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Abstract: The aim of this project is to fabricate hydrogen-rich silicone doped with magnetic nanoparti-
cles for use as a temperature change indicator in magnetic resonance imaging-guided (MRIg) thermal
ablations. To avoid clustering, the particles of mixed MnZn ferrite were synthesized directly in
a medical-grade silicone polymer solution. The particles were characterized by transmission elec-
tron microscopy, powder X-ray diffraction, soft X-ray absorption spectroscopy, vibrating sample
magnetometry, temperature-dependent nuclear magnetic resonance relaxometry (20 ◦C to 60 ◦C,
at 3.0 T), and magnetic resonance imaging (at 3.0 T). Synthesized nanoparticles were the size of
4.4 nm ± 2.1 nm and exhibited superparamagnetic behavior. Bulk silicone material showed a good
shape stability within the study’s temperature range. Embedded nanoparticles did not influence
spin–lattice relaxation, but they shorten the longer component of spin–spin nuclear relaxation times
of silicone’s protons. However, these protons exhibited an extremely high r2

* relaxivity (above
1200 L s−1 mmol−1) due to the presence of particles, with a moderate decrease in the magnetization
with temperature. With an increased temperature decrease of r2

*, this ferro–silicone can be potentially
used as a temperature indicator in high-temperature MRIg ablations (40 ◦C to 60 ◦C).

Keywords: silicone; ferrite; nanoparticles; NMR; MRI; MRI-guided surgery

1. Introduction

This paper presents a proof-of-concept synthesis of manganese zinc ferrite nanopar-
ticles in a silicone elastomer matrix. The intended benefit of introducing silicone directly
into the reaction mixture is to avoid the practically irreversible formation of nanoparticle
clusters. Clustering due to a strong surface interaction is a widely known problem for
many different nanoparticle systems [1–4]. Known methods to break up agglomerates,
such as sonication and high-shear mixing, cannot completely disperse particles, although
recent electrospray dispersion studies have resulted in varying levels of success [5–7]. The
most practical way of reducing clustering has been to prevent it from occurring in the first
place [8–12]. This is done most frequently by inhibiting direct contact between particles
with a surfactant or polymeric coating. This approach is most effective when performed
during synthesis because particles never have the opportunity to cluster upon a change
in solvent [9].

Silicone (organosiloxane) polymers such as those used in this synthesis are well suited
to this approach due to their low reactivity and good heat resistance [13,14]. Despite the
fact that silicones and composite materials based on silicone have been successfully used in
biomedical devices for many years, materials engineers continue to develop new materials
from this group [15–18]. Synthetic methods for preparing magnetic nanoparticles include
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electrochemical deposition and/or co-precipitation processes in the pores of silicone, re-
sulting in magnetic elastomers [19]. Coprecipitation has also been used in hydrogels [20].
The work described herein is motivated by the possibility of employing magnetic silicone
nanocomposites as temperature sensors during thermal ablation therapy guided by mag-
netic resonance imaging (MRI). These materials may also improve MR-tagged implants
and MR structural phantoms [21–23].

Thermal ablations locally change the temperature of the targeted tissue to kill cancer
cells and to treat other diseases such as arteriovenous malformation and neurological
impairment [24–26]. High-temperature thermal ablations are performed by heating tissues
using laser, radiofrequency (rf) electromagnetic radiation, and ultrasound to a temperature
between 50 ◦C and 80 ◦C [27]. Low-temperature ablations (cryoablation) are conducted
at temperatures between −20 ◦C and −50 ◦C or lower [28,29]. Temperature monitoring
during surgery is vital to ensure the thorough treatment of affected tissue while minimizing
damage to the healthy parts of the organ.

Silicone-based filaments already show promise in monitoring temperature for future
cryoablation procedures due to a steady decrease in T1 relaxation time across a wide
temperature range [30]. The temperature changes in the T2 relaxation time are much
smaller. Surgeons may prefer, however, to operate viewing T2-weighted images as the
boundaries of many tissue pathologies are more clearly defined [31]. Note though that
T2-weighted images typically take a longer time to acquire than T1-weighted images.
Additionally, as mentioned above, the T2 of silicone varies with temperature far less than
T1, limiting the silicone application of T2-based temperature monitoring.

