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Abstract: Currently, there are no biomarkers to predict lethal lung injury by radiation. Since it is
not ethical to irradiate humans, animal models must be used to identify biomarkers. Injury to the
female WAG/RijCmcr rat has been well-characterized after exposure to eight doses of whole thorax
irradiation: 0-, 5-, 10-, 11-, 12-, 13-, 14- and 15-Gy. End points such as SPECT imaging of the lung
using molecular probes, measurement of circulating blood cells and specific miRNA have been shown
to change after radiation. Our goal was to use these changes to predict lethal lung injury in the rat
model, 2 weeks post-irradiation, before any symptoms manifest and after which a countermeasure
can be given to enhance survival. SPECT imaging with 99mTc-MAA identified a decrease in perfusion
in the lung after irradiation. A decrease in circulating white blood cells and an increase in five specific
miRNAs in whole blood were also tested. Univariate analyses were then conducted on the combined
dataset. The results indicated that a combination of percent change in lymphocytes and monocytes,
as well as pulmonary perfusion volume could predict survival from radiation to the lungs with 88.5%
accuracy (95% confidence intervals of 77.8, 95.3) with a p-value of < 0.0001 versus no information
rate. This study is one of the first to report a set of minimally invasive endpoints to predict lethal
radiation injury in female rats. Lung-specific injury can be visualized by 99mTc-MAA as early as
2 weeks after radiation.

Keywords: microRNA; SPECT/CT; molecular probes; radiation pneumonitis; animal model for
radiation injury; biomarkers

1. Introduction

Candidate biological molecules that are altered by radiation have been targets for
identification of accurate biomarkers to predict lethal injury [1]. However, despite decades
of research, a gap in this field remains. Biological molecules that have been pursued in-
clude DNA [2,3], multiple species of RNA such as long non-coding RNA (lncRNA) [4],
miRNA [5,6], mRNA [4,7], proteins and protein arrays [8–10], advanced multi-omic plat-
forms [11] and others [12]. Essential to bridging this gap is establishing representative
animal models and conducting relevant clinical trials. Since it is not ethical to irradiate
humans, surrogate animal studies that reflect human injury must be used. The most
straightforward model for damage from a radiation attack or accident is total body irradia-
tion (TBI) that induces acute radiation syndrome (ARS). However, in order to induce the
delayed effects of acute radiation exposure (DEARE), models that can survive ARS must be
developed. By sparing minimal volumes of bone marrow to survive early hematopoietic
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toxicity, animal models have proceeded to exhibit DEARE [13–15]. A part of a single limb
of an animal is shielded while exposing the remainder of the total body to ionizing radia-
tion. Such a model is referred to as partial body irradiation with bone marrow shielding
(PBI/BM) and has been described in mice [16], rats [13,17] and non-human primates [15,18].
In addition, models that irradiate smaller volumes of the body that spare lethal bone mar-
row toxicity, for example irradiation to the thorax only (whole thoracic lung irradiation,
WTLI [19–21]) are used to study the radiotoxicity on single or only a few organs such as
the lung and heart [22,23]. Lung injury is also induced in the context of multiple organ
exposure by sub-threshold doses of TBI combined with an additional booster dose to the
thorax only [8,24].

Regarding the types of radiation used in these models, photon sources such as cesium
irradiators [25,26], X-rays [13], linear accelerators [15,18] as well as mixed fields of neutron
and X-rays [27] have been applied. Such ionizing radiation manifests ARS and/or DEARE,
depending on the dose of radiation delivered and the organs that are exposed. The most
common radiation-induced organ injury that has been targeted for biomarker development
is radiation to the bone marrow. Kinetics of circulating blood cells have proved very
useful to monitor damage represented by this endpoint [12,28–30]. As more sophisticated
technologies emerge, molecular markers have also become popular [6,7,31–37]. A few
biomarkers for gastrointestinal toxicity during ARS such as circulating levels of citrulline
have been described [38–40]. In addition, several workshops, reports, and reviews on
biomarkers and biodosimetry are available [1,10,41–43].

