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Abstract: Extracellular vesicles (EVs) are nano-scaled vesicles released from all cell types into extra-
cellular fluids and specifically contain signature molecules of the original cells and tissues, including
the placenta. Placenta-derived EVs can be detected in maternal circulation at as early as six weeks of
gestation, and their release can be triggered by the oxygen level and glucose concentration. Placental-
associated complications such as preeclampsia, fetal growth restriction, and gestational diabetes
have alterations in placenta-derived EVs in maternal plasma, and this can be used as a liquid biopsy
for the diagnosis, prediction, and monitoring of such pregnancy complications. Alpha-thalassemia
major (“homozygous alpha-thalassemia-1”) or hemoglobin Bart’s disease is the most severe form
of thalassemia disease, and this condition is lethal for the fetus. Women with Bart’s hydrops fetalis
demonstrate signs of placental hypoxia and placentomegaly, thereby placenta-derived EVs provide
an opportunity for a non-invasive liquid biopsy of this lethal condition. In this article, we introduced
clinical features and current diagnostic markers of Bart’s hydrops fetalis, extensively summarize the
characteristics and biology of placenta-derived EVs, and discuss the challenges and opportunities
of placenta-derived EVs as part of diagnostic tests for placental complications focusing on Bart’s
hydrop fetalis.

Keywords: biomarkers; diagnosis; exosomes; hemoglobinopathy; hydrop fetalis; liquid biopsy;
placental hypoxia; thalassemia

1. Introduction

Thalassemia is the most common hematologic genetic disease in Southeast Asia.
Alpha-thalassemia major (homozygous alpha-thalassemia-1) or hemoglobin (Hb) Bart’s
disease is the most severe form of thalassemia disease [1–5]. The prevalence of Hb Bart’s
disease is approximately 0.23% [6], with a deletion frequency in Southeast Asia as high as
4.5–5% [7]. The term Hb Bart’s hydrops fetalis was first described in 1960 [8] and the fetuses
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with this condition are characterized by severe anemia, hypoxia, heart failure, and hydrops
fetalis (accumulation of body fluid) [9]. Unfortunately, these fetuses usually die in utero or
in the early neonatal period, although the survivors after gene therapy or bone marrow
transplantation have been reported [10–12]. These survivors remain transfusion dependent.

Molecular diagnosis of Hb Bart’s hydrops fetalis is characterized by homozygous α-
thalassemia-1 (-/-); therefore, the entire delta and globin gene clusters are lacking but present
only Hb Bart’s (γ4) [1]. Such Hb has a high oxygen affinity, creating widespread tissue hy-
poxia and fetal anemia. Hemodynamic changes in fetal anemia are cardiomyopathy, increased
intravascular volume, hepatic extramedullary hematopoiesis, and widespread endothelial
cell damage resulting in cardiomegaly, hepatosplenomegaly, and placentomegaly [13,14].
Currently, prenatal screening of this condition is possibly performed by the determination
of the mean corpuscular volume, dichlorophenolindophenol, osmotic fragility, or Hb typ-
ing [15,16]. Any couple at risk of Hb Bart’s hydrops fetalis is counseled to perform an invasive
diagnostic test (chorionic villus sampling, amniocentesis, or cordocentesis) or to follow up
with a non-invasive approach by performing ultrasonography to evaluate the cardiac diame-
ter/thoracic ratio (CTR), middle cerebral artery peak systolic velocity (MCA PSV), or placental
thickness [17–21]. Maternal blood biomarkers including non-invasive prenatal diagnosis tests
such as prenatal cell-free fetal DNA for the identification of Hb Bart’s hydrops fetalis are poor
predictors, thus, they are not routinely used in a clinical setting [22–27].

With a better understanding of intercellular communication, the role of extracellular
vesicles (EVs) has emerged [28–32]. Accumulating evidence has shown that placenta-
derived EVs can be identified in maternal plasma at as early as six weeks of gestation and
their concentrations have increased as a function of gestation in normal pregnancy [33]. Ma-
ternal plasma concentrations of placenta-derived EVs released by the syncytiotrophoblast
are further increased in pregnancy complications associated with placental hypoxia [34–37].
In this article, we will summarize the current evidence of biomarkers for the identification
of Hb Bart’s hydrops fetalis, a condition associated with placental hypoxia [38], and discuss
the challenges and opportunities of clinical implications of placenta-derived EVs for this
lethal disease.

2. Bart’s Hydrops Fetalis: Clinical Perspectives and Current Diagnostic Procedures

In Hb Bart’s disease, the placenta can range from near normal in appearance to
enlarged, friable, pale, and edematous (hydropic) [39,40] (Figure 1a). Their weights are
often excessive, as much as 2 kg [21]. These changes reflect the adaptive placental response
to severe and prolonged intrauterine hypoxia, beginning as early as the first trimester of
pregnancy. The placental changes in Hb Bart’s disease involve both villous maturation and
vascularity [41–43].