This work attempts to determine the influence of magnetic nanoparticles on the relax-
ation times of silicones by using, as an example, a silicone elastomer approved by the FDA
for medical applications [32]. Previous research on mixed ferrites as temperature-sensitive
materials for MRI thermometry has utilized the fact that diluting ferrites with Zn drastically
lowers their transition point from a ferrimagnetic to a paramagnetic state [33]. Among
MeFe2O4 ferrites, where Me denotes a 3d metal, MnFe2O4 ferrite exhibits the highest
value of saturation magnetization. Doping with Zn in the range of 0 ≤ x ≤ 0.8 increases
the value of saturation magnetization in Mn1−xZnxFe2O4 ferrite when compared to pure
MnFe2O4 [34]. Moreover, the transition temperature decreases with an increasing Zn
content. With a proper Zn concentration, one can lower the transition temperature from
580 K [35], observed in pure MnFe2O4 ferrite, to the human body temperature. Using
an appropriate method for obtaining ferrite nanoparticles allows for synthesizing particles
with a specific composition. The selection of the ferrite composition so that the Curie transi-
tion is near the body temperature results in a significant change in the magnetic moments of
nanoparticles as temperature changes in the region of interest [33]. This, in turn, produces
a temperature-dependent alteration in T2 and T2

* of the surrounding silicone. As a result,
the brightness in MR images is strongly temperature-dependent, indicating a path for the
development of novel composites that can be employed as temperature sensors during
MRI-guided ablations.

2. Results
2.1. Morphological, Structural, and Chemical Characterization

Following the work of Pardo and Lachowicz, the magnetic nanoparticles used in our
work were formed by the thermal decomposition of metalloorganic precursors (Fe(acac)3,
Zn(acac)2·xH2O, and Mn(acac)2) in a silicone polymer matrix [36,37].

Figure 1a shows an example transmission electron microscope (TEM) image of selected
nanoparticles synthesized in the presence of a Dow Corning 7-9600 silicone elastomer (DC7).
Black spots are the nanoparticles, while the grayish areas are the silicone matrix. Note that
the silicone forms a physical barrier which keeps the particles from forming large clusters.
Using individual measurements of diameter from nanoparticles on several micrographs,
the average diameter was estimated as 4.4 nm ± 2.1 nm (see Figure 1c), and the size
distribution was observed to be log normal in character. Although silicone blurs the focus
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considerably, light spaces between the nanoparticles (observable in Figure 1b) suggest that
many are not truly in contact with each other, so that the method was at least partially
successful in disrupting agglomeration. Scanning electron microscopy (SEM) imaging of
the particles also showed the presence of traces of the silicone layer (see Supplementary
Materials, Figure S1).
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Figure 1. Morphology analysis of nanoparticles grown in silicone. (a) Representative TEM im-
age. (b) High-resolution TEM image of the nanoparticles. (c) Histogram of particle sizes fitted to
a lognormal size distribution.

The crystal structure of nanoparticles grown in silicone was probed using X-ray
diffraction; see Figure 2 revealing the spinel structure expected in a magnetic ferrite (JCPDS
No. 74-2401). Due to the small sample size and the diluting factor of the silicone, the
diffraction peaks were very small (<4000 CPS). Using the Nelson–Riley method, the fitted
lattice parameter of 0.8424 nm ± 0.0002 nm was somewhat larger than the bulk lattice
parameter, which ranges from 0.8302 nm to 8311 nm [38,39].
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Figure 2. Background subtracted X-ray diffractogram of silicone-coated nanoparticles using Cu
radiation. Labeled peaks are characteristic of a spinel structure with significant broadening due to
particle sizes.

The peak widths are significantly wider than the instrument baseline. The broadening
obscured some peaks, such as (222) and (622), which are, respectively, overlapped by (311)
and (533). This peak broadening enabled an estimate to be made of the crystallite size using
a Williamson–Hall plot and an assumed shape factor of 0.89 [40–42]. The mean crystallite
size was determined to be 2.12 nm ± 0.17 nm.
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The X-ray spectra gathered using X-ray absorption spectroscopy (XAS) at the L ab-
sorption edges of Mn, Fe, and Zn in the total electron yield and partial fluorescence yield
are shown in Figure 3. The Mn and Fe L-edge spectra show well-resolved 3dn multiplet
structures at two absorption edges with the L3 at a 12–15 eV lower energy than the L2 edge
(around 640 eV and 652 eV for Mn and around 710 eV and 722 eV for Fe). Multiplets
related to a 2p→3d excitation are followed by a gradual and less structured increase in
intensity, known as an edge step (2p→4s excitation). In the case of Zn, no multiplets are
observed due to its full 3d10 electronic configuration, thus only the edge step is present.
The characteristic multiplet features, corresponding to the different charges and crystal
field symmetries of 3d ions, were analyzed by comparing them with the spectra of other
reference oxides probed at the XAS station of Solaris [43].
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Figure 3. X-ray absorption spectra of nanoparticles grown in silicone. (a) The total electron yield
spectra in the Mn, Fe, and Zn L absorption range. Green dashed lines indicate features characteristic
of ions with 2+ oxidation states and gray dotted lines indicate features of 3+ oxidation. (b) The
measured fluorescence yield of Mn, Fe, and Zn.