In the current study, we focused on biomarkers for lethal lung injury. The female
WAG/RijCmcr rat model was chosen to develop predictive biomarkers for survival from
radiation pneumonitis, since well-characterized responses to multiple doses between 0–15 Gy
to the thorax (viz: 0-, 5-, 10-, 11-, 12-, 13-, 14- and 15-Gy) were available [13,21,44,45]. A dose
of 15 Gy WTLI was the lowest dose previously described to exhibit 100% morbidity from
radiation pneumonitis [45] and was therefore hypothesized to manifest the greatest changes
by radiation. It was selected to identify candidate biomarkers. Specifically, results of changes
in pulmonary perfusion [44], apoptotic injury [44], miRNA expression [46] and circulating
blood cell counts [46] were already established at 1, 2, 3 and 4 weeks post-15 Gy WTLI. Our
first step was to select the earliest informative timepoint after radiation when biological or
molecular alterations could be detected in the lung, but before symptoms of lung injury were
observed [47,48]. This approach to initially identify a pulmonary-imaging biomarker was
based as rationale to develop a lung-specific injury marker after total or partial body radiation
exposure. In a mass-casualty event such as a nuclear attack or accident, injury to multiple
organs including the heart [49] and lung will occur. The first step to identify pulmonary
markers was to use single photon emission computed tomography (SPECT) after WTLI with
15 Gy [44]. The studies were followed by testing other biomarkers including gases in exhaled
breath, circulating microRNA (miRNA) in plasma using next-generation miRNA seq and lastly,
circulating blood cell counts. Each marker was measured individually in rats at 2 weeks after
15 Gy. Two weeks post-radiation is earlier than the five-week window, when the ACE inhibitor
enalapril could be started in the same rat model to mitigate radiation pneumonitis [48]. In
addition, it is well within the latent period before any symptoms of radiation pneumonitis are
observed [44]. Once the results from this lethal dose (15 Gy WTLI) [44,46], were obtained, we
selected two SPECT probes, five candidate miRNAs as well as white blood cells counts for
a study on a separate set of rats in the current study. A test group of rats was given a dose
of 13 Gy WTLI that was lethal to ≤50% rats (Figure 1). Each rat was then evaluated for all
three sets of biomarkers at 2 weeks and then followed to correlate these with the outcome
of pneumonitis (lethal or not by 100 days). The same biomarkers were also measured in
nonirradiated controls (0 Gy) and in rats irradiated with 10 Gy WTLI [21], doses that did
not result in lethal morbidity up to 1 year after irradiation [21]. The collection of biomarkers
was limited to a single time point in these cohorts based on maintaining the integrity of the
survival studies. The ability of the biomarkers to predict survival was then determined.
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While all nonirradiated rats (0 Gy) and 10 Gy survived to 100 days, 50% of rats with 13 
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study was terminated. Previous studies had determined that there were no survivors at 
60 days after 15 Gy WTLI in the same model [45]. In addition, rats given 13 Gy WTLI that 
survived pneumonitis went on to survive over 210 days [13]. 

2.2. Perfusion Volume of the Lung and Apoptosis as Measured by SPECT/CT Imaging at 2 
Weeks Post-Irradiation 

The fraction of the lung volume that was perfused in each rat was determined at 2 
weeks following radiation using technetium-labeled macroaggregated albumin (99mTc-
MAA) and SPECT imaging. The 99mTc-MAA beads (diameter < 20 μm) lodge in capillaries 
in proportion to flow. Differences between perfused volumes for SPECT studies between 
nonirradiated controls versus rats irradiated with 10 Gy or 13 Gy WTLI are shown in Fig-
ure 2 and were analyzed by a Kruskal–Wallis test with Dunn’s test to account for multiple 
comparisons. There was no statistical difference between perfusion in nonirradiated rats, 
median 93.9% with 95% confidence intervals of (64.1–96.8, n = 6) versus those given 10 Gy 
WTLI median 92.8% (73.5–98.6, n = 7) or 13 Gy WTLI median of 87.3% (70.9–91.6, n = 26). 
A Mann–Whitney test was performed comparing nonirradiated controls with a median 
of 93.9% (64.1–96.8, n = 6) to rats that were morbid by 60 days after 13 Gy WTLI with a 
median of 73.5% (62.0–91.1, n = 13), these results reached statistical significance (p = 0.037) 

Figure 1. Kaplan–Meier plots for percent morbidity (X-axis) from pneumonitis in control female rats
and those given whole thorax lung irradiation (WTLI) and followed for 100 days post-irradiation
(X-axis). Three doses of radiation are represented: (1) no irradiation (0 Gy—red line), (2) 10 Gy WTLI
(green line) and (3) 13 Gy WTLI (blue line).