In the normal placenta, mesenchymal villi first develop at 5 weeks’ of gestation, serving
as the precursors to more mature villous types. Around 8 weeks of gestation, mesenchymal
villi develop into immature intermediate villi, which become the predominant type by
14–20 weeks of gestation. As the pregnancy proceeds, immature intermediate villi transform
into stem villi. Throughout the third trimester, mesenchymal villi differentiate into mature
intermediate villi, which then later produce terminal villi growing in grape-like clusters as
the final stage of villous development [44]. The placenta in Hb Bart’s hydrops increases
the number of immature intermediate villi, which persist despite advancing in gestational
age, and this finding is referred to as “generalized delayed villous maturation” [38,40].
Although Hb Bart’s fetuses suffer from severe anemia, the survival in the embryonic period
is uneventful because of the production of the embryonic Hbs Portland I (ζ2γ2) and Gower
I (ζ2ε2), which maintain the Fetal-placental circulation [45]. The switching from embryonic
to abnormal fetal Hb (Hb Bart’s) that occurs around 6–8 weeks of gestation is concurrent
with the transition of mesenchymal villi to immature intermediate villi [19,21,40]. This
switch to an abnormal Hb may initiate or aggravate the increase in the number of immature
intermediate villi, resulting in the persistence of such villi throughout gestation.
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Figure 1. Placental pathology in Hb Bart’s disease. (a) The placenta belonging to Hb Bart’s disease 
shows enlarged, pale, and edematous cut surfaces in comparison to the placenta of non-Hb Bart’s 
disease (d). (b) Immature intermediate villi with a bulbous contour possessing conspicuous myofi-
broblasts at the periphery beneath the trophoblastic layer referred to as peripheral villous stromal 
hypercellularity in comparison to the control (e) (hematoxylin and eosin, original magnification 
×400). (c) A branching vascular pattern with increased vessel number and endothelial thickness in 
comparison to the control (f) (CD34 immunostaining, original magnification ×600). 
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like clusters as the final stage of villous development [44]. The placenta in Hb Bart’s hy-
drops increases the number of immature intermediate villi, which persist despite advanc-
ing in gestational age, and this finding is referred to as “generalized delayed villous mat-
uration” [38,40]. Although Hb Bart’s fetuses suffer from severe anemia, the survival in the 
embryonic period is uneventful because of the production of the embryonic Hbs Portland 
I (ζ2γ2) and Gower I (ζ2ε2), which maintain the Fetal-placental circulation [45]. The 
switching from embryonic to abnormal fetal Hb (Hb Bart’s) that occurs around 6–8 weeks 
of gestation is concurrent with the transition of mesenchymal villi to immature interme-
diate villi [19,21,40]. This switch to an abnormal Hb may initiate or aggravate the increase 
in the number of immature intermediate villi, resulting in the persistence of such villi 
throughout gestation.  

Other villous changes in the Hb Bart’s placenta involve the villous stroma and the 
cytotrophoblastic cells that cover the villous stroma. Cytotrophoblastic cells tend to be 
numerous and conspicuous in the Hb Bart’s placenta throughout gestation, in contrast to 
placentas in uncomplicated pregnancies where these cells become scarce by the third tri-
mester [40]. Chronic hypoxia stimulates the proliferation of such cells but inhibits their 
fusion and differentiation into syncytiotrophoblast [42]. Within the stroma of the imma-
ture and mature intermediate villi of the Hb Bart’s placenta, there is often a characteristic 
increase in the number of stromal cells at the periphery beneath the trophoblast layer, a 
finding referred to as “peripheral villous stromal hypercellularity (PVSH)” [40] (Figure 
1b). This change is seen in >80% of Hb Bart’s cases and is usually multifocal. PVSH is 
hypothesized to be a placental adaptation to chronic hypoxia, in utero. The immature in-
termediate villi have a large diameter, and their predominance in the Hb Bart’s placenta 

Figure 1. Placental pathology in Hb Bart’s disease. (a) The placenta belonging to Hb Bart’s disease
shows enlarged, pale, and edematous cut surfaces in comparison to the placenta of non-Hb Bart’s
disease (d). (b) Immature intermediate villi with a bulbous contour possessing conspicuous myofi-
broblasts at the periphery beneath the trophoblastic layer referred to as peripheral villous stromal
hypercellularity in comparison to the control (e) (hematoxylin and eosin, original magnification
×400). (c) A branching vascular pattern with increased vessel number and endothelial thickness in
comparison to the control (f) (CD34 immunostaining, original magnification ×600).

Other villous changes in the Hb Bart’s placenta involve the villous stroma and the
cytotrophoblastic cells that cover the villous stroma. Cytotrophoblastic cells tend to be
numerous and conspicuous in the Hb Bart’s placenta throughout gestation, in contrast
to placentas in uncomplicated pregnancies where these cells become scarce by the third
trimester [40]. Chronic hypoxia stimulates the proliferation of such cells but inhibits their
fusion and differentiation into syncytiotrophoblast [42]. Within the stroma of the imma-
ture and mature intermediate villi of the Hb Bart’s placenta, there is often a characteristic
increase in the number of stromal cells at the periphery beneath the trophoblast layer, a
finding referred to as “peripheral villous stromal hypercellularity (PVSH)” [40] (Figure 1b).
This change is seen in >80% of Hb Bart’s cases and is usually multifocal. PVSH is hypothe-
sized to be a placental adaptation to chronic hypoxia, in utero. The immature intermediate
villi have a large diameter, and their predominance in the Hb Bart’s placenta leads to the
narrowing of the intervillous space, impeding fetoplacental oxygen and nutrition transfer.
Contraction of the myofibroblastic cells in PVSH would serve to reduce the villous size,
thereby widening the intervillous space for an increase in the maternal blood flow.

Vascular formation is a crucial step in placental development, and this is influenced by
numerous factors, one of which is chronic hypoxia [21,41,42]. The pattern of the placental
vascular adaptive response is influenced by the source of chronic hypoxia and can be
classified into pre-placental (maternal), placental, and post-placental (fetal) sources. Pre-
placental causes of hypoxia include maternal anemia, maternal diabetes, or maternal
smoking, whereas placental causes result from a restricted supply of normoxic maternal
blood to the placenta, as seen with preeclampsia at term and fetal growth restriction with
preserved end-diastolic flow in umbilical arteries. In these situations, the oxygen level
of the intervillous space is low and this stimulates a predominantly branching pattern of
villous vascularization. On the other hand, in post-placental hypoxia, there is a failure of
the fetoplacental extraction of oxygen from the intervillous space. Post-placental hypoxia
can be observed in stillbirth or fetal growth restriction with an absent or reverse end-
diastolic umbilical blood flow. The relatively high oxygen level in the intervillous space
stimulates a predominantly non-branching pattern of villous vascularization. An increased
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number of villous vessels can be seen in pre-placental, placental, and post-placental hypoxia
(Figure 1c).

Patterns of placental vasculature can be accurately assessed with the aid of computer-
assisted measurements on placental histologic sections [38]. In Hb Bart’s, the number of
villous vessels in the placenta is markedly increased. There is also a significant increase
in the vascular perimeter and endothelial thickness. The etiology of the hypoxia-induced
placental vascularization is multifactorial in Hb Bart’s disease. Morphometric studies have
identified a branching vascular pattern, a change that is associated with pre-placental
and placental hypoxia. This change is thought to have its basis for the marked placental
enlargement, which compromised the blood flow, from the uterine distention and the
generally diminished intervillous space due to the numerous intermediate types of villi.
However, post-placental hypoxia is also likely to be in effect, given the greatly reduced
capacity of Hb Bart’s to extract oxygen from the intervillous space.

