS in H1975 cells. Therefore, we suggest that COA6 may promote the proliferation
of LUAD cells by multiple tumor promotion pathways including MYC, PI3K–AKT–mTOR,
and ROS.

In conclusion, we demonstrated that COA6 is important in regulating OXPHOS.
LUAD was significantly affected by COA6 and depletion of COA6 can inhibit OXPHOS
and decrease ATP production, leading to inhibited proliferation of LUAD cells. Further
clinical research can be carried out to affirm the functions of COA6 in mitochondrial
metabolism in LUAD. Nonetheless, our COA6 study has provided novel insights into the
roles of COA6 in cancer progression.
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4. Materials and Methods
4.1. Bioinformatics Analysis

ONCOMINE [42] was used to compare the COA6 mRNA expression of LUAD tissues
and lung normal tissues. There were four datasets containing gene expression data of
LUAD patients, respectively, from Stanford (Garber Lung [43]), Erasmus (Hou Lung [44]),
Tokyo (Okayama Lung [45]), and Southern California (Selamat Lung [46]). UALCAN [47]
was also used to compare their COA6 protein expression of them. The HPA [48] was
used to obtain the immunohistochemical results of COA6 protein in LUAD and lung
normal tissues.

To further analyze the relationship between COA6 and LUAD, we downloaded the
RNA-seq and clinical data of LUAD patients from TCGA (https://portal.gdc.cancer.gov,
accessed on 20 October 2021) and GSE31210 (http://www.prognoscan.org, accessed on
20 April 2022). RNA-seq data of 519 LUAD tissues and 58 adjacent normal tissues from
TCGA were used to verify the results in ONCOMINE and plot the ROC curve. Patients’
inclusion criteria for clinically relevant analysis: the patients with RNA-seq data, complete
clinical stages (T stage, N stage, M stage, and tumor stage), and survival data (OS and
survival status). Then we compared the COA6 mRNA expression of different clinical
subgroups in 485 LUAD patients from TCGA.

In TCGA and GSE31210, the impact of COA6 on patients’ OS was determined by
univariate and multivariate Cox regression analysis. The patients were divided into a low
COA6 group and a high COA6 group (the median of COA6 mRNA expression was set
as the group cutoff). Then, the OS of the two groups were compared by Kaplan–Meier
analysis. A prognostic model was built using the independent prognostic factors of LUAD
patients in TCGA through COX multivariate regression. The model was displayed using
a nomogram. The specificity and sensitivity of the model were shown by the ROC curve.
The accuracy of the model was evaluated by calibration curve and C-index.

Differentially expressed genes between the low COA6 and high COA6 groups from
TCGA were used for GSEA, and hallmark gene sets (h.all.v7.4.symbols.gmt) were down-
loaded from the Molecular Signatures Database [49]. To find the module eigengenes most
correlated with COA6, the data of 485 LUAD patients from TCGA were used for WGCNA.
Then, functional enrichment analysis of these module eigengenes was performed.

4.2. Cell Culture and Transfection

LUAD cells (A549, H1975) were obtained from the cell bank of the Chinese Academy
of Sciences. The cells were cultured in 1640 medium (GIBCO, Waltham, MA, USA), added
with 10% fetal bovine serum (GIBCO, Waltham, MA, USA), and cultured in a humidified
5% CO2 incubator at 37 ◦C. lipornai™ transfection reagent (Beyotime, Shanghai, China)
was used to transfect the control and COA6 siRNA (Santa Cruz, Dallas, TX, USA) into cells.
After 48 h from transfection, the effect of transfection was determined by qRT-PCR, western
blot analysis, and immunofluorescence analysis.

4.3. RNA Isolation and qRT-PCR

Total RNA isolation, reverse transcription, and qRT-PCR were performed according
to the product manual. The main kits included TransZol Up Plus RNA Kit (Transgen
Biotech, Beijing, China), All-in-one First-Strand cDNA Synthesis SuperMix for qPCR
(Transgen Biotech, Beijing, China), and Green qPCR SuperMix (Transgen Biotech, Bei-
jing, China). The primer sequences for qRT-PCR were as follows: COA6: forward (5′-
CAGTAGGAATGGCAGCCCCATCT-3′) and reverse (5′-CCCCCAGCAGACCTGTCTTTC-
CTT-3′); β-actin: forward (5′-CAGGGCGTGATGGTGGGCAT-3′) and reverse (5′-GATGCC-
GTGCTCGATGGGGT-3′).

