
Citation: Wolf, I.R.; Marques, L.F.; de

Almeida, L.F.; Lázari, L.C.; de

Moraes, L.N.; Cardoso, L.H.; Alves,

C.C.d.O.; Nakajima, R.T.; Schnepper,

A.P.; Golim, M.d.A.; et al. Integrative

Analysis of the Ethanol Tolerance of

Saccharomyces cerevisiae. Int. J. Mol.

Sci. 2023, 24, 5646. https://doi.org/

10.3390/ijms24065646

Academic Editors: Cristina Mazzoni

and Sergio Giannattasio

Received: 11 October 2022

Revised: 25 February 2023

Accepted: 6 March 2023

Published: 15 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Integrative Analysis of the Ethanol Tolerance of
Saccharomyces cerevisiae
Ivan Rodrigo Wolf 1,2 , Lucas Farinazzo Marques 1 , Lauana Fogaça de Almeida 1,3, Lucas Cardoso Lázari 1,4,
Leonardo Nazário de Moraes 1 , Luiz Henrique Cardoso 1 , Camila Cristina de Oliveira Alves 1,
Rafael Takahiro Nakajima 2 , Amanda Piveta Schnepper 1 , Marjorie de Assis Golim 3 ,
Thais Regiani Cataldi 5 , Jeroen G. Nijland 6,7, Camila Moreira Pinto 1, Matheus Naia Fioretto 2,
Rodrigo Oliveira Almeida 8 , Arnold J. M. Driessen 6,7 , Rafael Plana Simōes 1 , Mônica Veneziano Labate 5,
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Abstract: Ethanol (EtOH) alters many cellular processes in yeast. An integrated view of different
EtOH-tolerant phenotypes and their long noncoding RNAs (lncRNAs) is not yet available. Here,
large-scale data integration showed the core EtOH-responsive pathways, lncRNAs, and triggers of
higher (HT) and lower (LT) EtOH-tolerant phenotypes. LncRNAs act in a strain-specific manner in
the EtOH stress response. Network and omics analyses revealed that cells prepare for stress relief
by favoring activation of life-essential systems. Therefore, longevity, peroxisomal, energy, lipid, and
RNA/protein metabolisms are the core processes that drive EtOH tolerance. By integrating omics,
network analysis, and several other experiments, we showed how the HT and LT phenotypes may
arise: (1) the divergence occurs after cell signaling reaches the longevity and peroxisomal pathways,
with CTA1 and ROS playing key roles; (2) signals reaching essential ribosomal and RNA pathways
via SUI2 enhance the divergence; (3) specific lipid metabolism pathways also act on phenotype-
specific profiles; (4) HTs take greater advantage of degradation and membraneless structures to cope
with EtOH stress; and (5) our EtOH stress-buffering model suggests that diauxic shift drives EtOH
buffering through an energy burst, mainly in HTs. Finally, critical genes, pathways, and the first
models including lncRNAs to describe nuances of EtOH tolerance are reported here.
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1. Introduction

Ethanol (EtOH) is the main metabolite produced from glycolysis-fermentation metabolism
in Saccharomyces cerevisiae. EtOH flows between intracellular and extracellular environ-
ments through simple diffusion [1]. Therefore, either external or internal EtOH accumula-
tion challenges cells, impacting cell growth and survival. EtOH primarily alters plasma
membrane fluidity, causing cellular acidification, protein dysfunction, unbalanced molecule
efflux, and reduced intake of glucose and other compounds. Thus, EtOH-stressed cells
activate response mechanisms, modulating multiple processes [2–4].

Omics (transcriptomic, proteomic, metabolomic) analyses have revealed that the EtOH
stress response in yeast involves several systems, including stress responses (homeostasis,
heat shock proteins, and redox balance), cell structures (membrane components and vac-
uolar functions), signal transduction, RNA/protein synthesis, and metabolism (oxidative
stress, amino acids, trehalose, energy, carbon, the TCA cycle, glycolysis and others) [5–7].
Network analyses revealed substantial network changes in cells under EtOH stress [5,8].

The EtOH stress response seems to be strain specific, complicating the understand-
ing of this process. EtOH prompts diversity in network community organization, distinct
metabolic adaptabilities and different stress responses through polymorphisms and chromo-
somal rearrangements [9]. Different phenotypes related to high tolerance to fermentation
stressors rely on yeast strains, medium, intracellular accumulation, temperature and other
factors [10].

Most of the S. cerevisiae genome, including many long noncoding RNAs (lncRNAs), is
expressed under basal conditions. LncRNAs respond quickly to external stimuli, modu-
lating gene expression, metabolism, stress response, and aging [11–14]. LncRNA–protein
interactions facilitate the assembly of macromolecular complexes, inactivate target proteins,
or assist either positively or negatively in protein complex organization. Therefore, lncR-
NAs recruit transcription factors, guide chromatin modifiers, act on histones, and engage
in competitive binding to DNA-binding proteins [15].

Despite increasing interest in EtOH tolerance in yeast, information on the mechanisms
by which strains respond to severe EtOH stress is scarce. For instance, systemic analysis
considering massive data integration from strains with different phenotypes is not yet
available. Furthermore, no studies have examined the roles of EtOH stress-responsive lncR-
NAs. Here, we focused on EtOH tolerance by integrating omics, cell and molecular biology,
bioinformatics, modeling, network and mutant data, seeking features that differentiate
between the higher EtOH tolerant (HT) and lower EtOH tolerant (LT) phenotypes.

We analyzed three HT (BMA64-1A, BY4742, and X2180-1A) and three LT (SEY6210,
BY4741, and S288C) strains at their maximum EtOH tolerance levels. Only the basal
pathways remained active under stress conditions to prepare cells for stress relief. In
this case, pathways that regulate longevity, peroxisomal, energy/lipid, RNA and protein
metabolisms are the main pathways that drive EtOH tolerance and phenotypic divergence.
CTA1 directs signals toward longevity and peroxisomes, which are the first systems to
exhibit phenotypic divergences in gene expression. LncRNAs act on these systems in a
strain-specific manner. For instance, membraneless and storage and degradation systems
containing particular lncRNAs promote EtOH tolerance in stressed cells. We also identified
a relationship between decreased cell growth under stress and scarcity of sphingolipids,
which was exacerbated in HT strains by sphinganine and squalene overload. Overall,
we proposed an EtOH stress-buffering model: a diauxic shift promotes an energy burst
under stress, and the HT strains seem to increase this burst by enhancing SDH activity.
Finally, analysis of the CRISPR–Cas9 mutants generated here showed that CTA1, IXR1
and the lncRNAs transcr_20548, transcr_6448 (BMA64-1A), transcr_3536 (SEY6210), and
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transcr_10027 (BY4742) are critical for EtOH tolerance. The key points of our findings are
summarized in this video: https://figshare.com/s/81d0676a05ae08e5a775 (accessed on
5 March 2023).

2. Results
2.1. Rationale and Overview

EtOH tolerance is the capacity of cells to survive transient and chronic exposure to
EtOH. The highest EtOH tolerance level for a particular strain is the level that still allows
poststress growth [3,16,17]. Here, a strain was 10% EtOH tolerant if it grew on YPD medium
after 1 h of treatment with 10% EtOH but it did not grow when treated with ≥12% EtOH.

Different yeast strains can withstand distinct levels of EtOH stress [3,16,17]. Although
similarities can be found, strains treated with the same EtOH concentration usually present
significant differences in physiological responses [5,7,18–25]. A single EtOH concentration
may be severe for one strain but not for another. Strain ‘A’ tolerates 5% EtOH stress,
while strain ‘B’ tolerates 10%. When both strains are under 5% EtOH stress, only strain
‘A’ activates specific pathways. We cannot assume that strains ‘A’ and ‘B’ differ in their
ability to cope with EtOH stress because 5% EtOH is harsh only for strain ‘A’. In this case,
differences in physiological responses are likely to be related to stress level rather than
severity. Therefore, we rationalize that to assess the core factors underlying the EtOH stress
response in yeast, different EtOH tolerance phenotypes must be defined on the basis of the
maximum tolerable EtOH concentration, i.e., one that still allows poststress growth. Here,
we examined each strain under its maximum tolerable EtOH concentration to describe the
systemic stress response in relation to EtOH severity.

Here, the highest EtOH concentration tolerated by 13 different strains of S. cerevisiae
was determined. The haploid strains were classified as HT or LT (Figure 1A): we selected
only haploids for further analysis to mitigate the effect of potential allelic variations. The
BMA64-1A (HT) and S288C (LT) strains were subjected to time-course experiments (2 h and
4 h) at their highest tolerated EtOH concentrations (Figure 1B). The additional experiments
were scaled accordingly (Figure 1C). Strains were cultivated under aerobic conditions for
all experiments.
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Figure 1. Experimental design. (A) Setting the phenotypes. PS: physiological solution; red and blue
circles: treatment and control, respectively. The box shows examples of plates used to determine
the highest EtOH tolerance. The experimental conditions that allowed or inhibited growth are
represented by gray and black boxes, respectively. *: The highest EtOH level. (B) Time-course
experiment. (C) Further experiments and hypothesis testing using mutants.
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The omics data integrated with network analyses allowed us to find EtOH stress-
responsive lncRNAs and genes. Several laboratory experiments were performed to test our
hypothesis or to validate gene/protein expression. The experiments included growth curve
measurement, flow cytometry, colorimetric analysis, chromatography, mutant generation
via CRISPR–Cas9, and Western blotting.

Finally, we argue that the definitions of the HT and LT phenotypes used here apply only
to the context of this study because the number of strains analyzed is not representative of
all S. cerevisiae strains. Therefore, we do not intend to extrapolate our conclusions regarding
these phenotypes beyond the scope of this paper. However, our models may provide a
basis for further studies.

2.2. Defining the Highest EtOH Tolerance for Each Strain

Thirteen yeast strains were independently treated with different concentrations of
EtOH for 1 h (according to a classic study [17]) to define their highest tolerated EtOH
concentration. Based on the highest EtOH tolerance level supported for each haploid
strain (Supplementary Table S1), unsupervised learning classified BMA64-1A, BY4742 and
X2180-1A into the HT phenotype, while SEY6210, BY4741 and S288C were classified into
the LT phenotype (Table 1). All selected strains presented regular growth in YPD medium
without any stressor (Figure 2A).
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Figure 2. Cell growth and flow cytometry assays were used to evaluate EtOH stress severity.
(A) Growth curve analyses of the populations of untreated cells, cells treated with the highest EtOH
level previously defined, and the population rebound experiments (growth curves of the populations
of cells inoculated in pure YPD medium after 1 h of treatment with the highest tolerated EtOH
level). (B) Percentages of live and dead cells of each strain under control and treatment conditions.
(C) Percentages of live cells of each phenotype under control and treatment conditions. The numbers
above the bars are the “rate” comparing the average of the LT strains divided by the average of the
HT strains. Hence, a rate > 1 indicates more live cells of the LT strains. *: Rate between LT divided
by HT.
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Table 1. Strain description, cell viability, and SDH assays. 1: Strain subjected to genome sequencing
(Supplementary Tables S1 and S2). 2: Strains subjected to the time-course experiment. Although
BMA64-1B (tolerates 26% EtOH) and CEN.PK2-1C (tolerates 20% EtOH) were also used in phe-
notype classification, they were excluded from further analysis to minimize repeated supported
EtOH concentrations.