The Mn L3-edge spectrum of a ferrite is dominated by a high peak at 640.2 eV that
corresponds to Mn2+ situated in octahedral (Oh) sites. However, other features, denoted
on Figure 3a with dashed green lines, differ in intensity with respect to a MnO standard,
which are attributed to Mn3+ in tetrahedral (Td) sites. The lower intensity of the main peak
at 640.2 eV relative to the rest of the Mn L23 multiplet features supports the interpretation of
a significant fraction of manganese ions in higher valence states (3+ or even 4+). A similar
shift in the proportion of peak intensity was also observed between the iron L-edge spectra
of ferrite and an α-Fe2O3 reference. The lack of a characteristic minimum between the main
L3 multiplet features is attributed to a significant fraction of Fe2+ ions in octahedral sites,
which is related to the distribution of zinc among Oh and Td sites. Studied nanoparticles
seem to resemble the normal bulk spinel more closely, having more zinc in Td sites.

The quality of the fluorescence spectra (see Figure 3b) is insufficient to analyze their
shape in detail since the differences observed are within statistical noise. Nevertheless, data
from the measured samples exhibited features similar to those observed in the mixed ferrite.
A qualitative comparison between chemical compositions may be made by comparing the
relative increase in the fluorescence intensity on all the edges. However, since the X-ray
beam size is rather large, artifacts related to the density and thickness of the studied and
reference samples, as well as absorption and fluorescent scattering by silicone, may strongly
affect these numbers.

The composition of nanoparticles grown in silicone was determined using the results
of inductively coupled plasma mass spectroscopy (ICP-MS) and assuming a formula
of (MnxZn1−x)yFe3-yO4 based on the metal content since oxygen cannot be measured
using this method. The determined composition of Mn0.55Zn0.55Fe1.9O4 is near the target
composition. The over-doping of the ferrite, with the ratio of y to 3-y of not being 1 to 2, is
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due to the original proportion of iron to other metals in the reaction mixture. In addition,
EDX and XPS studies of the obtained particles were performed, which also confirm the
results of the above studies (see Supplementary Materials, Figures S2 and S3).

2.2. Silicone Characterization

The temperature stability of the Dow Corning 7-9600 bulk silicone material is crit-
ical for reliable MRI experiments. To determine the stability of the shape, pure silicone
samples were cured in 5 mm glass NMR tubes and exposed to low and high tempera-
tures. Three samples were cooled from room temperature down to −20 ◦C, and three were
heated up to 60 ◦C. The cooled samples showed clear defects in the form of long voids that
appeared below 10 ◦C. The heated samples remained clear and did not show any visible
structural changes. To retain the integrity of the samples, NMR and MRI experiments were
conducted above 10 ◦C.

The infrared absorption profile of the ferrite is simple and consists of a peak at
540 cm−1 (see Figure 4). It is attributed to the overlapping absorbances of octahedral
and tetrahedral E symmetry vibrations of metal–oxygen bonds and is consistent with the
energies previously reported for MnZn ferrites [44]. They are slightly higher than bulk
ferrite with a comparable composition, which may be attributed to lattice strain [45]. The
T2 symmetry phonon mode is expected to have a peak circa 400 cm−1, but this is beyond
the edge of the detection range. The broad peaks at 1550 and 1400 cm−1 are attributable to
acetylacetonate residues that were left over from the reaction.
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Figure 4. FTIR absorption spectra of pure DC7 (top blue) and the DC7 used in the synthesis of MnZn
ferrite nanoparticles (bottom red) clearly showing peaks associated with its matrix.

Importantly, the doped silicone sample shows all peaks of the DC7 silicone matrix
intact. The absorbance at 2961 cm−1 is due to methyl C-H stretching. There is a slight
diminution of this peak, but it cannot be quantified without an accurate template for
subtracting the nanoparticle absorbance. Silicones are far more thermally stable under
nitrogen than under oxygen; however, in conjunction with thermogravimetric data, this
could indicate the onset of depolymerization at 280 ◦C [46,47]. There is also slight chemical
shifting. The Si-O-Si stretching peak at 1007 cm−1 is chemically shifted to 1015 cm−1 and the
Si-C stretching peak at 786 cm−1 is shifted to 795 cm−1, likely due to steric hinderance in the
vicinity of the particles. These shifts involving the polymer backbone, rather than functional
groups, suggest a nonspecific mode of surface adsorption [48]. Any polymerization caused
by the procedure cannot be determined as the only change in the spectrum of DC7 upon
hydrolyzation is a minor peak, not visible on the data presented in Figure 4, forming at
2850 cm−1. It is caused by the stretching of the H-C bond adjacent to the newly formed
C-Si bond. Due to the low intensity of the absorbance pattern of the silicone covering the
nanoparticles, this would be undetectable above the background noise.