2. Results
2.1. Dose-Response and Survival after WTLI

Figure 1 shows the Kaplan–Meier plots for survival of nonirradiated (0 Gy), 10, or
13 Gy WTLI in female rats. The experiment was terminated by 100 days post-irradiation.
While all nonirradiated rats (0 Gy) and 10 Gy survived to 100 days, 50% of rats with 13 Gy
were morbid by 60 days. All rats surviving to 60 days continued to stay alive until the
study was terminated. Previous studies had determined that there were no survivors at
60 days after 15 Gy WTLI in the same model [45]. In addition, rats given 13 Gy WTLI that
survived pneumonitis went on to survive over 210 days [13].

2.2. Perfusion Volume of the Lung and Apoptosis as Measured by SPECT/CT Imaging
at 2 Weeks Post-Irradiation

The fraction of the lung volume that was perfused in each rat was determined at 2 weeks
following radiation using technetium-labeled macroaggregated albumin (99mTc-MAA) and
SPECT imaging. The 99mTc-MAA beads (diameter < 20 µm) lodge in capillaries in proportion
to flow. Differences between perfused volumes for SPECT studies between nonirradiated
controls versus rats irradiated with 10 Gy or 13 Gy WTLI are shown in Figure 2 and were
analyzed by a Kruskal–Wallis test with Dunn’s test to account for multiple comparisons.
There was no statistical difference between perfusion in nonirradiated rats, median 93.9% with
95% confidence intervals of (64.1–96.8, n = 6) versus those given 10 Gy WTLI median 92.8%
(73.5–98.6, n = 7) or 13 Gy WTLI median of 87.3% (70.9–91.6, n = 26). A Mann–Whitney test
was performed comparing nonirradiated controls with a median of 93.9% (64.1–96.8, n = 6) to
rats that were morbid by 60 days after 13 Gy WTLI with a median of 73.5% (62.0–91.1, n = 13),
these results reached statistical significance (p = 0.037) and are comparable to the 15 Gy WTLI
rat cohort (n = 11) in which matched nonirradiated controls (n = 12) showed a significant
decrease in perfusion of the irradiated lungs [44].

Values for uptake of the apoptosis marker technetium-labeled duramycin (99mTc-DU,
that binds to apoptotic cells) were not different after 10- or 13-Gy and are not included in
Figure 2 but are shown in Supplementary Figures S1 and S2 where all results are graphically
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summarized. It should be noted that uptake of both probes, 99mTc-MAA and 99mTc-DU, is
known to be altered in the lung at 2 weeks after a lethal dose of 15 Gy WTLI [44].
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Figure 2. Percent perfused lung volume by radiation (Y-axis) as determined by 99mTc-MAA and CT
imaging. The data are presented as medians and 95% confidence intervals in female nonirradiated
rats and age-matched rats given 10- and 13-Gy whole thorax lung irradiation (WTLI) at 2 weeks after
exposure. There was no difference in perfusion between groups when all rats in each group were
included. ns = no statistical difference.