Strain or Group EtOH Tol. (%) Phenotype Genotype

BMA64-1A 1,2 30 HT MATa; his3-11_15; leu2-3_112; ura3-1; trp1∆2; ade2-1; can1-100

BY4742 26 HT MATα; his3∆1; leu2∆0; lys2∆0; ura3∆0

X2180-1A 24 HT MATa SUC2 mel gal2 CUP1

BY4741 22 LT MATa; his3∆1; leu2∆0; lys2∆0; ura3∆0

SEY6210 20 LT MATα suc2-∆9 ura3-52 leu2-3112 his3-∆200 trp1-∆901 lys2-801

S288C 2 20 LT MATα SUC2 mal mel gal2CUP1

Our goal was to study cells under their highest tolerated EtOH stress level: the level
that still allows for poststress growth. We performed experiments to assess the severity of
EtOH stress level applied for each selected strain. The strains subjected to their maximum
tolerated EtOH concentration for 24 h exhibited a quick transition to the stationary phase
(Figure 2A; Supplementary Figure S1A,B). The flow cytometry assay with annexin V and
propidium iodide costaining quantified the death rate of cells under severe EtOH stress.
Each strain exposed to its highest EtOH stress level for 1 h showed a significantly increased
number of dead cells. In this case, the HT strains exhibited a more pronounced decrease
in survival rate (Supplementary Figure S2B,C; Supplementary Table S3). After 1 h of
exposure to its highest EtOH stress level, each strain was immediately placed in regular
YPD medium without any stressor. This experiment showed that all strains recovered
population growth after stress relief (Figure 2A; Supplementary Figure S1A). Altogether,
the findings confirmed that we had applied the most severe EtOH stress level that still
allowed growth after stress relief. Moreover, we observed that the HT strains analyzed
here were more strongly damaged by EtOH stress.

2.3. Gene, Protein and Metabolite Expression Analyses

We combined transcriptomic, proteomic, and metabolomic analyses to investigate EtOH
stress-responsive processes. Detailed results of differential expression analysis using RNA-
Seq (transcriptomic), proteomics and metabolomics are presented in the Supplementary Text
(“Results”, topics “3.1”, “3.2”, and “3.3”). An interactive table with differentially expressed
genes and metabolites is presented in Supplementary Datas S1 and S2, respectively.

Transcriptomic analysis revealed 1330 and 868 significant differentially expressed
coding genes in the HT and LT strains, respectively. The HT and LT strains shared many
differentially expressed genes and ontological functions, although phenotype specificities
related to metabolism and nucleic acid processes were observed (Supplementary Figure S3;
Supplementary Tables S4 and S5). KEGG pathway analysis showed enrichment of genes
related to the TCA cycle, oxidative phosphorylation, RNA and ribosomal biogenesis in all
the analyzed strains (Supplementary Table S6).

LC–MS/MS-based proteomics analysis identified 20 and 19 differentially expressed
proteins in the HT and LT strains, respectively, including HSPs, ADH1, PDC1, elongation
factors, ribosomal proteins and chaperones. Interestingly, the level of the P-body protein
eIF5A was increased in LTs (Supplementary Figure S4).

GC–MS/MS-based metabolomics analysis identified >100 differentially abundant metabo-
lites per strain (Supplementary Datas S2 and S3). EtOH phenotypically influenced the abun-
dance of 16 and 9 metabolites in HTs and LTs, respectively (Supplementary Figure S5). We
focused on previously reported metabolites or those whose abundances corresponded to the
expression levels of the genes involved in their metabolism, including (1) glyceraldehyde
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and malate (increased in both phenotypes); (2) sphingosine (reduced in both phenotypes);
(3) squalene (increased in HTs and reduced in LTs); (4) oxaloacetate, trehalose, and spermi-
dine (reduced in HTs and increased in LTs); (5) inositol 1-phosphate (increased only in LTs);
(6) fumarate (reduced only in HTs); and (7) quinolinate and sphinganine (increased only in
HTs) (Supplementary Data S4).

2.4. LncRNA Assembly and General Functions of EtOH-Responsive lncRNAs

We identified 87–259 assembled lncRNAs (~161 per strain) for each strain under control
and treatment conditions; detailed results for the assembly strategy are presented in the Sup-
plementary Text (“Results”, topic “3.1”). As expected [14,26], lncRNAs identified here were
expressed at lower levels than the coding genes, and their sequences were not conserved
among strains or with yeast ncRNAs previously cataloged (Supplementary Tables S7 and S8;
Supplementary Figures S6 and S7). The lack of sequence similarities shows that most of
the lncRNAs identified here are strain-specific and comprise a new set of lncRNAs in yeast
(https://figshare.com/s/e75fe1be9af623988be1, accessed on 5 March 2023).

As observed for their sequences, we hypothesize that the function and EtOH stress
response of identified lncRNAs are strain specific. Due to the lack of sequence conservation,
gene function inferences based on sequence similarities are inappropriate for testing our
hypothesis. Therefore, we inferred the functions of lncRNAs based on the functions of
their interacting proteins, regardless of their sequence. We tested our hypothesis that the
function and stress response of lncRNAs are strain specific by comparing the expression
levels and functions of their target proteins.

We computationally determined the lncRNA–protein interaction network of each
strain: previous data [11,27,28] showed that lncRNAs physically interact with proteins
in addition to regulating gene expression. The inferred lncRNA–protein networks (>0.95
of probability for each interaction) had an average of ~331.83 interactions per strain,
~207.16 target proteins and ~8.1 target proteins per lncRNA (Supplementary Table S9;
Supplementary Data S5), consistent with yeast ncRNA–protein interactions [29,30].

Only four proteins were targeted by lncRNAs in the six strains analyzed, and the
proteins targeted by lncRNAs within each phenotype (twelve for HT and fourteen for LT)
were functionally diverse (Supplementary Figure S8). Thus, lncRNA functions may be
strain- or phenotype-specific, regardless of strain or differential expression.

We analyzed the function of EtOH stress-responsive lncRNAs to assess whether their
response was strain specific; this analysis is hereafter referred to as lncRNA propagation
analysis. We selected significant EtOH stress-responsive genes based on the differential
transcriptomic expression of each strain. We selected proteins encoded by differentially
expressed genes whose expression level matched that of the examined lncRNA. The sys-
tems signaling using the diffusion algorithm [31] throughout lncRNA–protein interactions
revealed the relevant routes from each EtOH stress-responsive lncRNA of each strain. Next,
we selected proteins surrounding the relevant routes to form subnetworks. For instance,
(1) the upregulated genes “A”, “B”, “C” and “D” encoded proteins that interacted with the
upregulated lncRNA “X”; (2) however, only proteins “A” and “D” surrounded the relevant
route from the lncRNA “X” to “Y”; (3) therefore, the new subnetwork consists of lncRNAs
“X” and “Y” and the coding genes “A” and “D”. The analysis corroborated our hypothesis
that EtOH stress-responsive lncRNAs function in distinct pathways in a strain-specific
manner. Interestingly, these pathways were generally associated with EtOH tolerance and
response. Finally, we defined four broad functional categories for EtOH stress-responsive
lncRNAs: life-essential, membrane-dependent, metabolic, and degradation process-related
(Figure 3; Table 2; Supplementary Figure S26). EtOH stress-responsive molecules in those
pathways are summarized in the Supplementary Text (“Results”, topics “4.3.2” and “4.3.3”).

https://figshare.com/s/e75fe1be9af623988be1
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Figure 3. LncRNA propagation analysis of lncRNA–protein subnetworks associated with EtOH
stress-responsive genes. The node colors are related to the biological functions depicted at the bottom
of the picture. Only lncRNAs and proteins related to differentially expressed genes were evaluated in
this analysis. The conjectures and basis for assigning the functions of lncRNAs presented here are
reported in the “Supplementary Text” (“Discussion”, topic “1”).

Table 2. General functions of selected EtOH stress-responsive lncRNAs. *, functions assigned by
additional analysis or experiments further described. **, lncRNAs that function in the cell cycle [32].

Strain LncRNAs Putative Main Functions

BMA64-1A transcr_6448, transcr_20548 * Branched-chain alcohol tolerance metabolism, regulation of the
response to EtOH, and stress granules

BY4742 transcr_10883 **, transcr_10027 *, transcr_9158 *,
transcr_7869 *, transcr_63478

Degradation, metabolic pathways, cell signaling, division, cell
wall, transport, transcription, replication, ribosome biogenesis,

and storage/degradation pathways

X2180-1A transcr_3746, transcr_6988, transcr_8290 Degradation, membrane-dependent process, cell wall, cell
surveillance, longevity, growth, and transcription

BY4741 transcr_3338, transcr_2916 Membrane-dependent processes

SEY6210 transcr_8157, transcr_3536 *, transcr_9136 ** Membrane-dependent processes, diauxic shift, cell cycle,
storage/degradation pathways

S288C transcr_18666, transcr_18820, transcr_21244,
transcr_19266, transcr_6225 Degradation, trehalose metabolism, and ribosomal biogenesis

2.5. Life-Essential Pathways Affected by EtOH

The aforementioned analysis of the lncRNA–protein network categorized life-essential
(or essential) pathways as a broader category extensively affected by EtOH stress. Analysis
also revealed that the EtOH stress response in the lncRNA–protein network is strain specific
(Figure 3). We analyzed the EtOH stress response of essential pathways by examining
networks that integrate multiple types of interactions and molecules. Integrative network
analysis guarantees that the observed effect cannot be attributed to a specific system level.
Overall, we investigated whether EtOH stress influenced essential pathways, the essential
pathways that were most affected by this stress, and the mechanisms involved in triggering
phenotypic divergences between HT and LT strains.

We evaluated whether EtOH stress influenced networks. We used each lncRNA–
protein interaction and experimentally validated yeast protein–protein, gene regulatory
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and metabolic networks to create strain-specific networks. The transcriptomic expression
data were used to build the control and treatment networks (see Supplementary Text,
section ‘Methods’ and topic “5.6.2”). The diameter, path-length, and betweenness increased
in most of the emulated treated networks, whereas the density, transitivity, number of
connections and eigenvector decreased. Overall, network features were more strongly
modified in most of the emulated treated networks, and the LT network under stress lost
more highly connected genes than the HT network (Supplementary Tables S10 and S11;
Supplementary Figure S9). Altogether, EtOH stress caused intense network rewiring in all
the strains.

We sought to identify the essential pathways most affected by EtOH stress. The KEGG
database contains networks of pathways with various types of interactions and molecules.
Differentially expressed genes, metabolites, and strain-specific lncRNA–protein interactions
were integrated into 95 KEGG pathways (https://figshare.com/s/396119809b1916c07a60,
accessed on 5 March 2023). Manual curation of annotated functions and expression for
genes and metabolites (Supplementary Data S6) and literature data [33,34] allowed us to
identify the 12 essential systems most affected by EtOH stress (https://figshare.com/s/
4b04ae15e5ab4f1b73c5, accessed on 5 March 2023). These systems included MAPK, TCA
cycle, glycolysis and gluconeogenesis (Gly/gluc), peroxisome, longevity, autophagy, cell
cycle, RNA degradation and transport, mRNA surveillance pathway, ribosome biogenesis
and protein processing in the endoplasmic reticulum.

The dynamics of gene expression and systemic flow were analyzed to identify how
the system reacts to EtOH stress. Since KEGG presents pathway networks that are precisely
delimited from each other, we first created a single pathway-integrated network. By
modeling the selected essential pathways and their genes as nodes, the essential pathways
were integrated by genes that work on these pathways (Supplementary Figure S10A). We
used a clustering method [35] to merge the pathway integrated network and the time-
course transcriptome data (1 h, 2 h and 4 h) of each EtOH-stressed BMA64-1A and S288C
independently (https://figshare.com/s/537bb28192e48b8483c5, accessed on 5 March 2023);
BMA64-1A and S288C were used as HT and LT models, respectively (see “Supplementary
Text”, “Methods” topic “5.6.1”). We also observed extensive rewiring in all essential
pathways induced by EtOH stress (Figure 4A). Gene expression profiles showed that
peroxisome, Gly/gluc, and longevity were activated in BMA64-1A cells under EtOH stress,
while the RNA and ribosome pathways were repressed. The TCA cycle was activated
in both strains under stress, and the other pathways displayed stable expression in both
strains (Figure 4B; Supplementary Figure S11). We also compared systems signaling from
each pathway using the diffusion algorithm [31]. The data showed direct signaling from
MAPK to peroxisomes, longevity, autophagy and the cell cycle. Signaling flows further
from autophagy mainly to RNA biogenesis (Figure 4C). Finally, the information also flowed
from longevity to peroxisomes, autophagy, and PPER, as well as from peroxisomes to the
TCA cycle (Supplementary Figure S12; https://figshare.com/s/0ef043d4cd1d8b1f0bb1,
accessed on 5 March 2023).