In addition, thermogravimetric analysis (TGA) was completed in an argon atmosphere
to determine the percentage of the polymer layer in the total mass of the studied system.
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The TGA curve for silicone with embedded MnZn ferrite nanoparticles is shown in Figure 5.
The initial decrease in weight, between 100 and 200 ◦C, can be associated with the loss of
residual water that is incorporated in the silicone layer. The decomposition of the polymeric
layer starts above 200 ◦C, which is common for polydimethylsiloxanes. The majority of the
degradation occurs between 300 ◦C and 700 ◦C by self-reaction in the absence of oxygen to
form small cyclic dimethylsiloxanes, which completely evaporated [49]. The total weight
loss for the sample was calculated as 59.23%, indicating that in the tested system, the share
of nanoparticles was about 40% (see Figure 5).
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2.3. Magnetometry

Figure 6 shows the temperature dependence of the mass magnetization and hysteresis
loop of grown nanoparticles measured at 200 K. The magnetic hysteresis loop shows
a negligible remanence and very small values of a coercive field (see Figure 6a), indicating
that the particles exhibit superparamagnetic behavior at this temperature. The mass
magnetization (Figure 6b) decreases moderately with an increasing temperature.
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2.4. Nuclear Magnetic Resonance (NMR) Measurements

The ratio of integrals of the NMR spectra of the protons in DC7 silicone to water was
compared at 20 ◦C. The obtained value of 0.70 corresponds well to previously reported
numbers in other polymers (0.65–0.80) [30]. The high abundance of protons indicated
by this value means the silicone will appear bright in proton-weighted MRI scans with
parameters set for water. The summary of the temperature studies of nuclear relaxation
is presented in Figure 7. As seen in Figure 7a, even a low concentration of nanoparticles
drastically reduces the T2

* obtained from the observed linewidth. By comparison, adding
nanoparticles to silicone has little effect on the spin–lattice relaxation times (Figure 7b). Spin
echo amplitudes from the Carr–Purcell–Meiboom–Gill sequence used for measurements of
the T2 relaxation clearly show multiexponential decay [50,51]. These measurements were
analyzed with a two-exponential decay model. Long and short components of T2 were
denoted as a and b, respectively, as shown in Figure 7c. Doping silicone with nanoparticles
has no effect on a short component; however, it significantly shortens a long component.
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2.5. Magnetic Resonance Imaging

MRI measurements were conducted at 18 ◦C (magnet’s bore temperature) on phantoms
consisting of pure silicone and silicone doped with 0.6 mmol L−1 and 1.0 mmol L−1 of
mixed MnZn ferrite. Two groups of experiments were conducted: (1) an attempt to measure
the apparent diffusion coefficient (ADC) and (2) the comparison of morphological image
quality obtained with spin-echo multi-slice (SEMS) and gradient-echo multi-slice (GEMS).

The value of ADC for the studied silicone is well below the lower limit of 10−12 m2s−1

in the MRI scanner configuration. Using the scanner diffusivity limit, a 4 nm MnZn ferrite
particle diameter (approximated as spherical), and an 8 × 105 Am−1 magnetic moment,
a scaling parameter of ∆ωτD > 180� 1 was obtained. In the inequality, ∆ω describes the
Larmor frequency shift of silicon protons due to the magnetic field created by a particle at
its equator, and τD is the translational diffusion time of the silicone protons. For details
on the model of the particles’ motional averaging regimes, and the related calculations,
see the paper by Voung et al. [52]. ∆ωτD � 1 clearly implies that the system is out of
the motional averaging regime. That is, the loss of phase coherence among nuclear spins
happens faster than the diffusion responsible for the spin phase averaging. Note that this
is similar to situations where there is fast diffusion, but the particle sizes are on the order
of micrometers [53].

Cross-sectional MR images of the phantom containing pure DC7 silicone, silicone
doped with two concentrations of MnZn ferrite nanoparticles, and the reference sample of
deionized water with NiCl2 is shown in Figure 8. For the comparison of proton-weighted
MRI and T2

*-weighted MRI, the images were acquired with spin-echo and gradient-echo
sequences, respectively. One can appreciate almost the perfect rephasing of nuclear spins
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by a standard two radio-frequency pulse spin echo sequence in all samples, including the
samples doped with ferrite nanoparticles (Figure 8b). Because of a long repetition time
(TR) of 8 s (TR > 5T1 in DC7 samples) and a relatively short echo time (TE) of 10.37 ms, the
intensity of all samples in Figure 8b is proportional to the amount of hydrogen atoms in the
samples. The ratio of intensity in the region of interest marked by red circles in Figure 8a
of pure DC7 to the water sample is 0.65 ± 0.07, which is slightly smaller than expected
from the NMR spectra calculations, but within the experimental error. As the gradient echo
sequence inherently does not refocus the local magnetic field inhomogeneity images of
the DC7 samples doped with magnetic particles, they are heavily T2

*-weighted, as seen
in Figure 8c. This unique property of the gradient echo sequence is the foundation of the
use of magnetic particles as a temperature contrast agent for MRI [54]. Due to the short T2

*

of the 1.0 mmol L−1 sample (see Figure 7a), the signal is within the noise and the sample
image is not visible. We note that the traces of the signal are visible for the very short echo
time of TE < 2 ms.
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(c) GEMS image. For imaging parameters see the Methods section.