Current Biomarkers for Hemoglobin Bart’s Disease

The non-invasive prenatal diagnosis test (NIPD) for fetal Hb Bart’s disease utilizes
sonographic and maternal serum biomarkers as screening tools. Nonetheless, in actual
practice, only sonographic markers are available, whereas serum biomarkers are rarely
used in practice. Sonographic markers can accurately predict fetal Hb Bart’s disease
as early as the late first trimester (12–15 weeks of gestation), with a detection rate of
90–95 percent [46–49]. Almost all cases of fetal Hb Bart’s disease are detected at gestational
age (GA) 18–22 weeks. Leng et al. showed that the overall sensitivity and specificity
of sonographic markers throughout the gestational period are 100 percent and 95.6 per-
cent, respectively [50]. The potential sonographic markers for predicting fetal Hb Bart’s
disease [48,49,51–53] include the following:

• a cardiac diameter/thoracic diameter ratio (CTR) with a cut-off value of 0.5
at mid-pregnancy;

• a high peak systolic velocity of the middle cerebral artery (MCA-PSV) with a cut-off
value of 1.5 multiple of median (MoM), and;

• an increase in the placental thickness with a cut off value of 1.8 cm in the late first
trimester and 3 cm at mid-pregnancy.

Additionally, several other sonographic markers can also support the diagnosis of fetal
Hb Bart’s disease, including nuchal translucency, heart circumference, liver length, splenic
circumference, and splenic artery peak systolic velocity [49,54–57]. The performance of
sonographic markers is shown in Table 1. Serial ultrasound screening for Hb Bart’s disease
during pregnancy, beginning in the first trimester and continuing every 2–4 weeks until
24 weeks, has a sensitivity of 100 percent in detecting pre-hydropic signs and a false positive
rate of 10.9 percent. It also reduces the rate of invasive procedures by 70 percent. Hence, in
normal practice, the sonographic marker is recommended for the routine screening of fetal
Hb Bart’s disease [58]. The main limitations of serial ultrasound are that it requires specific
equipment and it is operator-dependent.

Table 1. Performance of Sonographic Markers in Predicting Fetal Hb Bart’s Disease.

Study Gestational
Age (Week) Cut-Off Value Sensitivity (%) Specificity (%) References

Potential
biomarkers

Cardio-thoracic diameter ratio
12–15 ≥0.50 75–100 90–100

[18,46–50,59]
18–22 ≥0.52 88–100 87–96

Middle cerebral artery—peak
systolic velocity

12–15 ≥1.5 MoM 17–56 79–96
[48,49,53]

16–22 ≥1.5 MoM 64–85 98–100

Placental thickness
12–15 ≥18 mm 72.9 68.8

[48,49,52]
18–22 ≥30 mm 74–100 96.1
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Table 1. Cont.

Study Gestational
Age (Week) Cut-Off Value Sensitivity (%) Specificity (%) References

Other additional
biomarkers

Thickened nuchal
translucency 11–14 >95th percentile 16.7 98.6 [49]

Cardio-biparietal
diameter ratio 17–22 ≥0.45 84–91 77–93 [60,61]

Cardiac circumference 15–22 1.17 MoM 86.4 78.1 [57]

Global sphericity index 18–22 1.17 74.1 88.2 [62]

Liver length 18–22 ≥27.0 mm 71.3 95.5 [54]

Splenic circumference 18–22 ≥1.5 MoM 70.1 83.0 [63]

Splenic artery—peak
systolic velocity 18–22 ≥1.51 MoM 84.4 98.1 [55]

Abbreviation: MoM, multiples of the median.

The studies of maternal serum biomarkers, as a part of the second trimester Down syn-
drome screening [gestational age (GA) 18–22 weeks], demonstrated that serum biomarkers
could also predict Hb Bart’s disease. Several maternal serum biomarkers used in routine
fetal Down syndrome screening, such as free beta-human chorionic gonadotropin (β-hCG),
inhibin-A, pregnancy-associated plasma protein-A (PAPP-A), alpha-fetoprotein (MAFP),
and unconjugated estriol (uE3), are probably useful in predicting fetal Hb Bart’s disease.
Increased β-hCG, inhibin-A, and PAPP-A levels have been noted from the increased placen-
tal hormone synthesis due to placentomegaly in fetal Hb Bart’s disease [22]. Additionally,
elevated MAFP and decreased uE3 levels are observed because of hepatomegaly caused
by extramedullary hematopoiesis secondary to fetal anemia [64]. According to the study
conducted by Wanapirak et al. in 2018 [27], the most significant single predictor is MAFP
with a cut-off greater than 1.5 MoM. (The sensitivity of 87.2 percent and the specificity of
74.5 percent). The combination prediction model including AFP and uE3 provided the
best diagnostic performance. With the probability cut-off point greater than 0.5, the model
gave an acceptable sensitivity of 61.5 percent and a high specificity of 98.1 percent [23].
However, using serum markers as a single tool in screening for fetal Hb Bart’s is not satis-
factory. These markers are primarily used to screen for Down syndrome and neural tube
defects in fetuses. Moreover, fetal anemia secondary to any causes other than Hb Bart’s
disease, such as alloimmunization or Parvovirus B19, can result in an unexpected increase
in the MAFP levels. However, the clinicians should take advantage of the second-trimester
maternal serum screening to simultaneously screen for fetal Hb Bart’s disease, especially
in geographical areas of high prevalence. Combining serum markers (MAFP) with sono-
graphic markers such as CTR, placental thickness, and MCA-PSV may be beneficial with
a sensitivity of approximately 48–69 percent and a specificity of 88.9–100 percent [64], as
shown in Table 2. Similarly, the placental growth factor (PlGF) and soluble fms-like tyrosine
kinase-1 (sFlt-1) commonly used in predicting preeclampsia were also demonstrated to be
useful in screening for fetal Hb Bart’s disease. Thus, in fetal Hb Bart’s disease, a significant
increase in PlGF and a decrease in the sFlt-1/PlGF ratio are observed, although sFlt-1 is
marginally enhanced (p values of 0.008, 0.139, and 0.001 respectively) [24].