After receiving MAPK signals, the first pathways that showed significant expression
differences between the HT and LT models were longevity and peroxisomes (Figure 4B,C).
Therefore, we manually searched for genes surrounding these essential pathways that may
have an effect on the emergence of the HT and LT phenotypes. CTA1 mediates MAPK
signaling to the peroxisome and longevity. Peroxisome, longevity and CTA1 exhibited
the same expression profile over time (activation in BMA64-1A and stable-like expression
in S288C) (Figure 4A–D). By inactivating CTA1 in the BMA64-1A strain, we tested the
hypothesis that CTA1 inactivation is associated with the EtOH phenotype. Our hypothesis
was corroborated because the BMA64-1A CTA1∆ mutant matched the LT phenotype, with
the tolerance to EtOH reduced to 18–20% and an improvement in population rebound after
relief (Figure 4E,F).

https://figshare.com/s/396119809b1916c07a60
https://figshare.com/s/4b04ae15e5ab4f1b73c5
https://figshare.com/s/4b04ae15e5ab4f1b73c5
https://figshare.com/s/537bb28192e48b8483c5
https://figshare.com/s/0ef043d4cd1d8b1f0bb1
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Figure 4. Essential subsystems showing phenotypic differences using BMA64-1A and S288C as
models. (A) Comparison between the networks modeled based on the time-course and KEGG data.
The dotted line delimits the communities with expression activation profiles. (B) Overview of the
time-course expression profiles from the data shown in (A) under stress. (C) Analysis of information
flow from pathways labeled with “*”. (D) Time-course landscapes of the crucial genes we suggest
triggering the differences in the expression phenotype of cells under stress. (E) Population rebound
after stress relief in WT and BMA64-1A CTA1∆ strains. (F) Spot test of the BMA64-1A CTA1∆ strain.
The white dots (nodes) in (A) and (C) are genes/proteins.

Spermidine is a longevity agent in yeast and increases its lifespan [36]. EtOH stress af-
fected spermidine yield (Supplementary Datas S2 and S4). Here, each strain was inoculated
in YPD:EtOH:spermidine medium to examine the role of spermidine in the EtOH stress
response. Spermidine overload boosted the growth of EtOH-stressed LTs and two HTs,
including BMA64-1A. Only BMA64-1A downregulated SGF29 (Supplementary Data S1).
As suggested, SGF29 may be related to spermidine’s positive effects [36].

Furthermore, RNA and ribosome metabolism-related genes in strain BMA64-1A (the
HT model) exhibited repressed expression from 1 to 2 h of EtOH stress (Figure 4B). There-
fore, we also sought to identify the genes responsible for this phenotypic variation. MAPK-
autophagy signaling to RNA-related pathways is mediated by SUI2. The expression profiles
of RNA pathways and SUI2 were similar over time (inactivation in BMA64-1A and stable-
like in S288C) (Figure 4A–D). SUI2 causes transcriptional arrest in response to stress or
nutritional deprivation [37]. The effect of SUI2 on RNA transcription was observed here
since BMA64-1A cells exhibited a marked reduction in the total RNA yield after EtOH
stress (Supplementary Figure S13).
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2.6. Effect of EtOH on Degradation/Storage-Related Pathways

Degradation pathways constitute a broad category of pathways strongly affected by
EtOH stress (Figure 3). Thus, we assessed which degradation/storage-related pathways,
proteins and genes were affected and whether lncRNAs function in these processes. Man-
ual curation of the transcriptomic, proteomic and metabolomic data was performed to
determine the genes most affected. Western blotting, HPLC quantification, growth curve
analysis and other experiments were performed to test the hypotheses and validate the
expression results.

The proteomic analysis revealed that the abundance of proteins related to RNA/protein
catabolism (e.g., chaperones and heat shock proteins) increased in EtOH-stressed cells.
Elongation factors physically interact with P-bodies (PB) under stress [38], and their protein
levels increased according to our proteomics analysis (Supplementary Figure S4).

Based on transcriptomic data, we manually selected 191 genes related to PB, stress
granules (SG), proteasome storage granules (PSG), the RNA catabolic process, proteasome
and regulatory parts, protein polyubiquitination and positive regulation of ubiquitina-
tion (PPPR), protein deubiquitination and negative regulation of ubiquitination (PDNR)
and autophagy. These systems and structures were selected because of their role in the
degradation and storage pathways. Overall, ≤50% of genes related to RNA catabolism
and PBs were downregulated, mainly in HTs (p value=0.0241). BMA64-1A had a large
number of upregulated and nondifferentially expressed genes in the analyzed pathways.
SG-disaggregase genes (HSP104 and SSE2) were usually upregulated. Decapping-related
genes (DCS1 and 2 and DCP2) were usually not downregulated. Unlike other strains,
in BMA64-1A, the essential genes for PB, SG, mRNA decay/surveillance and ribosome
biogenesis and transport were not downregulated (Figure 5A; Supplementary Datas S1,
S7 and S9). Altogether, the data suggest that EtOH stress affects degradation/storage
pathways, including PB, SG, PSG, translation activity and mRNA decay.

Glucose starvation, stationary growth, oxidative stress and cytosol acidification are
cytological conditions for the assembly of PB, SG and PSG [38–43]. DCP1a, PABP and
eIF4E are used as molecular markers in yeast to study PB, SG and translation activity,
respectively [42,44,45]. Therefore, we measured glucose, glycerol, extracellular acidification,
reactive oxygen species (ROS) accumulation, DCP1a, PABP and eIF4E in EtOH-stressed
strains to support the hypothesis that PB, SG and PSG may be assembled (Figure 5A).

HPLC analyses showed that most EtOH-stressed strains had lower glucose and glyc-
erol concentrations, indicating glucose starvation and reduced glycerol efflux (Figure 5B,C).
Previous findings showed that EtOH and glucose starvation acidify cells by inhibiting
proton efflux. Yeast cells in the glucose-rich medium rapidly acidify the medium. Further-
more, internal and external pH are related [46]. Thus, we inferred the occurrence of cellular
acidification in strains BMA64-1A (HT model) and S288C (LT model) from external pH
quantification. In cells grown in medium with high and moderate EtOH concentrations, the
cytosol was acidified, leading to a steady-state pH (Figure 5E,F; Supplementary Table S12).
Flow cytometry showed that most stressed strains, especially HTs, increased the percentage
of cells with mitochondrial and nuclear ROS (Supplementary Figure S2G; Supplementary
Table S13; Supplementary Data S8). Western blot analysis showed that EtOH stress in-
creased the Dcp1p level in BMA64-1A (HT model) and S288C (LT model) and decreased the
eIF4E level. The PAB1p level increased in BMA641-1A and decreased in S288C (Figure 5D).
Finally, we observed the stationary population growth phase during stress (Figure 2A).
These results confirmed that EtOH induces the formation of an intracellular environment
suitable for the assembly of membraneless organelles (PB, SG and PSG).
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Figure 5. Analysis of genes related to EtOH stress-responsive storage and degradation mechanisms
and external conditions of the medium for EtOH-stressed cells. (A) The numbers above the bars indi-
cate the percentage of genes related to EtOH stress-responsive storage and degradation systems that
were not differentially expressed (D,E) or upregulated. PB, P-bodies. SG, stress granules. PSG protea-
some storage granules. RNA cat. proc., RNA catabolic process. PPPR, protein polyubiquitination
and positive regulation of ubiquitination. PDNR, protein deubiquitination and negative regulation
of ubiquitination. The full list of affected genes is reported in the Supplementary Text, ‘Results’,
topic ‘4.3.5.’ (B,C) Glucose and glycerol levels. Each Y value represents a concentration rate between
1 and 0 h within the control and treatment groups. Therefore, higher values indicate lower glycerol
yield or estimated glucose consumption after 1 h. (D) Western blot results. C and T over the bands
indicate the control and treatment groups. (E) Normalized YPD pH level (see Equations (1) and (2)
in the Supplementary Text, ‘Methods’, topic ‘3.1’). In the right box is depicted the colors and shapes
of this graphic. (F) Cell growth in the pH quantification experiment (E). *, adjusted p value < 0.0001.

ROS may cause DNA damage [2], inducing defects in RNAs and proteins [47]. Inacti-
vation of RAD53 and CHK1-PDS1 genes prevents DNA repair [48]: genes of DNA repair
are downregulated in BMA64-1A and S288C (Supplementary Figure S29). Mitochondria
are the main source of intracellular ROS [2]. We hypothesize that DNA instability caused
by the observed accumulation of ROS in EtOH-stressed cells (Supplementary Figure S2G)
caused the observed effects on autophagy and proteasome-related pathways (Figure 5A).
Flow cytometry showed that all the stressed strains, especially LTs, exhibited increased per-
centages of cells with DNA damage (Supplementary Figure S2I; Supplementary Table S13;
Supplementary Data S8). Only the X2180-1A and BY4742 strains under stress seemed to
have inactive RAD53-PDS1 DNA repair mechanisms (Supplementary Figure S15;
Supplementary Data S1). These transcriptomic data suggest that most strains might fix
DNA defects through the cell cycle, although this was not observed via flow cytometry.
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We examined whether lncRNAs were related to EtOH-stressed storage and degrada-
tion systems. The percentages of the 30 most relevant lncRNAs connecting synergistic path-
ways (within “storage” or “degradation”) were negatively related to the highest EtOH levels
analyzed. Interestingly, a smaller number of lncRNAs connecting synergistic pathways
improved EtOH tolerance: SEY6210 transcr_3536∆ was lethal, and BY4742 transcr_10027∆
reduced EtOH tolerance (Supplementary Figure S14; Supplementary Datas S7 and S9).

2.7. Overall EtOH Stress Data Integration: EtOH Stress Buffering Model

We integrated our results to propose the “EtOH stress-buffering” model (Figure 6).
The massive experiments and analyses conducted here showed that EtOH had a significant
impact on energy and detoxification-related pathways. Most of the 41 genes crucial for the
diauxic shift, the TCA cycle, and EtOH catabolism (Table 3) were upregulated, affecting
the abundance of related metabolites (Figure 6; Supplementary Datas S1, S2, S4 and S6).
Furthermore, the reduced glycerol efflux in many EtOH-challenged strains (Figure 5D)
supported our model (discussed further below). This model will be scrutinized in Section 3.
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Table 3. Genes related to the EtOH stress-buffering model. *: Citations and description of genes and
metabolites are available in the “Supplementary Text” (“Discussion”, topic “4.”).

Analyzed Genes and Metabolites Relevant Action in the EtOH
Stress-Buffering Model Source

ADR1, CAT8, GUT1, GUT2, INO4, NQM1
and RSF1

Essential for growth on nonfermentable
carbon sources and diauxic

shift-responsive genes
*

ALD4, ACS1, FAA1, FAA2, FOX2, HFD1,
PXA1, PXA2, POX1, and POT1

Essential to metabolize acetyl-CoA in the
cytosol and peroxisomes *

CAT2, YAT1, and YAT2 Carnitine acetyltransferase genes SGD database

CIT2, FUM1, GDH2, GDH3, KGD1, KGD2,
LAT1, LSC1, LSC2, MDH1, MDH2, MDH3,

MLS1, PCK1, PDA1, PDC1, and PYC1
TCA cycle-related genes *; SGD database; KEGG sce00010

ADH3, ADH5, and SFA1 Alcohol dehydrogenase may catabolize
EtOH to create acetaldehyde/acetate

*; KEGG sce00010; YeastPathways
EC Number 1.1.1.1; [1]

ETR1 Acetyl-CoA catabolism in the fatty acid
elongation metabolism *

Oxaloacetate, fumarate, and malate TCA cycle-related metabolites *

The TCA cycle occurs in mitochondria synthesize ATP and produce ROS [2,49]. The
TCA cycle is a core mechanism in our EtOH stress-buffering model because our transcrip-
tome enrichment and network analysis revealed that the TCA cycle was one of the essential
pathways affected by EtOH (Figure 4A). Moreover, most TCA cycle-related genes were
upregulated in the analyzed strains, even after long-term exposure to EtOH (Figure 4B;
Supplementary Data S6). Furthermore, oxidative stress-related genes were upregulated in
the HTs (Supplementary Tables S14 and S15). Therefore, we measured succinate dehydroge-
nase (SDH) activity to assess mitochondrial activity in EtOH-challenged cells. The SDH ac-
tivity assay revealed an increase in SDH activity in most EtOH-stressed strains (Supplemen-
tary Figure S2H; Supplementary Tables S3 and S13; Supplementary Data S8). Altogether,
the data suggested higher mitochondrial activity in strains challenged with EtOH stress,
consistent with the higher accumulation of ROS observed (Supplementary Figure S2G),
providing better support for our model.