3. Discussion

The structure of nanoparticles produced in the silicone-based synthesis is that of mixed
spinel, as indicated by X-ray diffraction and XAS. The extreme width of the XRD peaks
is indicative of very small particle sizes. Oxygen vacancies in the structure could not be
detected by XRD, but the possible presence of Mn4+ ions, as signaled by XAS, suggests
that stoichiometric quantities of oxygen would tend to neutralize the charge and favor the
Mn2+ state. The incorporation of Mn into octahedral sites is likely encouraged by the slight
deficit of Fe, as indicated by ICP-MS.

These results show that the synthesis of ferrites in silicone produces the expected
crystallographic spinel phase typically obtained by thermal degradation syntheses. We
expect that this will be the general rule for silicones, so long as reactive alkenyl groups are
excluded from the reaction mixture. Future syntheses should reduce the temperature the
mixture is held in. The silicone laden with nanoparticles may be added in small quantities
to a silicone mixture prior to curing to augment the hydrogen T2

* relaxation of the silicone.
Silicones augmented in this way may be useful as MRI phantoms.

The nanoparticles exhibited a linear decrease in mass magnetization values with
an increasing temperature over the entire measured temperature range (230 K to 350 K). The
measured rate of change in the magnetization with temperature was 0.078 Am2kg−1K−1.
We note that a steep decrease in the moment is desirable for tMRI applications.

It has long been known that relaxation mechanisms which affect T1 must also affect
T2, but the converse does not apply [55]. Thus, an observed reduction in T2 values but not
in T1 is unusual, but not impossible. The effective T2 of pure silicone is a composite of
two distinct relaxation rates. A rapid relaxation, which can be attributed to the rotation
of monomer units, and a slow relaxation, that is ascribed to the vacillation of polymer
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chains [56,57]. It is interesting to note that doping silicone with magnetic particles shortens
the long component of T2 (almost 40% at 60 ◦C), while the short component is largely
unaffected by doping.

The dynamics of the particles’ magnetic moment was insufficient to have much in-
fluence on the T1 relaxation of the silicone protons, but promoted the dephasing of the
spins, noticeably decreasing T2

*. As we see in Figure 7a, the values of T2
* are drastically

short. If converted to relaxivity r2
*, as shown in Figure 9, its values above1200 L s−1

mmol−1 are much higher than that of maghemite-based human serum albumin hybrid
nanoparticles, (482 L s−1 mmol−1 reported) which are generally considered powerful r2

*

contrast agents [58].
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The authors believe, however, that such a high value of r2
* is not solely the effect of

the presence of nanoparticles, but it appears only when combined with the lack of proton
diffusion in silicone. Hypothetically, the 3 T field locks the magnetic moments of these
superparamagnetic nanoparticles into alignment (see Figure 6a) and without the proton
diffusion, conditions similar to the static dephasing regime predominate [51,59]. The full
explanation of the observed phenomenon requires a comparison of these presented results
in silicone to results obtained from matrices with a certain degree of proton diffusion, such
as hydrogels, and is the subject of ongoing study.

As a general comment, systematic studies of ferrite nanoparticle growth in silicone
matrices and the influence they may have on all relaxation times are necessary prior to the
application of these composites during MRI-guided ablations. Such studies should include
the effect particle size and concentrations have on silicone’s T1, T2, and T2

* relaxation
times. Moreover, the magnetic heating contribution by nanoparticles should be minimized.
Superparamagnetic particles exhibit very small hysteretic behavior, which significantly
limits the sources of heating caused by the fast switching field gradients of the MRI
scanner [60,61]. However, this hysteretic behavior strongly depends on nanoparticle size.