The novel technology of NIPD using maternal plasma cell-free fetal DNA (cffDNA),
has been developed and is now utilized to screen common fetal aneuploidies, microdele-
tion/ microduplication syndromes, and monogenic disorders after 10 weeks of gestation.
In thalassemia, significant progress has been achieved in developing NIPD as an effective
screening method. The challenge for development is separating cffDNA from maternal
DNA. Several techniques such as reverse transcription-quantitative PCR (RT-qPCR) using
the gap-PCR technique, droplet digital PCR (ddPCR), and next-generation sequencing
(NGS) have been developed for NIPD [6,65–71]. The NGS techniques in particular, are
highly sensitive and enable the detection of small amounts of cffDNA. According to a recent
study involving 878 cases at risk of fetal Hb Bart’s disease, the sensitivity and specificity in
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detecting fetal Hb Bart’s disease as early as 11–13 weeks of gestation were 98.98 percent
and 96.06 percent, respectively [6]. However, the high costs, complex techniques, and
unavailability in clinical laboratories make them inappropriate to use in routine clinical
practices. In addition, this technique requires further validation. Thus, the search for
other biomarkers is continuing. Table 3 demonstrates the advantages and disadvantages of
different biomarkers for the identification of Hb Bart’s hydrops fetalis.

Table 2. Performance of Maternal Biomarkers in Predicting Fetal Hb Bart’s Disease.

Specimens/Procedures Biomarkers Cut-Off Value Test Performance References

Fetal cell-free DNA Fetal cell-free DNA
(GA 11–13 weeks) - sens: 98.08%

spec: 96.06% [6]

Maternal serum
biomarker in

second trimester

MAFP ≥1.5 MoM sens: 87.2%
spec: 74.5%

[23–25,27,64]

uE3 <5th percentile p < 0.001

Free β-hCG Increased p = 0.543

PAPP-A Increased p = 0.777

Inhibin-A Increased p = 0.001

PlGF Increased p = 0.008

sFlt-1 Increased p = 0.139

sFlt-1/PlGF ratio Decreased p = 0.001

Combined
biochemical and
imaging markers

Predictive model (MAFP + uE3)
1/1 + e−[2.876 + 1.333(AFP_MoM) − 6.310(uE3_MoM)] 0.5 sens: 61.5%

spec: 98.1%

[64]

MAFP + MCA-PSV (>1.5 MoM) - sens: 97.9%
spec: 69.1%

MAFP + CTR (>0.5) - sens: 100.0%
spec: 59.3%

MAFP + Placental thickness (>3.0 cm) - sens: 88.9%
spec: 69.5%

MAFP + MCA-PSV + CTR - sens: 100.0%
spec: 48.1%

Abbreviations: β-hCG, human chorionic gonadotropin beta-subunit; CTR, cardiac diameter/thoracic diam-
eter ratio; GA, gestational age; MAFP, maternal alpha fetoprotein; MCA-PSV, peak systolic velocity in the
fetal middle cerebral artery; MoM, multiples of the median; PAPP-A, pregnancy associated plasma protein-
A; PlGF, placental growth factor; sens, sensitivity; sFlt-1, soluble fms-like tyrosine kinase-1; spec, specificity;
uE3: unconjugated estriol.

Table 3. Advantages and disadvantages of different biomarkers for the identification of Hb Bart’s
hydrops fetalis.

Advantages Disadvantages

Sonographic markers Non-invasive technique
High predictive performance

Require specialized sonographers
Require specific equipment

Operator-dependent

Biochemical markers
Non-invasive technique

Can perform simultaneously with second trimester
Down syndrome screening

Poor predictive performance
Require validation

Other conditions such as infection can interfere
with the result



Int. J. Mol. Sci. 2023, 24, 5658 7 of 24

Table 3. Cont.

Advantages Disadvantages

Cell-free fetal DNA

Non-invasive technique
High predictive performance

Can perform simultaneously with Down
syndrome screening

Relatively high costs
Complex techniques and laboratory device

Requires further validation. Thus, the search for
other biomarkers is continuing

Extracellular vesicles

Non-invasive technique
Contain molecular information of dynamic cell and
tissue states of disease pathophysiological changes

and complications
Compatible with multiple etiologies of hydrop fetalis

Relatively high costs
Complex techniques and laboratory device

Predictive performance requires further studies

3. Extracellular Vesicles (EVs) as a Source of Non-Invasive Liquid Biopsy

EVs are membrane-bound vesicles containing cytosol from secreting cells enclosed
in lipid bilayer structures, released into the extracellular environment from all cell types
including trophoblasts [72], erythrocytes [73], and endothelial cells [74]. They carry specific
cargos containing lipids, proteins, and nucleic acids (i.e., mRNAs, microRNAs, long non-
coding RNA, and DNA fragments). EVs play a crucial role in cell-to-cell communication
including fetal–maternal communication by the regulation of several biological processes,
mediated by their surface receptors and their contents [29,36,75–82]. The concept of EVs was
first introduced in 1860s by Charles Darwin [83] who proposed the theory of Pangenesis
to understand the mechanisms of inheritance and the cause of natural variation [84].
Other than cell division for transferring genetic information, every cell in the body can
produce particles containing diverse molecules called “gemmules” traversing to other
cell types [83,84]. The first evidence of cell trafficking between the mother and the fetus
was reported by Georg Schmorl in 1893 who demonstrated the fetal cells in the form of
thrombin containing multinucleated syncytial giant cells in the lungs of pregnant women
with eclampsia [85,86]. In the context of EV, placenta-derived EVs enter target cells in the
uterus by endocytosis and are trafficked to early and late endosomes [87]. This pathway
might allow for the trafficking of EVs across the syncytiotrophoblast and their release on
the opposite surface from multivesicular bodies. Both the feto-maternal and maternal−fetal
trafficking of exosomes during pregnancy can be demonstrated by the use of fetal cell-
derived fluorescently labeled exosomes or genetically engineered mice, in which fetal and
maternal exosomes could be distinguished [88,89]. The detection of fetal exosomes in
maternal plasma discloses their potential as biomarkers for pregnancy monitoring using
minimally invasive liquid biopsy.