2.8. Peculiarity of the EtOH Stress-Buffering Model of the BMA64-1A Strain

Our data showed a model peculiarity suggesting some level of strain specificity.
Transcr_20548 of BMA64-1A interacts with many diauxic shift-related proteins included
in our EtOH stress-buffering model (Figure 7A). We extracted this subnetwork and its
counterpart from S288C to analyze the effect of transcr_20548 on our model; the S288C
subnetwork did not include transcr_20548 because this lncRNA is specific to BMA64-1A.
We initially inspected the transcriptome time-course data of genes in the BMA64-1A and
S288C subnetworks.

In EtOH-stressed BMA64-1A, ADH2 expression decreased sharply and was correlated
negatively with most genes (Figure 7A). Previous findings showed that Ixr1p, Adr1p
and Cat8 repress ADH2 expression [50,51]. Here, IXR1 and transcr_20548 seemed to
repress ADH2 expression in BMA64-1A under stress (Figure 7A). To verify which gene
controls ADH2 repression, we simulated dynamic networks for the virtual BMA64-1A
WT, transcr_20548∆, and IXR1∆ subnetworks based on transcriptome time-course data
(Supplementary Tables S16 and S17). We observed that ADH2 expression is not regulated
by the joint actions of ADR1 and CAT8. ADH2 levels increased in both virtual mutants,
although this increase was greater in the BMA64-1A IXR1∆ strain (inactive IXR1 and active
transcr_20548) (Figure 7B). Both genes also repressed ADH2 (further discussed).
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Figure 7. Subsystem model harboring the lncRNA transcr_20548, the diauxic shift, and EtOH stress-
buffering genes. (A) BMA64-1A and S288C subnetworks. Small boxes represent the time-course data
for each gene. Nodes with the same color have a similar time-course profile. These subnetworks
were manually curated, including published data, information from the SGD database, and transcrip-
tome time-course data from BMA64-1A and S288C. (B) BMA64-1A subnetwork dynamic network
simulations of ordinary differential equations based on the transcriptome time-course of treatment
conditions that simulate gene expression in virtual BMA64-1A WT and mutants. (C) Population
rebound after stress relief in WT and BMA64-1A CRISPR–Cas9 mutants. * indicates a p value < 0.01.
(D) EtOH tolerance spot test.

Furthermore, Adh2p is responsible for the reversible reaction of aldehyde/acetaldehyde
to EtOH [52]. Thus, inactivation of transcr_20548 and IXR1 would reduce EtOH toler-
ance. Although mutant populations recovered faster than WT after EtOH stress relief,
the transcr_20548∆ mutant outperformed IXR1∆ (Figure 7C). Both mutants exhibited re-
duced EtOH tolerance, although the effect was greater on IXR1∆ (inactive IXR1 and active
transcr_20548) (Figure 7D). Finally, the simulations and experimental analysis of mutants
corroborated our hypothesis that transcr_20548 is a stronger ADH2 repressor than IXR1.
Moreover, both transcr_20548 and IXR seem to be the main ADH2 repressors.

Other relevant information in the BMA64-1A subnetwork includes the following:
(1) IXR1 and HSF1 seem to repress ADH2 and HCM1 expression; (2) the NRP1-transcr_20548
interaction probably negatively affects the expression of transcr_20548; (3) HSF1 seems to
positively regulate the expression of transcr_20548 (Figure 7A); and (4) the transcr_20548 cis
elements contain HSF1-domain motifs (Supplementary Figure S28D). These data indicate
substantial divergence between the BMA64-1A and S288C subnets.

2.9. Effect of EtOH on Lipid Metabolism

Lipid metabolism is a hot topic that has been broadly evaluated in yeast EtOH stress
research. Here, we intended to verify whether lipid metabolism may be involved in the
longevity of EtOH-stressed strains. Many genes related to lipid metabolism (e.g., ETR1,
GPD1, MCR1, OPI3, FAA1, and GRE2) are induced under EtOH stress [5], as observed
here (Supplementary Data S6). The metabolome and our KEGG mapping indicated a
reduction in sphingolipid levels (mainly ceramides, KEGG sce00600) and sphingosine
and IPC synthesis and increased levels of sphinganine, inositol 1-phosphate and squalene.
Transcriptomic analysis revealed a reduction in the expression of AUR1 and an increase in
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the expression of the YDC1, PLC1 and ERG9 genes. Some of these genes and metabolites
are involved in longevity (further discussed) (Supplementary Figure S16; (https://figshare.
com/s/396119809b1916c07a60), accessed on 5 March 2023).

3. Discussion

We presented models and hypotheses for the mechanisms mediating EtOH tolerance
and predicted the factors that may be responsible for establishing the two phenotypes
defined here. We wish to highlight that the definitions of the HT and LT phenotypes
presented here apply only to the context of this study. Thus, although the extrapolation
of our models concerning HT and LT phenotypes is limited, these models may provide a
basis for further studies.

The results from data integration allowed us to discuss four broader fields: (1) an overview
of EtOH stress-responsive lncRNAs; (2) the essential pathways affected by EtOH stress;
(3) the role of degradation/storage pathways in EtOH stress tolerance; and (4) the proposed
EtOH stress-buffering model. The key points of each section are recorded in this video:
https://figshare.com/s/81d0676a05ae08e5a775.

3.1. EtOH Stress-Responsive lncRNAs Are Functionally Diverse and Likely Involved in
EtOH Tolerance

Despite interest in ncRNAs in S. cerevisiae, this report is the first to associate a large
set of yeast lncRNAs with EtOH stress. A de novo set of lncRNAs was assembled using
the transcriptome data from strains BMA64-1A, BY4742, SEY6210, BY4741, X2180-1A and
S288C. According to a previous description of the characteristics of lncRNAs [14,26,29,30],
our transcripts presented the essential characteristics of lncRNAs: lack of ORFs, low
sequence and structural conservation, expression levels lower than those of coding genes
and the expected number of interactions between ncRNAs and proteins for yeast.

As observed for most lncRNAs in this present study, yeast ncRNAs are often respon-
sive to environmental changes [53], and stress response proteins are usually targeted by
lncRNAs [54]. Our analysis of lncRNA–protein networks assigned lncRNAs to four broader
functional categories: essential, membrane-dependent, metabolic and degradation pro-
cesses. However, strain specificities were present. Below, we describe some directly-related
EtOH stress-responsive lncRNAs evaluated in detail.

We predicted that transcr_20548 of BMA64-1A binds to IXR1. Previous findings showed
that IXR1 repressed ADH2 expression in yeast undergoing glucose starvation [50,51]. How-
ever, our network simulations and mutant analysis showed that transcr_20548 is a stronger
ADH2 repressor than IXR1 in EtOH-stressed and glucose-starved BMA64-1A cells. We
suggest that the mechanism of ADH2 inhibition by transcr_20548 is dependent on Nrp1p.
Nrp1p is a putative RNA-binding protein [55] located in SG under glucose starvation [42].
We observed that transcr_20548 interacts with Nrp1p in BMA64-1A (Figure 7A), and the
two genes diverge in expression profile. Our analysis suggests that EtOH-induced SGs
may not have Nrp1p that could trap most of the transcr_20548 overexpressed after 2 h of
stress. Thus, transcr_20548 may be free to inhibit ADH2 expression.

We previously showed that lnc9136 (transcr_9136) in SEY6210 induces a skip in mi-
totic arrest, while lnc10883 (transcr_10883) in BY4742 avoids DNA and spindle damage
checkpoints in EtOH-stressed cells [32].

3.2. EtOH Causes Extensive Rewiring of Life-Essential Pathways: Longevity, Peroxisome, CTA1
and SUI2 Are Master Key Regulators of EtOH Tolerance Phenotypes

Although several articles have shown that life-essential pathways are affected by EtOH
tolerance/stress in yeast [5,7,18–25], here, we propose systems mechanisms that trigger the
HT and LT EtOH tolerance phenotypes defined here, mainly analyzing networks and the
BMA64-1A strain.

According to graph theory [56–58], the network changes observed here redirect system
signals, causing delays in reaching specialized pathways and favoring basal system/process
activation: the theoretical basis for this conclusion is described in the Supplementary Text

https://figshare.com/s/396119809b1916c07a60
https://figshare.com/s/396119809b1916c07a60
https://figshare.com/s/81d0676a05ae08e5a775
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(“Results”, topic “3.4”). Therefore, we suggest that cells exposed to EtOH stress favor
the activation of basal processes to preserve and prepare cells for stress relief. We ranked
MAPK, longevity, autophagy, peroxisome, TCA cycle, glycolysis and gluconeogenesis
(Gly/gluc), protein processes in the endoplasmic reticulum, and RNA- and ribosomal-
related organelles, processes and pathways as the basal processes extensively affected
by EtOH.

Signal transduction is essential for the EtOH response [21]. Peroxisomes influence
longevity [59], and longevity increases the lifespan of stressed cells [60]. The CTA1 gene
acts on EtOH tolerance and seems to degrade ROS [61,62]. We found that the CTA1 gene
transmits MAPK signals to the longevity and peroxisomal pathways. BMA64-1A activates
CTA1 and exhibits the highest ROS accumulation during stress. The relevance of CTA1 is
evidenced by the reduced tolerance to EtOH in BMA64-1A CTA1∆. Altogether, our findings
suggest that MAPK signaling-mediated CTA1 induces EtOH tolerance-related phenotypes
soon afterward. Furthermore, the balance between ROS and CTA1 accumulation seems to
be involved in this process.

We observed that SUI2 transmits signals from autophagy to ribosomal and RNA-
related pathways. SUI2 participates in the arrest of mRNA transcription in response to
stress [37]. The SUI2 gene presented a repressive expression profile in BMA64-1A, which
could be related to the significant reduction in RNA yield observed in this strain under
stress. Although our analyses are still insufficient, to the best of our knowledge, these
are the first reported results concerning the relationships among RNA yield, SUI2 and
EtOH stress.

Spermidine and lipids also seem to affect the longevity of EtOH-stressed strains. We
suggest that the joint action of spermidine and SGF29 expression triggers the positive effect
of spermidine on the growth of BMA64-1A. Furthermore, only HT strains accumulate
squalene and sphinganine, which could be responsible for exacerbating the negative effects
on cell viability in this phenotype. For a detailed discussion, see the first paragraphs of
“Supplementary Text”, section “Discussion”, topic “2 and 5”.

3.3. Membraneless Organelles, Storage, and Degradation Systems Are Related to EtOH Stress:
lncRNAs Act on These Systems

Previous findings revealed that severe EtOH stress in yeast induces the formation of PB
and SG [40]. All cell attributes that allow the formation of PB and SG [38–43] were observed
in our experiments, including the early stationary growth phase, fast population rebound,
cytosol acidification, glucose starvation and ROS accumulation. In summary, we suggest
that the storage and degradation systems (PB, SG, PSG, RNA and protein catabolism) act
as surveillance strategies in EtOH-stressed cells until stress relief occurs, as these structures
were active in most of the strains analyzed. ROS may cause DNA damage [2]. Previous
findings showed that DNA damage induces defects in RNAs and proteins [47] and that
EtOH stress induces protein unfolding [63]. Our experimental analysis of ROS and DNA
damage accumulation showed that EtOH-stressed strains accumulated DNA damage, likely
via ROS accumulation. However, several analyses performed here (omics, network, growth
curve and Western blot analyses) evidenced the presence of membraneless structures
and pathways responsible for RNA and protein catabolism. Therefore, we suggest that
defective RNAs and proteins produced under high EtOH stress may be degraded by
different mechanisms activated in our experiments (e.g., PB, SG (via translation stalling),
PSG, autophagy and proteasomal pathways).