4. Materials and Methods
4.1. Synthesis of Nanoparticles in Silicone

A 7-9600 Soft Filling Elastomer was purchased from Dow (Midland, MI, USA). Chlo-
roform (≥99%), squalene, dibenzyl ether (DBE, ≥98.0% GC), zinc acetylacetonate hydrate
(Zn(acac)2·xH2O), manganese(II) acetylacetonate (Mn(acac)2, 97%), and iron(III) acetylacet-
onate (Fe(acac)3, 97%) were purchased from Sigma Aldrich (St. Louis, MO, USA). Anhy-
drous ethyl alcohol (ethanol, 99.8%) and n-hexane were purchased from POCH/Avantor
(Gliwice, Poland). Acetone was purchased from Chempur (Piekary Śląskie, Poland). Deion-
ized water was used for all aqueous solutions.
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The metalloorganic precursors were added in the following amounts: 427.4 mg
(1.2 mmol L−1) of Fe(acac)3, 103.2 mg (0.4 mmol L−1) of Zn(acac)2·xH2O, 101.2 mg
(0.4 mmol L−1) of Mn(acac)2 to a 250 mL 3-necked flask containing a stir bar. Then, 20 mL
of Dow-Corning 7-9600 soft filling elastomer part A was added. Part A was selected because
it contains the catalyst and not the unsaturated alkenyl groups. Therefore, it is less likely
to polymerize during synthesis. The flask was capped with septa and a 0.5-meter-high
distilling column with argon bubbled through at approx. 500 mL/min. The mixture was
then heated to 130 ◦C. At this temperature, 10 mL of dibenzyl ether (DBE) was added to
the mixture to limit the vaporization of the metal salts. The mixture was heated first to
200 ◦C and held for 30 min. Next, its temperature was increased to 280 ◦C and maintained
at this temperature for 60 min to drive the process to completion.

The tendency of many ethers to form explosive peroxides is well documented [62]. It
is advisable to use fresh DBE, especially given the high temperatures required for synthesis.
Because DBE will reflux during synthesis, thereby increasing the possibility of peroxide
formation, it is important that oxygen be displaced from the reactor prior to heating and to
maintain the resulting solution under an inert atmosphere until it is fully cooled. The use
of silicone-based septa or other high-temperature polymers is important for protecting the
solution during the reaction.

After cooling down to room temperature, the solution was then washed with 300 mL
of equal parts acetone and n-hexane and precipitated for 3 days in the field of a strong
magnet. The precipitate was resuspended in chloroform, drawn down again using a strong
magnet, and then resuspended a final time in chloroform.

4.2. Microscopy Methods

Transmission electron microscopy (TEM) was performed using a Tecnai TF 20 X-TWIN
microscope (FEI, Hilsboro, OR, USA) upon samples dispersed with ethanol on a copper
grid. Energy dispersion X-ray spectroscopy confirmed the presence of all the desired
elements. The clustering behavior of the particles was probed using a FEI VERSA 3D
scanning electron microscope (SEM) (FEI, Hilsboro, OR, USA) or a Tescan VEGA3 SEM
(Brno, Czech Republic). The SEM and TEM images were analyzed with Image-J software
(version 1.53, NIH, Bethesda, MD, USA) by individually measuring the long axis of the
nanoparticles from several micrographs.

4.3. X-ray Diffractometry

Powder X-ray diffraction (XRD) was performed with a Rigaku SmartLab multipurpose
X-ray system (Tokyo, Japan) equipped with a Cu X-ray source. Diffractograms were
analyzed with Rigaku PDXL 2 (version 13, Rigaku, Tokyo, Japan) data processing software
and the particle sizes were determined, based on XRD measurements, using Mathematica
13 (version 13.1, Wolfram Research, Champaign, IL, USA).

4.4. Spectroscopy

Soft X-ray absorption spectroscopy (XAS) was performed at room temperature at
the PEEM/XAS beamline station of the Solaris National Synchrotron Radiation Center in
Krakow, Poland [43]. The beamline was passed through a plane grating monochromator
which has a resolving power of E/∆E > 4000. Samples of pure DC7 and DC7 doped with
nanoparticles were probed at the Mn, Zn, and Fe L2 edges using the surface-sensitive
(~5 nm information depth) total electron yield (TEY) and volume sensitive partial fluo-
rescence yield (PFY) detection modes. The sample spectra were compared with that of
a MnZn ferrite of a known composition.

Fourier transform infrared spectroscopy (FTIR) was performed using a Nicolet iS5
(Waltham, MA, USA) equipped with an iD7 ATR diamond lens for attenuated total re-
flectance over the 400 to 4000 cm−1 (12 to 120 THz) range. Peaks were identified using
Origin 2022 software (version 2022b, OriginLab Corporation, Northampton, MA, USA).
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4.5. Magnetometry

Magnetometry was performed using a vibrating sample magnetometer (Model 7407,
by Lake Shore, Carson, CA, USA) using a 1.5 T applied field. Hysteresis curves were
gathered at 200 K and the temperature dependence of the magnetic moment was measured
from 230 K to 350 K.

4.6. Nuclear Relaxation Time Measurements

A portion of the nanoparticle suspension in chloroform was dried in open air to leave
a residue of nanoparticles which was then thoroughly mixed into additional DC7 Part A to
make a 2.0 mmol L−1 (by formula weight) suspension. This was divided into 3 portions,
2 of which were further diluted to make 1.0 mmol L−1 and 0.6 mmol L−1 suspensions. DC7
Part B was added to each and mixed thoroughly. The samples were vacuum degassed under
a residual pressure of 120 mbar until no bubbles could be seen on the surface. A syringe
with a 5 mm bore was used to inject a metered amount of material into standard 5 mm
glass NMR tubes.