3.1. Extracellular Vesicle Subpopulations

EVs are classified into three subpopulations, i.e., exosomes, microvesicles, and apop-
totic bodies, based on their sizes, molecular markers, and contents [28]. Figure 2 shows EV
biogenesis and molecular compositions. Exosomes are originated by the inward budding of
the plasma membrane (endosomal route) forming multivesicular bodies which internalize
to generate intraluminal vesicles subsequently released into the extracellular environment
as exosomes [90–92]. The term intraluminal vesicles is used when the vesicles are inside
the multivesicular bodies. In contrast, exosomes are described when the contents of the
multivesicular bodies are released into the extracellular environment by cell membrane
exocytosis [93]. Typically, exosomes can be distinguished from microvesicles and apoptotic
bodies by their size, origination, formation, isolation methods, and protein enrichment as
demonstrated in Table 4. To avoid confusion of the EV nomenclature in previous publica-
tions, the general term of EV is applied for exosomes and microvesicles (unless specified)
throughout this review.
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Figure 2. Extracellular vesicle biogenesis and compositions. (a) Exosome biogenesis and intracellular
life are depicted on the left. Cell surface proteins are endocytosed and trafficked to early endosomes.
Once sorted to late endosomes, the endosomal sorting complex required for transport of (ESCRT)-0
complex recruits ubiquitinated proteins, while ESCRT-I and -II mediate the budding of intraluminal
vesicles (ILVs). The multivesicular body (MVB) can either follow a degradation pathway fusing
with lysosomes or proceed to release the ILV contents (as exosomes) to the extracellular space
by an exocytic step. Microvesicle biogenesis via plasma membrane budding is illustrated on the
right. Transmembrane proteins are clustered in discrete membrane domains that promote outward
membrane budding. Tetraspanins and other proteins abundant at the domain may have a role
by promoting the sorting of other components. Lipid-anchored (myristoylation, palmitoylation)
proteins accumulate proteins in the lumen as well as contribute to membrane curvature. Additional
mechanisms of microvesicle formation include the calcium-activated scramblases, which randomize
the distribution of lipids between the two faces of the plasma membrane. The cytoskeleton becomes
looser, while cytosolic proteins and RNA molecules are sorted into microvesicles. The specific
ATPase VPS4 mediates the disassembly of the spiral by pulling its end. (b) Representative structure
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of exosomes with cargos. Note that placenta alkaline phosphatase (PLAP) is a specific marker of
placenta-derived EVs. ARFs, ADP ribosylation factors; CD, cluster of differentiation; ESCRT, endoso-
mal sorting complex required for transport; LAMPs, lysosome-associated membrane glycoproteins;
mRNA, messenger RNA; miRNA, microRNA; RABs, member of RAS superfamily of small G proteins;
TfR, transferrin receptor.

Table 4. EV classification and their biophysical characteristics.

EV
Subpopulation Diameter Sedimentation in

Centrifugation Molecular Markers Cellular Origin

Exosomes 40–150 nm 100,000–200,000× g
for 1–2 h

CD9, CD63, CD81,
TSG101, Alix Multivesicular bodies

Microvesicles
(or ectosomes) 100–1000 nm 10,000–20,000× g

for 10–20 min
Integrins, selectins,

CD40 ligand
Plasma membrane

budding

Apoptotic bodies (or
apoptotic cell-derived EVs) 1–5 µm 1000–2000× g

for 10–20 min
Histones,

Annexin V
Apoptotic cell

membrane blebbing

It is now well-established that EVs contain a variety of proteins, lipids, various RNA
species (mRNA, microRNA, or other non-coding RNAs), and small amount of DNA as
well as putative surface proteins or ligands that bind to receptors on target cells. The cargo
from EVs has a distinct molecular signature reflecting the originating cells which facilitate
the selective incorporation and triggering of biochemical and/or phenotypic changes in
the recipient cells [28,94–96]. The cargo contents can be absorbed when EVs circulate, and
this leads to the modification of the target gene expression, signal, and biological function
of the recipient cells [97]. The expression of exosomal cargos is altered according to the
microenvironment [98–100].

3.2. EV Isolation and Characterization

Several approaches have been applied to isolate EVs, even though there is no uni-
versal method that is suitable to all projects [101]. EV isolation based on a single step of
polymer/precipitation agents (e.g., polyethylene glycol), high-speed ultracentrifugation,
or low-molecular weight centrifugal filters provides the highest amount of EV recovered
from the biofluids. However, they come with a trade-off in the specificity due to the signifi-
cant contamination of vesicular (i.e., microvesicles, apoptotic bodies) and non-vesicular
(e.g., free and precipitated proteins, lipoprotein micelles) components [101]. The single
step EV isolation by high-molecular weight centrifugal filters, size-exclusion chromatog-
raphy, tangential flow filtration, or membrane affinity columns, as well as the differential
ultracentrifugation with the low/intermediate centrifuge prior to the high-speed, shows
an improved specificity while maintaining the intermediate recovery yield [101–104]. The
main advantage of these single-step protocols is the turnaround time and the compatibility
with large-scale, exosome-molecular studies, in which many samples have to be processed
for EV isolation within a relatively short period of time.

Combinatorial EV isolation based on two methods (e.g., differential ultracentrifugation
coupled with ethylene glycol precipitation, size-exclusion chromatography) [105,106], the
immunoaffinity isolation based on the specific EV molecules [107,108], or three combined
methods, i.e., step-wise centrifugation, ultrafiltration, and size exclusion chromatogra-
phy [109,110], usually provide better EV specificity and thus are suitable when the specific
goals involve the EV functions or subpopulations. The combined isolation methods are
very useful when the known contaminants are expected to significantly interfere with the
downstream analysis, i.e., the measuring biomarkers could be presented as free soluble
proteins and EV-containing proteins. Note that the multi-step combinatorial protocols and
immunoaffinity procedures provide a low recovery yield with as few contaminates as pos-
sible [101], so that the downstream analysis and data interpretation can be straightforward
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with high confidence. However, the reproducibility and the upscaling of the isolated EVs
for the whole project should be addressed at the initial phase of the studies. Therefore,
one can choose the method by considering the degrees of recovery and specificity of the
isolated EVs and their compatibility with the downstream applications [101].