In fact, several mechanisms act to degrade irregular molecules, eventually promot-
ing lifespan under stress, stationary phase growth or glucose starvation: (1) PB degrades
abnormal mRNAs and controls translation [38,41,43,64–69]; (2) autophagy degrades dam-
aged proteins [34]; (3) irregular proteins may be degraded by the ubiquitin–proteasome
pathway [70]; (4) SG improves cell viability during stress by inhibiting translation-related
proteins; and (5) SG sequesters capped and poly(A) mRNAs, stalling translation and
avoiding their degradation by PB [38,70,71].
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LncRNAs can scaffold RNAs and proteins in membraneless structures [38,72]. We
identified several lncRNAs that likely bind to storage-related (SG, PSG and PDNR) and
degradation-related (PB, proteasome and PPPR) proteins to assess whether lncRNAs were
involved in these processes (Supplementary Figure S14A). The statistical analysis of the
percentage of lncRNAs in each strain that bound to these proteins suggested a smaller
number of lncRNAs connecting to synergic pathways (within storage or degradation)
promoting a higher EtOH tolerance. However, the results for the CRISPR–Cas9 mutants
refuted our hypothesis since neither mutant improved EtOH tolerance. Thus, the theoretical
relationship between EtOH stress-responsive lncRNAs and linked synergistic pathways
was not clarified here.

However, our findings suggest that strains under the maximum EtOH stress level
analyzed here underwent DNA damage triggered by ROS accumulation, culminating in
defects in RNAs and proteins. However, cells cope with these molecules through different
mechanisms, mainly by using membraneless organelles. The processes mentioned above
may be an additional cell surveillance strategy to cope with this stress in addition to
inhibiting specialized subsystems, as already discussed above. Based on the study of
BMA64-1A, HTs seem to take advantage of this ‘detoxification’ process. Finally, although
we are presenting a general model, the presence of lncRNAs involved in the processes
mentioned suggests some level of strain specificity in the strategy used to cope with
damaged molecules produced under EtOH stress.

3.4. EtOH Stress-Buffering Model

S. cerevisiae can use accumulated EtOH as a substrate for aerobic respiration [3],
consistent with the general idea of our “EtOH stress-buffering” model (Figure 6); all strains
were cultivated here under aerobic conditions. The core of our EtOH stress-buffering
model is the diauxic shift and TCA cycle. Overall, our model suggests that chronic EtOH
stress induces a diauxic shift by consuming EtOH and glycerol. This process intensifies
acetyl-CoA, fatty acid, TCA cycle and peroxisome activities, resulting in increased energy
production to buffer intense stress. Below, we present results from the literature and their
correlation with our findings to support and verify our model. We only included the
details of the reactions and functions of genes and metabolites in the context of our EtOH
stress-buffering model (Table 3; Figure 6) because most other steps are common TCA cycle
reactions. Therefore, details of the TCA cycle are provided in the Supplementary Text
(“Discussion”, topic “4”).

EtOH is a relevant carbon source in yeast cells. For instance, the diauxic shift re-
stores aerobic growth in glucose-depleted cells by using EtOH as the main carbon source.
Moreover, the TCA cycle uses carbon from external EtOH [1].

Alcohol dehydrogenases convert absorbed EtOH to acetaldehyde, providing the major-
ity of the acetyl yield in yeast [1,73]. Here, we observed glucose starvation in EtOH-stressed
strains and the upregulation of diauxic shift-responsive genes, genes essential for growth
with nonfermentable carbon sources, and alcohol dehydrogenases. These data indicate
the activation of the diauxic shift and conversion from EtOH to acetaldehyde/aldehyde in
the stressed strains. The alcohol dehydrogenase SFA1 is downregulated only in LT strains,
indicating that HT takes advantage of EtOH catabolism. Acetaldehyde or aldehyde is then
converted to acetyl-CoA in the cytosol and peroxisomes: genes involved in this metabolism
were upregulated in almost all the strains analyzed here.

Acetyl-CoA and peroxisomal acetyl-carnitine are transferred to mitochondria and
converted to fatty acids [74,75]. Fatty acids are transferred to peroxisomes [76] and are
converted back to acetyl-CoA (Figure 6). Most mitochondrial acetyl-CoA is derived from
the cytosol, and most of the carbon in fatty acids is derived from external EtOH [1]. Here,
the ETR1, PXA1 and PXA2 genes (encoding enzymes relevant to the mentioned pathway)
were upregulated in all the strains analyzed, and carnitine metabolism was enriched in
the HT transcriptome. Therefore, in our EtOH stress-buffering model, we suggest that
mitochondrial acetyl-CoA seems to pass through a positive feedback loop for synthesis
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regardless of the phenotype. Remarkably, strain specificities may be present in this part of
the model, since lncRNAs work with specific enzymes: although Yat2p putatively binds to
lncRNAs in BY4742, SEY6210 and BY4741, the effects of these interactions are unknown.

The TCA cycle uses acetyl-CoA to generate energy [49]. Our data suggested higher
TCA cycle activation in all EtOH-stressed strains: (1) genes in this pathway were upregu-
lated and enriched in almost all strains (Supplementary Data S6; Supplementary Table S6);
(2) this pathway was the only one to present an activation transcriptome time-course profile
in both BMA64-1A and S288C strains (Figure 4B); (3) SDH activity was enhanced in almost
all analyzed strains (Supplementary Figure S2H); and (4) the level of the malate metabolite
(essential for the TCA cycle) was increased in both phenotypes (Supplementary Data S4).

A higher energy yield from the TCA cycle helps cells endure EtOH stress [18]. In the
TCA cycle, acetyl-CoA condenses with oxaloacetate to form citrate [49]. Oxaloacetate is a
potent SDH inhibitor [77]. The SDH enzyme converts succinate to fumarate and pumps H+

to the mitochondrial intermembrane space, promoting ATP synthesis. Here, the observed
reduction in oxaloacetate in only EtOH-stressed HTs (Supplementary Data S4) suggests
higher SDH activity in cells of this phenotype, as observed in Supplementary Table S13.
Furthermore, the observed reduction in fumarate in HTs (Supplementary Data S4) suggests
the occurrence of increased H+ pumping instead of increased TCA cycle activity. The likely
increase in ATP synthesis in HTs may promote the increase in their capacity to cope with
EtOH stress; in this case, HTs present higher EtOH buffering.

EtOH is the predominant source of NADH and NADPH when glycolysis is impaired
by oxidative stress [1], supporting our model showing that the higher EtOH level to
which HT strains are exposed may elevate H+ pumping, energy production and EtOH
buffering; HT strains also present higher ROS accumulation than LT strains under EtOH
stress (Supplementary Table S13).

4. Materials and Methods

The Supplementary Text (section “Methods”) contains substantial details regarding
experiments, data collection, analyses, equipment, chemicals, equations, schemes and
rationales. The material mentioned above includes all pertinent information required to
ensure the reproducibility of the data. Thus, in the following, we present the essential
points regarding the materials and methods used here.

4.1. Defining the Highest EtOH Tolerance

Each strain (Supplementary Table S1) in late log-phase (~12 h of cultivation) was
harvested, resuspended in different concentrations of EtOH or physiological solution
(treatment and control conditions, respectively) and incubated (30 ◦C, 1 h, 120 RPM). The
samples were streaked on YPD plates, and a visual inspection of colony formation allowed
us to establish the highest EtOH tolerance level supported (Figure 1A).

Clustering of the EtOH tolerance data matrix classified strains into either the HT or LT
phenotype. Three LT strains (SEY6210, BY4741 and S288C) and three HT strains (BMA64-
1A, BY4742 and X2180-1A) were selected for further analysis (Supplementary Table S1;
Figure 1A) by comparing the control vs. treatment (the highest EtOH level tolerated for
each strain). Specific comparisons or other EtOH levels tested are indicated and detailed in
the Supplementary Text (section “Methods”).

4.2. Cell Biology Analysis

The 1st and 2nd growth experiments assessed the population growth under the
best conditions and the population rebound after stress relief (the growth recovery rate
after severe stress), respectively. The 3rd experiment was performed in YPD medium
supplemented with the highest tolerated level of EtOH for each strain to assess stress
severity. The 4th experiment assessed whether the spermidine level affected growth by
cultivating the strains under their highest tolerated EtOH stress level with and without
spermidine supplementation. The 5th experiment was similar to the 3rd experiment for
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comparative assessments with the results from the 4th experiment. The 6th experiment was
performed to determine the association between proton efflux and growth under EtOH
stress. The goal of the 7th experiment was to analyze the population rebound after stress
relief of mutants.

Flow cytometry was used to estimate the effect of EtOH on the number of cells
with DNA damage, ROS levels, and cell viability. Mitochondrial activity was assessed
by estimating succinate dehydrogenase (SDH) activity. RNA yield was quantified by
microscopy after staining cells with acridine orange and DAPI. High-performance liquid
chromatography (HPLC) was used to determine the D-glucose and glycerol levels in the
medium [78]: the difference between 1 h and 0 h was calculated for the control and treatment
conditions. We performed Western blotting using specific antibodies to investigate the
effect of EtOH stress on mRNA surveillance, the formation of PB and SG, and translation
stalling by SG.

4.3. Acquisition of Omics Data

Transcriptomic, proteomic and metabolomic data were obtained for all 6 selected
strains, and time-course (2 h and 4 h) transcriptomic data were obtained for BMA64-1A
and S288C cells under control and treatment conditions. The genome of strain BMA64-
1A was also sequenced. Illumina sequencing (NCBI BioProject number PRJNA727478),
LC–MS/MS and GC–MS/MS were used to acquire transcriptomic/genomic, proteomic
and metabolomic data, respectively. The complete set of procedures for genomic DNA,
total RNA, protein and metabolite extraction and additional procedures are detailed in
Sections “4.1. Raw omics data obtainment” and “4.2. Biomolecule extraction” in the
Supplementary Text.

4.4. Bioinformatics
4.4.1. Omics Analysis

The detailed bioinformatics analyses applied to our omics data, including software,
parameters, strategies, filtering process, statistics and other procedures, are described in
detail in Section “5. Bioinformatics” in the Supplementary Text.

Overall, the genome assembly of the BMA64-1A strain was performed using 5 different
assemblers with varying parameters and assembly strategies. The best assembly was cho-
sen using statistics and a tool that compares assembly metrics (Supplementary Data S10).
Genome annotation was performed using two different protocols, one of which was per-
formed by the genome annotation team of the Saccharomyces Genome Database (SGD).

The in-house pipeline to find the lncRNAs used many bioinformatics tools, algorithms
and approaches (Supplementary Figures S17–S20; Supplementary Table S20; Supplemen-
tary Datas S11–S13). Overall, quality-filtered RNA-Seq reads of noncoding sequences were
identified and assembled for each strain using the “Single Assembler Multiple Parameters”
strategy [79]. The lncRNAs were selected by excluding spurious and coding assembled
transcripts. LncRNA-encoded micropeptides were searched against our proteomics data us-
ing the Trans-Proteomics pipeline. The identified lncRNAs were compared using BLASTn
to 3898 ncRNAs (including CUTs, SUTs and XUTs) of yeast previously reported in more
than 20 papers (https://figshare.com/s/9689d0046c824d3e1f74, accessed on 5 March 2023).

Repetitive DNA and tRNAs were searched and annotated for all strains using Repeat-
Masker and tRNAscan-SE (Supplementary Figure S21; Supplementary Data S14). Transpos-
able element annotations were manually curated. Finally, the updated genomic coordinates
of each strain (https://figshare.com/s/e75fe1be9af623988be1, accessed on 5 March 2023)
were used for differential expression (DE) analysis (Supplementary Figures S22 and S23;
Supplementary Table S21).

Quality-filtered RNA-Seq reads from each strain were mapped onto their respective
genomes before identifying the differentially expressed genes (DEGs) by comparing the
treatment and control groups. After the mass/charge conversion to peptides, spectral
counting was used to quantify the proteins. The differentially abundant proteins (DAPs)

https://figshare.com/s/9689d0046c824d3e1f74
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were assessed by comparing the treatment and control conditions. Baseline correction,
peak detection, retention time alignment and library matching were performed for the
metabolome. The selected metabolites were matched against the GMD database. The
differentially abundant metabolites (DAMs) of each strain were determined by comparing
the treatment vs. control (Supplementary Figure S24). We defined phenotype-specific
DAMs by selecting those present in at least two HT strains or two LT strains. Enriched
gene ontology terms for DEGs shared between phenotypes or phenotype-exclusive DEGs
were independently analyzed. Similarly, we also analyzed the enriched KEGG pathways
for both DEGs and DAMs.