2.3. Changes in Circulating White Blood Cell Counts at 2 Weeks after Irradiation

Figure 3 shows white blood cell counts at 2 weeks after 10- and 13-Gy WTLI. Total
white blood cells were decreased at 2 weeks after both doses (Figure 3A), similar to previous
results for 15 Gy WTLI [46]. The percent of neutrophils in the white blood cell compartment
were increased by 13 Gy WTLI but not after 10 Gy WTLI (Figure 3B). The percent of
lymphocytes in the white blood cells were decreased by 13 Gy WTLI but not after 10 Gy
WTLI (Figure 3C). The percent of monocytes in white blood cells tended to be higher after
13 Gy WLTI (Figure 3D), though this difference did not reach statistical significance. Because
differences in any one 2-week variable alone did not correlate to survival, we proceeded to
test a combination of endpoints. It should be noted that the absolute differential counts of
the individual white blood cell types were not changed; only the percentages of some cell
types were altered as shown in Figure 3B,C. The absolute counts of individual white blood
cell types are not included in Figure 3 but are shown in Supplementary Figures S1 and S2
where all results are graphically summarized.
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Figure 3. Graphical representation of circulating white blood cell counts 2 weeks after whole thorax
lung irradiation (WTLI). Blood was harvested from female nonirradiated, and age-matched rats given
10- and 13-Gy WTLI and the white cell count determined as described (see Section 4). (A) Total white
blood cells/microliter. (B) Percent neutrophils. (C) Percent lymphocytes. (D) Percent monocytes. The
data are presented as medians and 95% confidence intervals: * = p < 0.0332, *** = p < 0.0002, ns = no
statistical difference.
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2.4. Expression of miR19a-3p, miR142-5p, miR 144-5p, miR 144-3p, miR 21-5p at 2 Weeks
after Irradiation

The results of the relative expression of miR 19a-3p, miR 142-5p, miR 144-5p, miR
144-3p, miR 21-5p and 150-5p after normalization to miR191-5p are shown in Figure 4.
miR191-5p was selected for normalization as we have demonstrated it is not altered by
radiation [46]. The relative expression of miR 144-5p, miR 144-3p, miR 142-5p, miR 19a-3p
and miR 21-5p (markers that were upregulated in whole blood compared to miR 191-
5p at 2 weeks after 15 Gy WTLI [46]) were not significantly increased by 13 Gy WTLI
(Figure 4A–E). MiR 150-5p, a marker derived from hematopoietic cells [6] was decreased
after 13 Gy WTLI (Figure 4F). Similar results were obtained after 10 Gy WTLI.
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conducted using an artificial dataset with imputed values for the single-variable animals 
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2.5.2. Imputation Procedure 
Based on the four subsets depending on the variable availability, 29,898 hypothetical 

animals were created with all possible combinations of the values for the variables, match-
ing on radiation dose. From this pool, 11 animals treated with 0 Gy and 11 animals treated 
with 15 Gy were randomly selected to reflect the typical group sizes in the second set of 
experiments. Six 0 Gy, all the 10 Gy and 13 Gy animals had complete data, and they were 
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Figure 4. miRNA expression relative to miRNA 191-5p: Graphical representation of circulating
miRNA from total blood after whole thorax lung irradiation (WTLI). Blood was harvested from
female nonirradiated (0 Gy) and age-matched rats given 10- and 13-Gy WTLI and miRNA isolated
and quantitated by qRT-PCR as described (see Materials and Methods). Normalized expression of
miRNA as compared to miR 191-5p: (A) miR 19a-3p, (B) miR 142-5p, (C) miR 144-5p, (D) miR 144-3p,
(E) miR 21-5p, (F) miR 150-5p. The data are presented as medians and 95% confidence intervals:
**** = p < 0.0001, ns = no statistical difference.

2.5. Combining Biomarkers to Predict Lethal Lung Irradiation
2.5.1. Data Import

Data were available from two sets of experiments. The first set had all variables of
interest measured in animals treated with 0-, 10- or 13-Gy radiation, while the second set
had only one type of variable (i.e., only blood composition, only miRNA, only 99mTc-MAA
or only 99mTc-DU) in animals treated with 0- or 15-Gy. Univariate analyses were conducted
on the entire combined dataset, using the animals with non-missing values of the relevant
variable (See Supplementary data: Figures S1 and S2). The multivariate analyses were
conducted using an artificial dataset with imputed values for the single-variable animals
from the second set as described below.