Once isolated, EV-enriched specimens are required to be validated for the EV presence
following the International Society for Extracellular Vesicles (ISEV) guideline [101]. In
general, EV characterization must be performed to demonstrate both the particle and
protein evidence. Particle evidence usually requires two different but complementary
methods to be satisfied [101]. These include one technique for high-resolution images of
the EV morphology (e.g., transmission electron microscopy or atomic force microscopy)
and another technique for the EV size distribution (i.e., nanoparticle tracking analysis, high-
resolution flow cytometry, or asymmetric-flow field-flow fractionation) [111–114]. Protein
evidence could be satisfied by demonstrating three positive (enriched) and one negative
(depleted) EV marker as follows: (i) the enrichment of plasma membrane-associated EV
markers (e.g., CD9, CD63, CD81, MHC molecules, integrins, LAMP1/2, syndecans); (ii) the
enrichment of cytosolic proteins involved in EV biogenesis or with a lipid/membrane
protein-binding ability (e.g., TSG101, ALIX, flotillin-1 and -2, caveolins, annexins); (iii) the
depletion of proteins commonly found as EV contaminants (i.e., free soluble proteins
such as lipoproteins, serum albumin, and cytokines) or subcellular compartment proteins
(e.g., histones, cytochrome C, calnexin, and HSP90B1) depending on the matrix [101].
Immunodetection methods such as Western blotting and ELISA are often used to show the
EV protein evidence and in some circumstances, quantitative proteomics can be applied to
identify and quantify multiple EV protein markers to support the claim of EV presence in
the isolates [115,116]. Figure 3 demonstrates the commonly used methods for the detection
of EVs as well as their cargos.
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Figure 3. EV characterization methods for particle, protein, and miRNA evidence. ELISA: en-
zyme linked immunosorbent assay, EV: extracellular vesicle, LC-MS/MS: liquid chromatography-
tandem mass spectrometry, miRNA: microRNA, PLAP: placental alkaline phosphatase protein,
qRT-PCR: quantitative real-time polymerase chain reaction.

3.3. Placenta-Derived EVs

In pregnancy, the discovery of circulating fetal genetic material in the maternal plasma
has enhanced the non-invasive prenatal diagnosis [117–126]. The placenta secretes a large
number of EVs into maternal circulation since they are shed from the syncytiotrophoblast
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into the intervillous space and then flushed via the uterine veins into the maternal cir-
culation [127]. The placental EVs were then confirmed that they are of placental origin
by using the placental alkaline phosphatase (PLAP) marker. In addition, such fragments
are detected in all pregnant women, but not in the non-pregnant population, suggest-
ing a pregnancy-specific marker. The placenta-derived exosome can induce apoptosis
and the down regulation of T cell responses contributing to fetal immune tolerance [128].
Subsequently, other investigators have also isolated placenta-derived EVs using human
placenta explant cultures from the first trimester of normal pregnancies and reported that
PLAP is a marker of placental exosomes [129–132]. Although 87% homology is found with
the intestinal alkaline phosphatase gene, there are differences at their carboxyl terminal
end [133,134], which is unique to the placenta.

Accumulating evidence shows that placenta-derived EVs exhibit multiple functions,
including the following.

3.3.1. Regulating Trophoblast Migration and Angiogenesis

Placenta-derived EVs can regulate trophoblast migration and angiogenesis [72,98,99,135].
In in vitro studies, placenta-derived EVs isolated from pregnant women are biologically active
since they can induce endothelial cell migration [132]. In addition, the release of EVs from
cytotrophoblast culture depends on the oxygen tension whereby the low oxygen tension
environment promotes extravillous trophoblast (EVT) cell migration, endovascular invasion,
and proliferation. Thus, it is possible that placenta-derived EVs are involved in the process of
placentation [98,136].

3.3.2. Promoting Maternal–Fetal Immune Tolerance

Placenta-derived EVs from in vitro-cultured placental explants down-regulated the
NK cell receptor NKG2D and impaired the cytotoxic function of T cells from the peripheral
blood mononuclear cells of pregnant women [130,137,138]. Furthermore, placenta-derived
EVs suppressed T cell signaling components and induced lymphocyte apoptosis leading to
immune tolerance [139]. Despite the immunosuppressive activity of placenta-derived EVs,
the risk of infection caused by the EVs remains unremarkable.

3.3.3. Mediating Maternal–Fetal Intercommunication

Placenta-derived EVs play a crucial role in the crosstalk between the feto–placental
unit or maternal–fetal communication [36,82,140]. Studies demonstrated that placental-
specific microRNAs within C19MC-derived miRNAs can be detected in the maternal
circulation via EVs where they function in placental–maternal signaling [141,142]. For
example, placenta-derived EVs can be taken up by endothelial cells, immune cells, or
platelets and they can modulate their functions such as generating pro-inflammatory
signals, inducing death ligands, mediating nitric oxide signaling, or producing damage-
associated molecular pattern (DAMP) molecules [143–146]. In addition, non-placental cells
incubated with placenta-derived EVs harboring C19MC miRNA clusters attenuate the
viral replication in recipient cells through the induction of the autophagy pathway [142].
Therefore, EVs regulate the maternal immune response to maintain a normal pregnancy
and protect against viral infections such as Cytomegalovirus infection [143,147,148].

3.3.4. Regulating Maternal Metabolic Homeostasis

Placenta-derived EVs regulate maternal metabolic homeostasis by transferring the
gene information to target cells [29]. For example, miRNAs derived from the placenta-
derived EVs of women with gestational diabetes have been shown to reduce insulin
sensitivity and glucose uptake by striated muscle [100,149–152].