4.4.2. Analysis of the lncRNAs and Networks

The lncRNA–protein interaction networks (referred to as LNCPI) were computation-
ally predicted for each strain and filtered by interaction probability (≥0.95). Then, signifi-
cant DEGs and DAMs from each strain and strain-specific lncRNA–protein interactions
were mapped to KEGG pathways.

Structural conservation among lncRNAs was assessed based on the hypothesis that
lncRNAs that bind to the same proteins show either intra- or interstrain conservation.
Proteins targeted by many lncRNAs in BMA64-1A (HT model) and S288C (LT model)
cells were selected (Supplementary Table S18). Intrastrain sequence similarities among
the lncRNAs that likely bind to those proteins were sought. The secondary structures of
the two most similar lncRNAs per protein were predicted and compared within strains.
We compared the structures of the lncRNA orthologs to transcr_22854, transcr_24032 and
transcr_20180 of S288C for the interstrain comparison.

The guilt-by-association approach was used to assign lncRNA functions summarizing
the gene ontology terms for their target proteins. Thus, three independent assignments
were performed: based on all lncRNA target proteins, using proteins from DEGs shared
between phenotypes, or considering proteins from phenotype-exclusive DEGs.

The diffusion algorithm [31] using network information flow starting from each DE
lncRNA (lncRNA propagation analysis) generated subgraphs of each strain: the up- and
downregulated sequences were independently analyzed. These data showed key lncR-
NAs, how lncRNAs affect EtOH tolerance, and whether EtOH triggers similar pathways,
regardless of strain-specific lncRNAs and interactions.

Our omics data revealed systems strongly affected by EtOH stress: autophagy, PB,
RNA catabolic processes, SG, PSG, proteasome and regulatory parts, protein polyubiquiti-
nation and positive regulation of ubiquitination (PPPR), and protein deubiquitination and
negative regulation of ubiquitination (discussed further below). The expression profiles
of these system-related genes and lncRNAs were evaluated. The number of lncRNAs
connecting the synergistic systems (structures or pathways that had similar outcomes, e.g.,
the proteasome and PPPR, which act on protein degradation) was calculated. The data
showed the relationship between the number of lncRNAs in those systems, EtOH tolerance
and population rebound.

The lncRNA transcr_20548 in BMA64-1A is an EtOH stress-responsive lncRNA that
directly influences EtOH tolerance (discussed further below). A subnetwork harboring this
lncRNA was extracted and refined from the BMA64-1A LNCPI to better understand the
role of transcr_20548. Systems dynamic modeling was performed to assess how the genes
in this subsystem affect the transcription of the ADH2 gene.

Basal systems that likely trigger divergences between strains S288C and BMA64-1A
were sought. We generated a pathway integrated network (PINET) by integrating the glycol-
ysis and gluconeogenesis (Gly/gluc), TCA cycle, peroxisome, cell cycle, autophagy, MAPK,
longevity, protein process in endoplasmic reticulum (PPER), RNA transport, ribosome bio-
genesis, mRNA surveillance and RNA degradation pathways. Then, a single network per
phenotype (represented by BMA64-1A and S288C as models) was created using TiCoNE [35]
employing the time-course data. The largest network cluster of each phenotype-PINET
was compared. The time-course expression profile within each phenotype-PINET allowed
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us to set each pathway as activation (“up and stable”), deactivation (“down and stable”), or
“stable” profiles. Finally, we modeled the DNA damage pathway using information from
the literature and time-course data to determine the possible mechanism of DNA damage
during EtOH treatment.

Protein–protein interactions, gene regulatory networks, and metabolic networks
available for yeast were filtered and unified. The integrated network was merged with
each LNCPI, providing 6 strain-specific networks. Two additional networks were cre-
ated using the DE data to represent the control and treatment from each mentioned net-
work. Finally, statistics were used to compare topological features among the 16 graphs
(Supplementary Figure S25).

4.4.3. Mutant Generation and Analysis

Mutants with inactivation of lncRNAs (transcr_20548 in BMA64-1A, transcr_10027 in
BY4742, and transcr_3536 in SEY6210) and coding genes (CTA1 and IXR1 in BMA64-1A)
were generated using CRISPR–Cas9. The genomic target regions were inserted into the
pMEL16 plasmid (Addgene 107922) via PCR. Competent yeast cells were transformed
with the modified pMEL16 plasmid, p414-TEF1p-Cas9-CYC1t plasmid (Addgene 43802),
and the repair DNA. Recovered cells were placed on drop-out His- plus G418 medium,
followed by incubation. Mutants were confirmed by colony PCR and sequencing. The
population rebound after EtOH stress relief was assessed for mutants and wild-type strains,
and spot tests were performed to assess the highest EtOH tolerance level of each mutant
(Supplementary Table S19).

5. Conclusions

The largest data integration study of EtOH-tolerant yeast phenotypes is shown here.
Overall, the massive data integration allowed us to develop models to explain EtOH
tolerance, including the lncRNAs in this context. These models include modification of
life-essential pathways, degradation and storage pathways, and our EtOH stress-buffering
model. Moreover, although the EtOH tolerance phenotype relies on the activation of many
strain-specific mechanisms, general patterns were identified to discriminate the HT and LT
phenotypes analyzed here.

The key features of our findings are as follows: (1) EtOH stress-responsive lncRNAs
can act in a strain-specific manner to overcome EtOH stress; (2) EtOH-stressed cells retain
mainly the life-essential pathways to preserve and prepare themselves for stress relief.
Longevity, peroxisome, and CTA1 are the first triggers of EtOH phenotypes; (3) the degra-
dation and storage pathways help cells withstand the harm caused by EtOH stress, and
HTs takes advantage of these processes; and (4) the diauxic shift drives an EtOH buffering
mechanism, prompting an energy burst to hinder stress (higher boosting, higher tolerance)
(https://figshare.com/s/81d0676a05ae08e5a775, accessed on 5 March 2023).

In addition to the basic knowledge concerning the systemic response to EtOH, an intrinsic
cell stressor, this work may also be helpful for biotechnology purposes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24065646/s1.
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5. Šoštarić, N.; Arslan, A.; Carvalho, B.; Plech, M.; Voordeckers, K.; Verstrepen, K.J.; van Noort, V. Integrated Multi-Omics Analysis

of Mechanisms Underlying Yeast Ethanol Tolerance. J. Proteome Res. 2021, 20, 3840–3852. [CrossRef]
6. Corte, L.; Roscini, L.; Pierantoni, D.C.; Pellegrino, R.M.; Emiliani, C.; Basaglia, M.; Favaro, L.; Casella, S.; Cardinali, G. Delta-

Integration of Single Gene Shapes the Whole Metabolomic Short-Term Response to Ethanol of Recombinant Saccharomyces
cerevisiae Strains. Metabolites 2020, 10, 140. [CrossRef]

7. Goud, B.S.; Kim, J.H.; Ulaganathan, K. Identification of Genes Associated with Stress Tolerance of High Ethanol–Producing
Saccharomyces cerevisiae Strain, NCIM3186, by Differential Gene Expression Analysis. BioEnergy Res. 2022, 15, 1459–1471.
[CrossRef]

8. Kasavi, C.; Eraslan, S.; Arga, K.Y.; Oner, E.T.; Kirdar, B. A System Based Network Approach to Ethanol Tolerance in Saccharomyces
cerevisiae. BMC Syst. Biol. 2014, 8, 1–14. [CrossRef] [PubMed]

9. Kang, K.; Bergdahl, B.; Machado, D.; Dato, L.; Han, T.-L.; Li, J.; Villas-Boas, S.; Herrgård, M.J.; Förster, J.; Panagiotou, G. Linking
Genetic, Metabolic, and Phenotypic Diversity among Saccharomyces cerevisiae Strains Using Multi-Omics Associations. Gigascience
2019, 8, 1–14. [CrossRef] [PubMed]

10. Banat, I.M.; Nigam, P.; Singh, D.; Marchant, R.; McHale, A.P. Review: Ethanol Production at Elevated Temperatures and Alcohol
Concentrations: Part I-Yeasts in General. World J. Microbiol. Biotechnol. 1998, 14, 809–821. [CrossRef]

11. Niederer, R.O.; Hass, E.P.; Zappulla, D.C. Long Noncoding RNAs in the Yeast S. cerevisiae. In Long Non Coding RNA Biology;
Rao, M., Ed.; Springer: Singapore, 2017; pp. 119–132.

12. Yamashita, A.; Shichino, Y.; Yamamoto, M. The Long Non-Coding RNA World in Yeasts. Biochim. Biophys. Acta-Gene Regul. Mech.
2016, 1859, 147–154. [CrossRef]

13. Balarezo-Cisneros, L.N.; Parker, S.; Fraczek, M.G.; Timouma, S.; Wang, P.; O’Keefe, R.T.; Millar, C.B.; Delneri, D.;
O\textquoterightKeefe, R.T.; Millar, C.B.; et al. Functional and Transcriptional Profiling of Non-Coding RNAs in Yeast
Reveal Context-Dependent Phenotypes and in Trans Effects on the Protein Regulatory Network. PLOS Genet. 2021, 17, e1008761.
[CrossRef]

14. Till, P.; Mach, R.L.; Mach-Aigner, A.R. A Current View on Long Noncoding RNAs in Yeast and Filamentous Fungi. Appl. Microbiol.
Biotechnol. 2018, 102, 7319–7331. [CrossRef]

15. Graf, J.; Kretz, M. From Structure to Function: Route to Understanding LncRNA Mechanism. BioEssays 2020, 42, 2000027.
[CrossRef] [PubMed]

https://figshare.com/s/e524aabebcf5dfe0a106
https://figshare.com/s/e75fe1be9af623988be1
https://figshare.com/s/e75fe1be9af623988be1
https://figshare.com/s/396119809b1916c07a60
https://figshare.com/s/4b04ae15e5ab4f1b73c5
https://figshare.com/s/9689d0046c824d3e1f74
https://figshare.com/s/537bb28192e48b8483c5
https://figshare.com/s/537bb28192e48b8483c5
https://figshare.com/s/0ef043d4cd1d8b1f0bb1
https://figshare.com/s/0ef043d4cd1d8b1f0bb1
https://figshare.com/s/81d0676a05ae08e5a775
http://doi.org/10.1038/s41589-022-01091-7
http://www.ncbi.nlm.nih.gov/pubmed/35970997
http://doi.org/10.1016/j.jbiosc.2017.03.009
http://doi.org/10.3389/fgene.2019.00082
http://doi.org/10.1371/journal.pone.0239528
http://www.ncbi.nlm.nih.gov/pubmed/33170850
http://doi.org/10.1021/acs.jproteome.1c00139
http://doi.org/10.3390/metabo10040140
http://doi.org/10.1007/s12155-021-10389-8
http://doi.org/10.1186/s12918-014-0090-6
http://www.ncbi.nlm.nih.gov/pubmed/25103914
http://doi.org/10.1093/gigascience/giz015
http://www.ncbi.nlm.nih.gov/pubmed/30715293
http://doi.org/10.1023/A:1008802704374
http://doi.org/10.1016/j.bbagrm.2015.08.003
http://doi.org/10.1371/journal.pgen.1008761
http://doi.org/10.1007/s00253-018-9187-y
http://doi.org/10.1002/bies.202000027
http://www.ncbi.nlm.nih.gov/pubmed/33164244


Int. J. Mol. Sci. 2023, 24, 5646 23 of 25

16. Stanley, D.; Bandara, A.; Fraser, S.; Chambers, P.J.; Stanley, G.A. The Ethanol Stress Response and Ethanol Tolerance of Saccha-
romyces cerevisiae. J. Appl. Microbiol. 2010, 109, 13–24. [CrossRef] [PubMed]