2.5.2. Imputation Procedure

Based on the four subsets depending on the variable availability, 29,898 hypothetical
animals were created with all possible combinations of the values for the variables, match-
ing on radiation dose. From this pool, 11 animals treated with 0 Gy and 11 animals treated
with 15 Gy were randomly selected to reflect the typical group sizes in the second set of
experiments. Six 0 Gy, all the 10 Gy and 13 Gy animals had complete data, and they were
included as is (see Table 1). This process can be considered a single replicate of a multiple
imputation procedure. A limitation of this approach is the assumption of independence
between the variables, conditional on radiation dose, during the imputation process.
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Table 1. Number and distribution of rats used for biomarker analysis.

Number Gy Notes

6 0 Study set
7 10 Study set
26 13 Study set
11 0 Biomarker identification set
11 15 Biomarker identification set

2.5.3. Predicting Survival

Prediction rules for 60-day status were then developed using a classification-tree
(CART) approach. CART uses a recursive binary splitting algorithm to build the classi-
fication tree. Using the entire dataset, the cutoff for the optimal split for each variable is
determined by minimizing the Gini index, which measures the “impurity” of the nodes
created by the split. The variable with the lowest Gini index is selected for the split. This
process is repeated in the two subsets defined by the first split, and all subsequent splits
until there is no improvement in the classification or the subsets become too small (we
did not split nodes with fewer than 20 observations). The benefits of CART include its
interpretability, ability to model interactions and ability to handle missing data. Splitting
criteria are listed at each decision point; the left branch corresponds to “YES” and the right
branch to “NO”. The Alive/Dead label at the bottom of the tree (Figure 5) indicates the clas-
sification of the observations falling into that group. Missing values were handled by either
splitting on a correlated “surrogate” variable or by going with the majority. Figure 5 shows
that a combination of percent lymphocytes and monocytes, as well as a drop in pulmonary
perfusion volume will predict survival from radiation to the lungs with 88.5% accuracy
(95% confidence interval of 77.8, 95.3) with a p-value of < 0.001 versus the no information
rate (NIR) of 60.7%, and a McNemar’s p-value of 0.45. All the misclassified observations
were in the 13 Gy group, within which the accuracy was 73.1% (95% CI: 52.2–88.4%), with
p = 0.015 versus NIR.
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Figure 5. Prediction rules for 60-day status were developed using a classification-tree (CART) ap-
proach. In the plots, the splitting criterion is listed at each decision point; the left branch corresponds
to “YES” and the right branch to the “NO”. The Alive/Dead label at the bottom of the tree in-
dicates the classification of the observations falling into that group, with the numbers indicating
the actual number of observations (alive/dead). Splits on a missing value are handled by either
splitting on a correlated “surrogate” variable, or by going with the majority. McNemar’s p-value: test
misclassification bias (e.g., more alive > dead or dead > alive).
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3. Discussion

The goal of the current study was to find markers to identify potentially lethal
radiation-induced pneumonitis. Since multiple organs are injured by radiation and circu-
lating markers such as blood cells and miRNA can be altered by radiation to organs other
than the lungs, pulmonary imaging modalities are likely to directly measure lung injury.
SPECT imaging with 99mTc-MAA detected changes as early as 2 weeks in rats, providing
a structural biomarker of perfused lung volume that correlates with lung function, since
perfusion plays an important role in gas exchange in the lung. There are many reports
of a decrease in perfusion in the lungs after radiation [50–52]. In the future, SPECT/CT
values in nonirradiated humans will be useful to provide a baseline for this biomarker to
make it informative after radiation. Another change at 2 weeks after radiation, vascular
permeability, has also been reported [53]. This dysfunction has been explored using an
FDA-approved dye in combination with optical imaging in rat lungs [53], a technique
that could be easily applied in the clinic [54,55]. These translational markers can readily
be measured in humans. Differential white blood cell counts can be easily evaluated at
2 weeks, while clinics throughout the United States routinely measure lung perfusion by
SPECT/CT. It should be noted that there are only a few other studies measuring such early
functional changes in any organ to predict radiation injury. One example is cardiac mag-
netic resonance imaging for evaluation of cardiotoxicity in patients with breast cancer [56].
We report that a combination of percent change in lymphocytes and monocytes, as well
as pulmonary perfusion volume, could predict survival from radiation to the lungs with
88.5% accuracy (95% confidence intervals of 77.8, 95.3) with a p-value of <0.0001 versus
no information rate. Thus, a simple set of tests has potential to detect lethal lung injury
before pulmonary symptoms of radiation pneumonitis develop and in time to mitigate
injury with an ACE inhibitor [48].