The temperature dependence of spin–lattice (T1), spin–spin (T2), and spin dephasing
(T2

*) relaxation times of protons in the DC7 elastomer in a pure sample and a sample
doped with MnZn ferrite nanoparticles at a concentration of 0.6 mmol L−1 (160 µg/mL)
and 1 mmol L−1 (240 µg mL−1) was determined in the temperature range of 20 ◦C to
60 ◦C, in 10 degree steps. Measurements were conducted using a 3.0 T (128 MHz) pulse
NMR spectrometer (Redstone console manufactured by Tecmag, Houston, TX, USA) and
a standard bore 54 mm superconducting magnet manufactured by Oxford Instruments,
Abingdon, UK [63]. The samples were cured in standard 5 mm glass tubes (Wilmad-
LabGlass, Vineland, NJ, USA).

A 3.0 T NMR magnet was initially shimmed using a pure DC7 sample at 20 ◦C to
achieve the spectra linewidth below 4 Hz. Linewidth was defined as the full width at
half maximum of a Lorentzian line fit to the experimental spectra obtained after a Fourier
Transform of the free induction decay (sequence details: 90◦ pulse 13.4 µs, TR = 5 s). The
observed linewidth at each temperature was used to calculate the corresponding T2

* values
using: T*

2 = 1
π·FWHM [64]. The spectrum, T1 (125 ms) and T2 (90 ms), of the sample of

10 mM of NiCl2 deionized water was also registered at 20 ◦C. The spectra of protons in
water and pure DC7 were integrated to obtain the ratios of hydrogen atoms in silicone to
those in water. T1 relaxation times were measured using a standard inversion recovery
sequence (180◦ pulse = 26.8 µs, 90◦ pulse = 13.4 µs, repetition time = 5 s; inversion time
array included 20 delays in the range of 20 ms to 14 s). T2 relaxation times were measured
using a Carr–Purcel–Meiboom–Gill sequence (90◦ pulse = 13.4 µs, 180◦ pulse = 26.8 µs
CPMG loop consisting of 20 delays from 60 ms to 1240 ms).

4.7. Magnetic Resonance Imaging

The MRI experiments were carried out in an Agilent preclinical scanner with a 3.0 T,
30 cm bore magnet (Agilent, Santa Clara, CA, USA). For details, see reference [65]. Images
were taken at the magnet’s bore temperature of 18 ◦C using the samples from NMR arranged
in a custom polylactic acid sample holder. Two groups of experiments were conducted:
(1) an attempt to measure the apparent diffusion coefficient (ADC) and (2) a comparison of
the image intensity and quality obtained with spin-echo (SEMS) and gradient-echo (GEMS).

ADC was measured with a standard pulsed-gradient spin-echo (PGSE) sequence with
b-values reaching to 2000 s/mm2 [66]. The imaging geometry parameters for SEMS and
GEMS were identical: field of view = 25 × 25 mm2, slice thickness = 5 mm, acquisition ma-
trix = 64×64 pixels, and in-plane resolution = 0.39 mm/pixel. Sequence timing parameters:
for SEMS—TR = 8 s, TE = 10.37 ms; for GEMS—TR = 8 s, TE = 2.36 ms, flip angle = 90◦.

The NMR spectroscopic data, relaxation data, and MR images were processed using
Python-based software developed in-house. Figures were created using Origin 2022 (ver-
sion 2022b). The statistical analysis of regression and correlation was conducted using
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the Prizm software (GraphPad Prism version 5.00 for Windows, GraphPad Software, San
Diego, CA, USA). Mathematica 13 (version 13.1).

4.8. Inductively Coupled Plasma-Mass Spectrometry

The atomic ratios of metal ions present in the samples were determined by ICP-MS.
The samples were dissolved in fresh aqua regia, the solutions were diluted, and then the
pH was neutralized. These samples were then tested according to EPA protocol 200.7
by the Colorado Department of Public Health and Environment Laboratory in Denver,
CO, USA [67].

5. Conclusions

The proposed synthesis method allows mixed MnZn ferrite nanoparticles to grow
in a medical-grade silicone matrix. The grown particles are well dispersed, superparam-
agnetic, and show high magnetization values. Due to the restricted diffusion of silicone
molecules, embedded particles do not influence the T1 and T2 relaxation times of silicone
1H nuclei, but drastically reduce their T2

* values. This phenomenon is clearly visible in
the intensity of T2

*-weighted MR images acquired with the gradient echo method. How-
ever, the observed moderate temperature dependence of magnetization requires a further
tuning of the composition of nanoparticles for the use of fabricated magnetosilicones as
temperature sensors for MRI thermometry.
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3. Özcan-Taşkin, N.G.; Padron, G.; Voelkel, A. Effect of Particle Type on the Mechanisms of Break up of Nanoscale Particle Clusters.