Collectively, placenta-derived EVs are specifically packaged with signaling molecules
including protein, mRNA, microRNA, and non-coding RNA. They play a role in the
translational activities of angiogenesis, immunomodulation, cell signaling, and metabolic



Int. J. Mol. Sci. 2023, 24, 5658 12 of 24

homeostasis. As a result, placental exosome signaling represents a fundamental pathway
mediating the maternal–fetal intercellular communication [153,154].

3.4. Pathophysiological Roles of Placenta-Derived EVs in Pregnancy Complications

Placenta-derived EVs have a unique feature due to the presence of specific placental
alkaline phosphatase (PLAP) [129,132,139], HLA-G [155], and miRNAs such as those
within the chromosome 19 miRNA cluster [75,142,156]. They can be identified by size,
buoyant density, and the presence of CD63 as well as PLAP antigens. Placenta-derived
EVs are identified in maternal plasma as early as sixth weeks of gestation [33] and the
concentration of placenta-derived EVs in maternal plasma increases progressively as a
function of gestation [33,132]. Furthermore, the concentration of maternal plasma placenta-
derived EVs is approximately 20-fold higher than that observed in non-pregnant women,
indicating a pregnancy-specific protein [132,139]. It has been hypothesized that placental
and fetal communication as well as the presence of fetal cells in maternal circulation occur
beginning from the fourth week of gestation, although intervillous circulation has not been
completely established [157].

Several factors such as hypoxia, high glucose concentrations, and inflammatory sig-
nals trigger the release of placenta-derived EVs [98,100,158]. A high glucose concentration
(25 mM) significantly increased the number of EVs from the first trimester primary tro-
phoblast cells and such EVs triggered the release of pro-inflammatory cytokines from
human umbilical vein endothelial cells [100]. A similar observation has been demonstrated
in pregnant women with gestational diabetes mellitus [149–151]. Specifically, women
with gestational diabetes have a higher maternal plasma-derived exosome concentra-
tion than those with a normal pregnancy from the 11th week of gestation onwards [150].
EVs isolated from the plasma of women with gestational diabetes induce the release of
pro-inflammatory cytokines including granulocyte-macrophage colony-stimulating factor
(GM-CSF), interleukin (IL)-4, IL-6, IL-8, interferon-gamma (IFN-γ), and tumor necrosis
factor-alpha (TNF-α) [150]. Thus, it is possible that the dysregulation of EVs may be
involved in the pro-inflammatory status in gestational diabetes.

In in vitro studies, the number of EVs released from extravillous trophoblast (EVT)
cells is higher than that from EVT cultured under a hypoxic condition (1% oxygen) com-
pared to normal oxygenation (8% oxygen) [158]. Interestingly, EVs isolated from EVT
cultured at 1% oxygen reduce the endothelial cell migration but increase the production
of TNF-α. Hypoxic conditions also influence exosome contents as well as their biological
activities, such as protein and miRNA, against target cells [98,99,158]. These findings have
important clinical implications since the determination of the placenta-derived exosome
concentration and their cargo contents in maternal plasma can be used as a non-invasive
method for the early detection and diagnosis as well as monitoring of placental-associated
complications [159]. In modern clinical obstetrics, the term “liquid biopsy” refers to the
molecular diagnosis or biomarker determination in biological fluids, especially blood, for
the evaluation of pregnancy-related complications or prenatal screenings. Compelling
evidence demonstrated that the aberration exosome number and their contents are ob-
served in women with preeclampsia [29,34,37,160], diabetes [35,150,161–163], fetal growth
restriction [164], and preterm birth [116,165–168]. Figure 4 shows the role of placental
debris and EVs in placental-associated complications.
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Figure 4. Potential roles of placental debris and exosome changes during pregnancy-related com-
plications. Placental debris and EVs (including exosomes and microvesicles) released from the
placenta under different micro-environment conditions (such as hypoxia or high glucose) and their
targeting of neighboring cells in the placenta and distant organs such as skeletal muscles. EVs are
released by placental cells (such as syncytiotrophoblasts, cytotrophoblasts (CTs), and extravillous
trophoblasts (EVTs)) and other cells in the placenta such as the placental mesenchymal stem cells.
EVs from the placenta can enter maternal circulation and target distant cells such as skeletal muscles,
endothelial cells, or vascular smooth muscle cells. Placenta-derived EVs’ concentration, content, and
bioactivity changes in pregnancy and pregnancy-related disorders including GDM, PE, PTB, and
FGR. GDM: gestational diabetes, PE: preeclampsia; FGR: fetal growth restriction, PTB: preterm birth.

Several studies have demonstrated that placental-specific EVs are implicated in the
pathogenesis of preeclampsia since they generate inflammatory responses, since they gen-
erate inflammatory responses, increase anti-angiogenesis, activate platelets, and induce
endothelial cell activation. In an experimental study, syncytiotrophoblast EVs from explant
cultures of a preeclamptic placenta induced the release of proinflammatory cytokines such
as IL-1β, IL-6, IL-18, macrophage inhibitory protein-1-α and -β, or TNF-α in peripheral
mononuclear cells [169]. In addition, the administration of EVs to pregnant mice induces
embryonic death or a small size of the embryo and placenta, as well as preeclampsia-like
features including elevated blood pressure, proteinuria, enlarged glomeruli, thickened
glomerular basement membrane, and increased maternal plasma sFlt-1 concentrations [170].
These changes were not observed in non-pregnant mice. The mechanism responsible for
the development of preeclampsia is attributed to the activation of maternal platelets in
the placental vascular bed, induced via an adenosine triphosphate (ATP) release and in-
flammasome activation [170]. In humans, the evidence has demonstrated an alteration in
the EVs and their cargos in the placenta and maternal plasma of women with preeclamp-
sia [29,34,37,160]. However, an alteration in EVs in the placenta or maternal circulation can
be found in other great obstetrical syndromes such as fetal growth restriction [164] and
gestational diabetes [163]. Figure 5 illustrates a possible role of placenta-derived exosomes
in Bart’s hydrops fetalis and in the pathogenesis of mirror syndrome.
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4. Placenta-Derived EVs as Hb Bart’s Liquid Biopsy: Challenges and
Future Perspectives