4.4. Protein Extraction and Western Blot Analysis

Total protein was extracted using radioimmunoassay lysis buffer (RIPA, Thermo
Fisher Scientific, Waltham, MA, USA). Protein assay dye reagent concentration (Bio Rad,
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Hercules, CA, USA) was used to measure the protein concentration. Western blot analysis
was performed previously as described [50]. The primary antibodies were as follows:
anti-COA6 (24209-1-AP, Proteintech, Wuhan, China), anti-COX2 (55070-1-AP, Proteintech,
Wuhan, China), and anti-GAPDH (60004-1-Ig, Proteintech, Wuhan, China). Ultrasignal
hypersensitive ECL chemiluminescence substrate (4A biotech, Suzhou, China) was used
for chemiluminescence.

4.5. Cellular Immunofluorescence Assay

Cellular immunofluorescence assay was performed previously as described [51]. The
cells were fixed with 4% formaldehyde and then infiltrated with 0.1% Triton X-100. Im-
munofluorescence stains of cells were performed with anti-COA6 antibody (24209-1-ap,
Proteintech) and Alexa fluor 594 Goat antirabbit IgG (Thermo Fisher Scientific, Waltham,
MA, USA). The nuclei were stained with 4′,6-diamidino-2-phenylindole.

4.6. MTT Assay and Colony Formation Experiment

Cells (1500 cells/well) were cultured in 96 well plates and transfected with siRNA.
After 24, 48, 72, and 96 h, the cells were incubated with MTT solution for another 4 h. Cell
viability was reflected by optical density (OD) at 490 nm. The transfected A549 and H1975
cells (1000/well) were seeded into 6-well plates. After 10 days, the cells were stained with
crystal violet and the number of colonies was counted.

4.7. Detection of MMP, Intracellular ROS, and NADH/NAD+

Cells were cultured in 6 well plates and transfected with siRNA. After 72 h, MMP
was labeled with Mito-Tracker Red CMXRos (Beyotime, Shanghai, China) and the intracel-
lular ROS was labeled with DHE-ROS fluorescent probe (Bestbio, Shanghai, China). The
cells were fixed with 4% formaldehyde and then infiltrated with 0.1% Triton X-100. The
nuclei were stained with 4′,6-diamidino−2−phenylindole [52]. Cell number and fluores-
cence intensity were measured by Image-pro-plus. The intracellular NADH and NAD+
were detected with NAD+/NADH test kit (WST−8) (Beyotime, Shanghai, China). The
concentration of NADH and NAD+ was reflected by optical density (OD) at 450 nm.

4.8. Real-Time ATP Rate Assay

Cells were cultured in 6 well plates and transfected with siRNA. After 48 h, plated
A549 (12,000 cells/well) and H1975 (18,000 cells/well) in the Seahorse XFp Microplate, and
24 h later, Oligomycin and Rotenone/Antimycin A were used to affect the production of
ATP. ATP rate was detected by Agilent Seahorse XFp according to the user manual. Cell
number was estimated using Sulforhodamine B colorimetric assay [53].

4.9. Statistical Analysis

R (4.1.1) software and SPSS (25.0.0.0) software were used for statistical analyses, the
main R packages used in the study were as follows: “ROCR”, “survival”, “survminer”,
“DESeq2”, “clusterprofiler” and “WGCNA”. All in vitro experiments were repeated three
times. A t-test and analysis of variance were used in comparing the means of two groups
and multiple groups respectively, p < 0.05 means statistical significance.

5. Conclusions

In LUAD, COA6 is significantly correlated with the prognosis of patients and is im-
portant for mitochondrial metabolism. It is highly possible that COA6 is a novel prognostic
biomarker and therapeutic target.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24065705/s1.
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