17. Lewis, J.A.; Elkon, I.M.; McGee, M.A.; Higbee, A.J.; Gasch, A.P. Exploiting Natural Variation in Saccharomyces cerevisiae to Identify
Genes for Increased Ethanol Resistance. Genetics 2010, 186, 1197–1205. [CrossRef]

18. Lourenço, A.B.; Roque, F.C.; Teixeira, M.C.; Ascenso, J.R.; Sá-Correia, I. Quantitative 1H-NMR-Metabolomics Reveals Extensive
Metabolic Reprogramming and the Effect of the Aquaglyceroporin FPS1 in Ethanol-Stressed Yeast Cells. PLoS ONE 2013, 8, e55439.
[CrossRef] [PubMed]

19. Stanley, D.; Chambers, P.J.; Stanley, G.A.; Borneman, A.; Fraser, S. Transcriptional Changes Associated with Ethanol Tolerance in
Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2010, 88, 231–239. [CrossRef]

20. Cheng, L.; Zhang, X.; Zheng, X.; Wu, Z.; Weng, P. RNA-Seq Transcriptomic Analysis of Green Tea Polyphenols Regulation of
Differently Expressed Genes in Saccharomyces cerevisiae under Ethanol Stress. World J. Microbiol. Biotechnol. 2019, 35, 59. [CrossRef]

21. Li, R.; Miao, Y.; Yuan, S.; Li, Y.; Wu, Z.; Weng, P. Integrated Transcriptomic and Proteomic Analysis of the Ethanol Stress Response
in Saccharomyces cerevisiae Sc131. J. Proteomics 2019, 203, 103377. [CrossRef]

22. Santos, R.M.; Nogueira, F.C.S.; Brasil, A.A.; Carvalho, P.C.; Leprevost, F.V.; Domont, G.B.; Eleutherio, E.C.A. Quantitative
Proteomic Analysis of the Saccharomyces cerevisiae Industrial Strains CAT-1 and PE-2. J. Proteomics 2017, 151, 114–121. [CrossRef]
[PubMed]

23. Lewis, J.A.; Broman, A.T.; Will, J.; Gasch, A.P. Genetic Architecture of Ethanol-Responsive Transcriptome Variation in Saccha-
romyces cerevisiae Strains. Genetics 2014, 198, 369–382. [CrossRef] [PubMed]

24. Li, R.; Xiong, G.; Yuan, S.; Wu, Z.; Miao, Y.; Weng, P. Investigating the Underlying Mechanism of Saccharomyces cerevisiae in
Response to Ethanol Stress Employing RNA-Seq Analysis. World J. Microbiol. Biotechnol. 2017, 33, 206. [CrossRef] [PubMed]

25. Liang, L.; Liu, R.; Freed, E.F.; Eckert, C.A.; Gill, R.T. Transcriptional Regulatory Networks Involved in C3–C4 Alcohol Stress
Response and Tolerance in Yeast. ACS Synth. Biol. 2021, 10, 19–28. [CrossRef]

26. Nitsche, A.; Stadler, P.F. Evolutionary Clues in LncRNAs. Wiley Interdiscip. Rev. RNA 2017, 8, e1376. [CrossRef]
27. Wang, K.C.; Chang, H.Y. Molecular Mechanisms of Long Noncoding RNAs. Mol. Cell 2011, 43, 904–914. [CrossRef]
28. Chen, X.; Sun, Y.-Z.; Guan, N.-N.; Qu, J.; Huang, Z.-A.; Zhu, Z.-X.; Li, J.-Q. Computational Models for LncRNA Function

Prediction and Functional Similarity Calculation. Brief. Funct. Genomics 2019, 18, 58–82. [CrossRef]
29. Panni, S.; Prakash, A.; Bateman, A.; Orchard, S. The Yeast Noncoding RNA Interaction Network. RNA 2017, 23, 1479–1492.

[CrossRef] [PubMed]
30. Chujo, T.; Yamazaki, T.; Hirose, T. Architectural RNAs (ArcRNAs): A Class of Long Noncoding RNAs That Function as the

Scaffold of Nuclear Bodies. Biochim. Biophys. Acta-Gene Regul. Mech. 2016, 1859, 139–146. [CrossRef]
31. Carlin, D.E.; Demchak, B.; Pratt, D.; Sage, E.; Ideker, T. Network Propagation in the Cytoscape Cyberinfrastructure. PLoS Comput.

Biol. 2017, 13, 1–9. [CrossRef]
32. Lázari, L.C.; Wolf, I.R.; Schnepper, A.P.; Valente, G.T. LncRNAs of Saccharomyces cerevisiae Bypass the Cell Cycle Arrest Imposed

by Ethanol Stress. PLOS Comput. Biol. 2022, 18, e1010081. [CrossRef]
33. Santos, J.; Leitão-Correia, F.; Sousa, M.J.; Leão, C. Dietary Restriction and Nutrient Balance in Aging. Oxid. Med. Cell. Longev.

2016, 2016, 1–10. [CrossRef] [PubMed]
34. Gatica, D.; Lahiri, V.; Klionsky, D.J. Cargo Recognition and Degradation by Selective Autophagy. Nat. Cell Biol. 2018, 20, 233–242.

[CrossRef]
35. Wiwie, C.; Kuznetsova, I.; Mostafa, A.; Rauch, A.; Haakonsson, A.; Barrio-Hernandez, I.; Blagoev, B.; Mandrup, S.;

Schmidt, H.H.H.W.; Pleschka, S.; et al. Time-Resolved Systems Medicine Reveals Viral Infection-Modulating Host Targets. Syst.
Med. 2019, 2, 1–9. [CrossRef] [PubMed]

36. Eisenberg, T.; Knauer, H.; Schauer, A.; Büttner, S.; Ruckenstuhl, C.; Carmona-Gutierrez, D.; Ring, J.; Schroeder, S.; Magnes, C.;
Antonacci, L.; et al. Induction of Autophagy by Spermidine Promotes Longevity. Nat. Cell Biol. 2009, 11, 1305–1314. [CrossRef]
[PubMed]

37. Romero, A.M.; Ramos-Alonso, L.; Alepuz, P.; Puig, S.; Martínez-Pastor, M.T. Global Translational Repression Induced by Iron
Deficiency in Yeast Depends on the Gcn2/EIF2α Pathway. Sci. Rep. 2020, 10, 233. [CrossRef]

38. van Leeuwen, W.; Rabouille, C. Cellular Stress Leads to the Formation of Membraneless Stress Assemblies in Eukaryotic Cells.
Traffic 2019, 20, 623–638. [CrossRef] [PubMed]

39. Shah, K.H.; Zhang, B.; Ramachandran, V.; Herman, P.K. Processing Body and Stress Granule Assembly Occur by Independent
and Differentially Regulated Pathways in Saccharomyces cerevisiae. Genetics 2013, 193, 109–123. [CrossRef]

40. Kato, K.; Yamamoto, Y.; Izawa, S. Severe Ethanol Stress Induces Assembly of Stress Granules in Saccharomyces cerevisiae. Yeast
2011, 28, 339–347. [CrossRef]

41. Wang, C.; Schmich, F.; Srivatsa, S.; Weidner, J.; Beerenwinkel, N.; Spang, A. Context-Dependent Deposition and Regulation of
MRNAs in P-Bodies. eLife 2018, 7, 1–25. [CrossRef]

42. Buchan, J.R.; Muhlrad, D.; Parker, R. P Bodies Promote Stress Granule Assembly in Saccharomyces cerevisiae. J. Cell Biol. 2008, 183,
441–455. [CrossRef]

43. Eulalio, A.; Behm-Ansmant, I.; Izaurralde, E. P Bodies: At the Crossroads of Post-Transcriptional Pathways. Nat. Rev. Mol. Cell
Biol. 2007, 8, 9–22. [CrossRef]

http://doi.org/10.1111/j.1365-2672.2009.04657.x
http://www.ncbi.nlm.nih.gov/pubmed/20070446
http://doi.org/10.1534/genetics.110.121871
http://doi.org/10.1371/journal.pone.0055439
http://www.ncbi.nlm.nih.gov/pubmed/23408980
http://doi.org/10.1007/s00253-010-2760-7
http://doi.org/10.1007/s11274-019-2639-4
http://doi.org/10.1016/j.jprot.2019.103377
http://doi.org/10.1016/j.jprot.2016.08.020
http://www.ncbi.nlm.nih.gov/pubmed/27576599
http://doi.org/10.1534/genetics.114.167429
http://www.ncbi.nlm.nih.gov/pubmed/24970865
http://doi.org/10.1007/s11274-017-2376-5
http://www.ncbi.nlm.nih.gov/pubmed/29101531
http://doi.org/10.1021/acssynbio.0c00253
http://doi.org/10.1002/wrna.1376
http://doi.org/10.1016/j.molcel.2011.08.018
http://doi.org/10.1093/bfgp/ely031
http://doi.org/10.1261/rna.060996.117
http://www.ncbi.nlm.nih.gov/pubmed/28701522
http://doi.org/10.1016/j.bbagrm.2015.05.007
http://doi.org/10.1371/journal.pcbi.1005598
http://doi.org/10.1371/journal.pcbi.1010081
http://doi.org/10.1155/2016/4010357
http://www.ncbi.nlm.nih.gov/pubmed/26682004
http://doi.org/10.1038/s41556-018-0037-z
http://doi.org/10.1089/sysm.2018.0013
http://www.ncbi.nlm.nih.gov/pubmed/31119214
http://doi.org/10.1038/ncb1975
http://www.ncbi.nlm.nih.gov/pubmed/19801973
http://doi.org/10.1038/s41598-019-57132-0
http://doi.org/10.1111/tra.12669
http://www.ncbi.nlm.nih.gov/pubmed/31152627
http://doi.org/10.1534/genetics.112.146993
http://doi.org/10.1002/yea.1842
http://doi.org/10.7554/eLife.41300
http://doi.org/10.1083/jcb.200807043
http://doi.org/10.1038/nrm2080


Int. J. Mol. Sci. 2023, 24, 5646 24 of 25

44. Tudisca, V.; Recouvreux, V.; Moreno, S.; Boy-Marcotte, E.; Jacquet, M.; Portela, P. Differential Localization to Cytoplasm, Nucleus
or P-Bodies of Yeast PKA Subunits under Different Growth Conditions. Eur. J. Cell Biol. 2010, 89, 339–348. [CrossRef]

45. Ferraiuolo, M.A.; Basak, S.; Dostie, J.; Murray, E.L.; Schoenberg, D.R.; Sonenberg, N. A Role for the EIF4E-Binding Protein 4E-T in
P-Body Formation and MRNA Decay. J. Cell Biol. 2005, 170, 913–924. [CrossRef] [PubMed]

46. Kane, P.M. Proton Transport and PH Control in Fungi. In Yeast Membrane Transport. Advances in Experimental Medicine and Biology;
Ramos, J., Sychrová, H., Kschischo, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 33–68.

47. Xie, J.L.; Jarosz, D.F. Mutations, Protein Homeostasis, and Epigenetic Control of Genome Integrity. DNA Repair 2018, 71, 23–32.
[CrossRef] [PubMed]

48. Sanchez, Y. Control of the DNA Damage Checkpoint by Chk1 and Rad53 Protein Kinases Through Distinct Mechanisms. Science
1999, 286, 1166–1171. [CrossRef]

49. Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA Cycle Metabolites Control Physiology and Disease. Nat. Commun. 2020,
11, 102. [CrossRef] [PubMed]

50. Tachibana, C.; Yoo, J.Y.; Tagne, J.-B.; Kacherovsky, N.; Lee, T.I.; Young, E.T. Combined Global Localization Analysis and
Transcriptome Data Identify Genes That Are Directly Coregulated by Adr1 and Cat8. Mol. Cell. Biol. 2005, 25, 2138–2146.
[CrossRef] [PubMed]

51. Walther, K.; Schüller, H.-J. Adr1 and Cat8 Synergistically Activate the Glucose-Regulated Alcohol Dehydrogenase Gene ADH2 of
the Yeast Saccharomyces cerevisiae. Microbiology 2001, 147, 2037–2044. [CrossRef] [PubMed]

52. KEGG: Kyoto Encyclopedia of Genes and Genomes Alcohol Dehydrogenase Reaction: R00623. Available online: https://www.
kegg.jp/entry/R00623 (accessed on 10 October 2022).