Blood cell measurements, ratios and kinetics are commonly used as diagnostic biomark-
ers for radiation exposure [30] and have been refined for dose evaluation [29] and bio-
dosimetry [28]. They have been combined with other markers to assess multiple parameters
for radiation injury in nonhuman primates [28]. RNA and gene expression have also been
popular candidates as radiation biomarkers. Some of the more recent and successful ex-
amples have been the measurement of miR 150-5p [6] as well as expression of radiation
responsive genes [7,10]. RNA signatures have also been explored in nonhuman primates
exposed to total body irradiation and WTLI [5]. Emerging as another set of popular can-
didates are small molecules such as metabolites and lipids [34,35,49]. Other investigators
have also attempted to identify radiation-induced biomarkers of lung injury in animal
models relevant to a radiological incident [5,8,43]. Circulating content of club cell secre-
tory protein (CCSP) and surfactant protein D (SP-D) expressed by lung epithelium were
identified as biomarkers for pulmonary fibrosis induced by radiation [8].

Since circulating blood cell counts can be altered by a number of factors, we also
evaluated if intraperitoneal injection of a toxic agent, lipopolysaccharide (LPS), alters
circulating blood cell counts in a similar manner as radiation to the lungs. After 24 h
treatment with LPS, a time point that injures the lungs, the neutrophil/lymphocyte ratio
was 3 times higher than with radiation at 2 weeks after >10 Gy WTLI (results not shown).
Thus, the profile or even kinetics of changes in circulating blood cell counts may differentiate
between these two insults (biochemical and radiological toxicities). Though the pulmonary
SPECT endpoint advances the search for a lung-specific biomarker, further research by
irradiating other parts of the body and shielding the lungs will verify if perfusion is altered
even when the lung is not in the radiation field. In addition, evaluating male rats will
determine if the biomarkers are sex-specific. Though the pattern and effects of radiation
to the lungs are very similar after WTLI and PBI with bone marrow sparing [57,58], the
biomarkers presented in this study were not tested after PBI. Another limitation of the
current work is the use of the WAG/RijCmcr rat model. Humanized animal models [59]
are gaining popularity and can better confirm translational potential of biomarkers studied
in rodents. Males and special populations such as juvenile and geriatric models must also
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be studied in the future to determine efficacy of the biomarkers described here. In addition,
as mentioned, baseline 99mTc-MAA SPECT/CT values in human lungs will help to promote
this biomarker of lung perfusion to detect lethal radiation injury.

In summary, the current study is one of the first to report a set of non-invasive
structural and functional endpoints that are translational and can be used to predict lethal
radiation injury in female rats in combination with simple tests such as circulating blood
cell counts. Detection is possible as early as 2 weeks after radiation, within the latent
window before symptoms of radiation injury to the lung are observed. Mitigators can then
be used after detection to reduce pulmonary toxicity induced by radiation to the lungs.

4. Materials and Methods
4.1. Animal Care

All animal protocols were approved by Institutional Animal Care and Use Committees
(IACUC) at the Medical College of Wisconsin [23].

4.2. Irradiation and Follow Up

Unanesthetized female WAG/RijCmcr rats were irradiated with 10 Gy (n = 7) or 13 Gy
(n = 26) WTLI at 9–10 weeks of age. Nonirradiated age-matched control rats (0 Gy) (n = 6)
were also evaluated. WTLI dosimetry was conducted as has been previously described [47].
Briefly, rats were placed in a Plexiglas jig to allow for irradiations to be performed without
anesthesia. Rats were exposed with opposed parallel fields that encompassed the whole
thorax with an X-RAD 320 X-ray unit (Precision X-Ray, Madison, WI, USA) at 320 kVp
and 13 mA at a dose rate of 1.531 Gy min−1 with a half value layer of 1.4 mm Cu filtration.
Biomarkers were studied at 2 weeks after WTLI. This time point was determined by results
from biomarkers measured in rats given 15 Gy WTLI at 4 time points in an earlier study [44].