While placenta-derived EVs are promising as the source of candidate biomarkers with
clinical relevance, there are several challenges when conducting EV biomarker studies.
As aforementioned, one needs to ensure the performance and compatibility of the EV
isolation method chosen to support the specific goals/downstream applications [101]. It
should be emphasized that different isolation methods could impact the downstream
EV molecular analysis [171], while it is common that the isolated EV samples fail the
quality control experiments. Nonetheless, this challenge can be simply addressed by the
practice of reproducible EV isolation and some preliminary experiments to choose the
suitable isolation method for achieving the qualified EV samples for downstream analyses.
In addition, EVs presented in biofluids are heterogeneous in nature [172]. For example,
plasma EVs are contributed from the local vascular endothelial cells and distant organ
systems (e.g., brain, heart, lung, liver, intestine, and kidneys) and they can change in both
quantity and quality during the healthy and disease states. The key to address this issue
relies on the study design that focuses on the inclusion and exclusion criteria, the clinical
context of using the candidate EV biomarkers, and a sufficient study population to support
the statistical power. In addition, the validation phase of biomarker candidates should be
performed with independent larger cohorts or multi-center studies [173]. Alternatively, the
application of tissue-specific markers, for example, targeting PLAP for the placenta-derived
EV subtype [29], is a potential approach to minimize the EV heterogeneity caused by the
unrelated organ systems. The multiplex detection of PLAP-positive EVs in relation to other
EV molecular profiles (i.e., proteins and miRNAs) should be pursued in future studies
involving biomarker discovery and validation for placental-associated complications.
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Only a few studies have described exosomes or microvesicles from hemoglobinopa-
thy adult patients [174–179]. In addition, most of these studies examined the role of
microparticles in circulation from adults with Beta-thalassemia/Hb E disease in relation to
the hypercoagulable state. The authors demonstrated that microparticles obtained from
Beta-thalassemia/Hb E patients can induce an inflammatory response, endothelial dys-
function [174], and stimulate platelet activation as well as aggregation leading to thrombus
formation [175]. Thus far, there is no study determining placenta-derived EVs in preg-
nant women with Hb Bart’s hydrops fetalis. Since placental hypoxia is a main feature of
Bart’s hydropic fetus, it can trigger the release of placental debris or placental-derived
exosomes which subsequently enter maternal circulation. In addition, in some cases of
Bart’s hydrops fetalis, Ballantyne or mirror syndrome characterized by a simultaneous ede-
matous state of the mother, fetus, and placenta (also called triple edema) can be observed.
In this syndrome, the mother may develop proteinuria, hypertension, and even severe
preeclampsia [180–182].

Altogether, we hypothesize that the placenta-derived exosome concentration might
have a role in the identification of women with Hb Bart’s fetuses beginning in early gestation
and this might be implicated in the genesis of mirror syndrome in some cases. Ultimately,
we propose that the placenta-derived exosome might be used as a liquid biopsy tool for
the identification of fetuses at risk for this condition and this might reduce the rate of
unnecessary invasive prenatal diagnosis determinations. In this direction, an integrative
strategy has been proposed to combine current biomarkers with placenta-derived EVs for
the identification of Bart’s hydrops fetalis throughout gestation (Figure 6). Importantly,
prior to clinical use, it is necessary to standardize the protocols of exosome isolation and
characterization, while the diagnostic performance of placenta-derived EVs should be
evaluated as a solitary biomarker and as part of the combined biomarkers in the large-scale
prospective cohorts or multicenter studies.
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Figure 6. An integrative diagnostic model combining current biomarkers and placenta-derived
EVs for the identification of Bart’s hydrops fetalis throughout gestation. CTR: cardiothoracic di-
ameter ratio, MCA-PSV: middle cerebral artery peak systolic velocity, MoM: multiple of median,
MAFP: maternal alpha fetoprotein, uE3: unconjugated estriol.

Last but not least, several drugs are known to modulate the EV release and cargo
contents, and thus are actively investigated to harness EV-modulated therapeutic effects
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against non-communicable and infectious diseases [183–185]. Among these medications,
antiplatelets are commonly used during pregnancy. Low-dose aspirin prophylaxis is indi-
cated in patients at a high-risk of developing preeclampsia [186]. Dual antiplatelet therapy
(aspirin and P2Y12 receptor blocker) has been used to manage pregnancy-associated my-
ocardial infarction following a percutaneous coronary intervention (PCI) with intracoronary
stenting [187–189]. Interestingly, aspirin suppressed the cargo levels of proinflammatory
cytokines and mediators in platelet-derived exosomes [190]. Ticagrelor, a potent P2Y12
receptor blocker, induced the growth of cardiac-derived mesenchymal stem cells and en-
hanced the release of anti-hypoxic exosomes with cardioprotective effects [191]. While
future investigations of placenta-derived EVs as the liquid biopsy should take into account
the prescribed medications during pregnancy, one can foresee a translational potential of
EV modulatory agents, especially antiplatelets, to mitigate the pathophysiological conse-
quences of placental hypoxia and pregnancy complications through the modulations of
placenta-derived EV biogenesis and molecular cargos.

5. Conclusions

Pregnancy is associated with a significant increase in the number of total EVs and
placenta-derived EVs in maternal circulation across gestation. Hypoxia and hyperglycemia
are the main triggers for the release of placenta-derived EVs. Compelling evidence supports
placental-associated complications such as preeclampsia and fetal growth restriction as
having some alterations in the number and the contents of EVs. Therefore, changes
in the profile of placenta-derived EVs are a very attractive tool for the identification of
placental-associated complications in asymptomatic pregnant women. Placental hypoxia in
women with Bart’s hydrops fetuses may exhibit changes in the numbers and/or functions of
placental-derived EVs, and thus could serve as a liquid biopsy tool for an early non-invasive
prenatal diagnosis. Nonetheless, standardization of the method for placenta-derived EV
detection is needed in order to open a new avenue for an early identification, monitoring,
and therapeutic intervention of women at risk for Bart’s hydrops fetalis and other placental-
associated conditions.
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