53. Falcone, C.; Mazzoni, C. RNA Stability and Metabolism in Regulated Cell Death, Aging and Diseases. FEMS Yeast Res. 2018,
18, foy050. [CrossRef] [PubMed]

54. Lakhotia, S.C. Long Non-Coding RNAs Coordinate Cellular Responses to Stress. Wiley Interdiscip. Rev. RNA 2012, 3, 779–796.
[CrossRef]

55. Reynaud, A.; Facca, C.; Sor, F.; Faye, G. Disruption and Functional Analysis of Six ORFs of Chromosome IV: YDL103c (QRI1),
YDL105w (QRI2), YDL112w (TRM3), YDL113c, YDL116w (NUP84) and YDL167c (NRP1). Yeast 2001, 18, 273–282. [CrossRef]

56. Xu, K.; Bezakova, I.; Bunimovich, L.; Yi, S.V. Path Lengths in Protein-Protein Interaction Networks and Biological Complexity.
Proteomics 2011, 11, 1857–1867. [CrossRef]

57. Klein, C.; Marino, A.; Sagot, M.-F.; Vieira Milreu, P.; Brilli, M. Structural and Dynamical Analysis of Biological Networks. Brief.
Funct. Genomics 2012, 11, 420–433. [CrossRef]

58. Doncheva, N.T.; Assenov, Y.; Domingues, F.S.; Albrecht, M. Topological Analysis and Interactive Visualization of Biological
Networks and Protein Structures. Nat. Protoc. 2012, 7, 670–685. [CrossRef] [PubMed]

59. Mohammad, K.; Dakik, P.; Medkour, Y.; McAuley, M.; Mitrofanova, D.; Titorenko, V. Some Metabolites Act as Second Messengers
in Yeast Chronological Aging. Int. J. Mol. Sci. 2018, 19, 860. [CrossRef]

60. Mirzaei, H.; Suarez, J.A.; Longo, V.D. Protein and Amino Acid Restriction, Aging and Disease: From Yeast to Humans. Trends
Endocrinol. Metab. 2014, 25, 558–566. [CrossRef]

61. Du, X.; Takagi, H. N-Acetyltransferase Mpr1 Confers Ethanol Tolerance on Saccharomyces cerevisiae by Reducing Reactive Oxygen
Species. Appl. Microbiol. Biotechnol. 2007, 75, 1343–1351. [CrossRef] [PubMed]

62. Deb, R.; Ghose, S.; Nagotu, S. Increased Peroxisome Proliferation Is Associated with Early Yeast Replicative Ageing. Curr. Genet.
2022, 68, 207–225. [CrossRef] [PubMed]

63. Navarro-Tapia, E.; Nana, R.K.; Querol, A.; Pérez-Torrado, R. Ethanol Cellular Defense Induce Unfolded Protein Response in Yeast.
Front. Microbiol. 2016, 7, 189. [CrossRef]

64. Ramachandran, V.; Shah, K.H.; Herman, P.K. The CAMP-Dependent Protein Kinase Signaling Pathway Is a Key Regulator of P
Body Foci Formation. Mol. Cell 2011, 43, 973–981. [CrossRef] [PubMed]

65. Jain, S.; Parker, R. The Discovery and Analysis of P Bodies. Adv. Exp. Med. Biol. 2013, 768, 23–43. [CrossRef]
66. Roy, R.; Rajyaguru, P.I. Stress Granules and P-Bodies: An Insight into MRNA Translational Control and Decay. Proc. Indian Natl.

Sci. Acad. 2018, 97, a032813. [CrossRef]
67. Youn, J.Y.; Dyakov, B.J.A.; Zhang, J.; Knight, J.D.R.; Vernon, R.M.; Forman-Kay, J.D.; Gingras, A.C. Properties of Stress Granule

and P-Body Proteomes. Mol. Cell 2019, 76, 286–294. [CrossRef]
68. Ivanov, P.; Kedersha, N.; Anderson, P. Stress Granules and Processing Bodies in Translational Control. Cold Spring Harb. Perspect.

Biol. 2019, 11, a032813. [CrossRef]
69. Standart, N.; Weil, D. P-Bodies: Cytosolic Droplets for Coordinated MRNA Storage. Trends Genet. 2018, 34, 612–626. [CrossRef]

[PubMed]
70. Grousl, T.; Vojtova, J.; Hasek, J.; Vomastek, T. Yeast Stress Granules at a Glance. Yeast 2022, 39, 247–261. [CrossRef] [PubMed]
71. Marcelo, A.; Koppenol, R.; de Almeida, L.P.; Matos, C.A.; Nóbrega, C. Stress Granules, RNA-Binding Proteins and Polyglutamine

Diseases: Too Much Aggregation? Cell Death Dis. 2021, 12, 592. [CrossRef]
72. Pitchiaya, S.; Mourao, M.D.A.; Jalihal, A.P.; Xiao, L.; Jiang, X.; Chinnaiyan, A.M.; Schnell, S.; Walter, N.G. Dynamic Recruitment of

Single RNAs to Processing Bodies Depends on RNA Functionality. Mol. Cell 2019, 74, 521–533.e6. [CrossRef] [PubMed]
73. KEGG: Kyoto Encyclopedia of Genes and Genomes Glycolysis/Gluconeogenesis-Saccharomyces cerevisiae (Budding Yeast):

Sce00010. Available online: https://www.kegg.jp/pathway/sce00010 (accessed on 10 October 2022).

http://doi.org/10.1016/j.ejcb.2009.08.005
http://doi.org/10.1083/jcb.200504039
http://www.ncbi.nlm.nih.gov/pubmed/16157702
http://doi.org/10.1016/j.dnarep.2018.08.004
http://www.ncbi.nlm.nih.gov/pubmed/30181040
http://doi.org/10.1126/science.286.5442.1166
http://doi.org/10.1038/s41467-019-13668-3
http://www.ncbi.nlm.nih.gov/pubmed/31900386
http://doi.org/10.1128/MCB.25.6.2138-2146.2005
http://www.ncbi.nlm.nih.gov/pubmed/15743812
http://doi.org/10.1099/00221287-147-8-2037
http://www.ncbi.nlm.nih.gov/pubmed/11495982
https://www.kegg.jp/entry/R00623
https://www.kegg.jp/entry/R00623
http://doi.org/10.1093/femsyr/foy050
http://www.ncbi.nlm.nih.gov/pubmed/29986027
http://doi.org/10.1002/wrna.1135
http://doi.org/10.1002/1097-0061(200102)18:3&lt;273::AID-YEA665&gt;3.0.CO;2-B
http://doi.org/10.1002/pmic.201000684
http://doi.org/10.1093/bfgp/els030
http://doi.org/10.1038/nprot.2012.004
http://www.ncbi.nlm.nih.gov/pubmed/22422314
http://doi.org/10.3390/ijms19030860
http://doi.org/10.1016/j.tem.2014.07.002
http://doi.org/10.1007/s00253-007-0940-x
http://www.ncbi.nlm.nih.gov/pubmed/17387467
http://doi.org/10.1007/s00294-022-01233-3
http://www.ncbi.nlm.nih.gov/pubmed/35220444
http://doi.org/10.3389/fmicb.2016.00189
http://doi.org/10.1016/j.molcel.2011.06.032
http://www.ncbi.nlm.nih.gov/pubmed/21925385
http://doi.org/10.1007/978-1-4614-5107-5_3
http://doi.org/10.16943/ptinsa/2018/49402
http://doi.org/10.1016/j.molcel.2019.09.014
http://doi.org/10.1101/cshperspect.a032813
http://doi.org/10.1016/j.tig.2018.05.005
http://www.ncbi.nlm.nih.gov/pubmed/29908710
http://doi.org/10.1002/yea.3681
http://www.ncbi.nlm.nih.gov/pubmed/34791685
http://doi.org/10.1038/s41419-021-03873-8
http://doi.org/10.1016/j.molcel.2019.03.001
http://www.ncbi.nlm.nih.gov/pubmed/30952514
https://www.kegg.jp/pathway/sce00010


Int. J. Mol. Sci. 2023, 24, 5646 25 of 25

74. Miinalainen, I.J.; Chen, Z.-J.; Torkko, J.M.; Pirilä, P.L.; Sormunen, R.T.; Bergmann, U.; Qin, Y.-M.; Hiltunen, J.K. Characterization of
2-Enoyl Thioester Reductase from Mammals. An Ortholog of YBR026p/MRF1’p of the Yeast Mitochondrial Fatty Acid Synthesis
Type II. J. Biol. Chem. 2003, 278, 20154–20161. [CrossRef] [PubMed]

75. KEGG: Kyoto Encyclopedia of Genes and Genomes Fatty Acid Elongation-Saccharomyces cerevisiae (Budding Yeast): Sce00062.
Available online: https://www.genome.jp/pathway/sce00062 (accessed on 10 October 2022).

76. Shani, N.; Valle, D. A Saccharomyces cerevisiae Homolog of the Human Adrenoleukodystrophy Transporter Is a Heterodimer of
Two Half ATP-Binding Cassette Transporters. Proc. Natl. Acad. Sci. USA 1996, 93, 11901–11906. [CrossRef] [PubMed]

77. Priegnitz, A.; Brzhevskaya, O.N.; Wojtczak, L. Tight Binding of Oxaloacetate to Succinate Dehydrogenase. Biochem. Biophys. Res.
Commun. 1973, 51, 1034–1041. [CrossRef] [PubMed]

78. Nijland, J.G.; Shin, H.Y.; Dore, E.; Rudinatha, D.; de Waal, P.P.; Driessen, A.J.M. D-Glucose Overflow Metabolism in an Evolu-
tionary Engineered High-Performance D-Xylose Consuming Saccharomyces cerevisiae Strain. FEMS Yeast Res. 2021, 21, foaa062.
[CrossRef] [PubMed]

79. He, B.; Zhao, S.; Chen, Y.; Cao, Q.; Wei, C.; Cheng, X.; Zhang, Y. Optimal Assembly Strategies of Transcriptome Related to Ploidies
of Eukaryotic Organisms. BMC Genomics 2015, 16, 65. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1074/jbc.M302851200
http://www.ncbi.nlm.nih.gov/pubmed/12654921
https://www.genome.jp/pathway/sce00062
http://doi.org/10.1073/pnas.93.21.11901
http://www.ncbi.nlm.nih.gov/pubmed/8876235
http://doi.org/10.1016/0006-291X(73)90031-4
http://www.ncbi.nlm.nih.gov/pubmed/4703549
http://doi.org/10.1093/femsyr/foaa062
http://www.ncbi.nlm.nih.gov/pubmed/33232441
http://doi.org/10.1186/s12864-014-1192-7

	Introduction 
	Results 
	Rationale and Overview 
	Defining the Highest EtOH Tolerance for Each Strain 
	Gene, Protein and Metabolite Expression Analyses 
	LncRNA Assembly and General Functions of EtOH-Responsive lncRNAs 
	Life-Essential Pathways Affected by EtOH 
	Effect of EtOH on Degradation/Storage-Related Pathways 
	Overall EtOH Stress Data Integration: EtOH Stress Buffering Model 
	Peculiarity of the EtOH Stress-Buffering Model of the BMA64-1A Strain 
	Effect of EtOH on Lipid Metabolism 

	Discussion 
	EtOH Stress-Responsive lncRNAs Are Functionally Diverse and Likely Involved in EtOH Tolerance 
	EtOH Causes Extensive Rewiring of Life-Essential Pathways: Longevity, Peroxisome, CTA1 and SUI2 Are Master Key Regulators of EtOH Tolerance Phenotypes 
	Membraneless Organelles, Storage, and Degradation Systems Are Related to EtOH Stress: lncRNAs Act on These Systems 
	EtOH Stress-Buffering Model 

	Materials and Methods 
	Defining the Highest EtOH Tolerance 
	Cell Biology Analysis 
	Acquisition of Omics Data 
	Bioinformatics 
	Omics Analysis 
	Analysis of the lncRNAs and Networks 
	Mutant Generation and Analysis 


	Conclusions 
	References