Chem. Eng. Res. Des. 2009, 87, 468–473. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms24065685/s1
https://www.mdpi.com/article/10.3390/ijms24065685/s1
http://doi.org/10.3390/ma14143882
http://www.ncbi.nlm.nih.gov/pubmed/34300803
http://doi.org/10.3109/17435390.2010.528846
http://www.ncbi.nlm.nih.gov/pubmed/21073401
http://doi.org/10.1016/j.cherd.2008.12.012


Int. J. Mol. Sci. 2023, 24, 5685 13 of 15

4. Krzosa, R.; Wojtas, K.; Golec, J.; Makowski, Ł.; Orciuch, W.; Adamek, R. Modelling Particle Deagglomeration in a Batch
Homogenizer Using Full CFD and Mechanistic Models. Chem. Process Eng.-Inz. Chem. Proces. 2021, 42, 105–118. [CrossRef]

5. Cohen, J.M.; Beltran-Huarac, J.; Pyrgiotakis, G.; Demokritou, P. Effective Delivery of Sonication Energy to Fast Settling and
Agglomerating Nanomaterial Suspensions for Cellular Studies: Implications for Stability, Particle Kinetics, Dosimetry and
Toxicity. NanoImpact 2018, 10, 81–86. [CrossRef]

6. Bałdyga, J.; Makowski, Ł.; Orciuch, W.; Sauter, C.; Schuchmann, H.P. Deagglomeration Processes in High-Shear Devices. Chem.
Eng. Res. Des. 2008, 86, 1369–1381. [CrossRef]

7. Kim, S.C.; Chen, D.-R.; Qi, C.; Gelein, R.M.; Finkelstein, J.N.; Elder, A.; Bentley, K.; Oberdörster, G.; Pui, D.Y.H. A Nanoparticle
Dispersion Method for in Vitro and in Vivo Nanotoxicity Study. Nanotoxicology 2010, 4, 42–51. [CrossRef]

8. Bałdyga, J. Mixing and Fluid Dynamics Effects in Particle Precipitation Processes. KONA Powder Part. J. 2016, 33, 127–149.
[CrossRef]

9. Shrestha, S.; Wang, B.; Dutta, P. Nanoparticle Processing: Understanding and Controlling Aggregation. Adv. Colloid Interface Sci.
2020, 279, 102162. [CrossRef]

10. Jo, Y.-S.; Lee, H.-J.; Park, H.-M.; Na, T.-W.; Jung, J.-S.; Min, S.-H.; Kim, Y.K.; Yang, S.-M. Chemical Vapor Synthesis of Nonagglom-
erated Nickel Nanoparticles by In-Flight Coating. ACS Omega 2021, 6, 27842–27850. [CrossRef]

11. Zheng, R.; Guo, J.; Cai, X.; Bin, L.; Lu, C.; Singh, A.; Trivedi, M.; Kumar, A.; Liu, J. Manganese Complexes and Manganese-Based
Metal-Organic Frameworks as Contrast Agents in MRI and Chemotherapeutics Agents: Applications and Prospects. Colloids Surf.
B Biointerfaces 2022, 213, 112432. [CrossRef]

12. Yan, X.; Chen, J.-Q.; Hu, M.-L.; Sakiyama, H.; Muddassir, M.; Liu, J.-Q. Syntheses, Structures and Mechanisms of Interactions
with DNA of Two New 20-Core Silver(I) Complexes with Different Ligands. Inorg. Chim. Acta 2023, 546, 121297. [CrossRef]

13. Rösch, L.; Weidner, R. Polymerization Chemistry of Silicones. In Encyclopedia of Materials: Science and Technology; Elsevier:
Amsterdam, The Netherlands, 2001; pp. 7635–7638, ISBN 978-0-08-043152-9.

14. Wu, C.; Li, W.; Gao, D.; Jia, M. Study of Resistance of Silicone Resin to Heat and Irradiation. Polym.-Plast. Technol. Eng. 2009, 48,
1094–1100. [CrossRef]

15. Marmo, A.C.; Grunlan, M.A. Biomedical Silicones: Leveraging Additive Strategies to Propel Modern Utility. ACS Macro Lett.
2023, 12, 172–182. [CrossRef]

16. Chou, F.-Y.; Hara, S.; Uchida, K.; Matsuo, Y.; Masuda, T.; Yokoi, R.; Ono, T.; Anraku, M.; Isoyama, T.; Takai, M. Functionalized
Silicone Elastomer via Alkaline Solution to Coat Phosphorylcholine-Based Copolymer Containing Organosilane to Improve
Hemocompatibility for Medical Devices. Front. Mater. 2022, 9, 877755. [CrossRef]
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