Irradiated rats (13 Gy WTLI and 10 Gy WTLI) and controls (0 Gy) were followed to
100 days to determine survival. Nonirradiated rats of the same age, strain and gender
served as controls in parallel with each batch of irradiated rats. Animals that were evaluated
as morbid were euthanized as in previous studies [17,23].

4.3. SPECT/CT

In vivo SPECT/CT was performed as described previously [44] using 2 probes: technetium-
labeled macroaggregated albumin (99mTc-MAA) and technetium-labeled duramycin (99mTc-DU).
99mTc-MAA lodges within the intricate and abundant microvasculature of the lung in proportion
to flow, and gamma-ray emissions are detected by the gamma camera in the SPECT imager.
99mTc-DU has high affinity and specificity for phosphatidylethanolamine (PE) which is exter-
nalized in apoptotic and other dying cells [44]. Since radiation has been reported to induce
apoptosis [60–62], necrosis and mitotic cell death, this marker reports whole body tissue damage
after radiation [63].

Macroaggregated albumin (Jubilant DraxImage) and duramycin (3035 g/mole MW)
were labeled with technetium as previously described [44,63–65]. Rats first received an in-
jection (tail vein) of 38.5 ± 7.6 (mean ± 95% confidence intervals) MBq of 99mTc-duramycin.
The animals were positioned in a SPECT/CT scanner (Triumph, TriFoil Imaging) and
rapidly CT scanned for anatomical localization then scanned at 50 min after injection.
Rats were then injected with 99mTc-MAA administered as a single dose of 24.6 ± 3.9
(mean + Standard Deviation (SD)) MBq via the tail vein, using the same catheter. A second
scan was run at 5 min after the 99mTc-MAA injection. The corresponding maximal uptake
for each probe was determined as in previous studies. In vivo radionuclide imaging was
performed using multi-pinhole collimators with two gamma head detectors (130 to 150 keV
energy window). A total of 72 projections for 10 s each were acquired for each scan. SPECT
and CT data were reconstructed and coregistered using built-in software [44,63]. CT scans
were performed again on each rat after SPECT imaging to determine lung volume.
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4.4. Image Analysis

The reconstructed CT and 99mTc-MAA image volumes were segmented and analyzed
to determine the perfused lung volume as previously described [44]. Briefly, the lung region
within the CT image volume was identified. A grayscale window with a lower threshold of
zero (corresponding to air) and an upper threshold of the maximum grayscale value within
the lung parenchymal region, was established and used to determine the boundaries of the
anatomical lung region. This region served as a binary lung mask that was then applied to
the reconstructed radiolabeled image volumes.

For the 99mTc-MAA studies, the total number of nonzero voxels of 99mTc-MAA SPECT
lung region for each rat was determined and scaled to the volume of each SPECT voxel,
to determine the perfused lung volume. The fraction of lung perfused was determined
by dividing the perfused lung volume obtained from 99mTc-MAA by the anatomical lung
volume obtained from CT.

For experiments involving 99mTc-DU, the reconstructed CT and SPECT image vol-
umes were coregistered and lung boundaries from CT were applied as a mask to deter-
mine the 99mTc-DU lung region. 99mTc-DU lung uptake was then determined as aver-
age 99mTc-DU counts per voxel within the lung region and normalized to the activity of
99mTc-DU injected [44].

4.5. Blood Cell Counts

Rats were anesthetized for blood-draws (0.5–1 mL) by retro-orbital bleeds conducted
by an experienced technician [66]. Total and differential white blood cell counts were
obtained the same day by Marshfield Laboratories (Marshfield, WI, USA) [46]. Only
samples with adequate volume of uncoagulated blood were considered for evaluation.

4.6. Measurements of Expression of Circulating microRNA

Candidate microRNA, miR 144-5p, miR 144-3p, miR 142-5p, miR 19a-3p and miR 21-5p
that were upregulated after 15 Gy WTLI in a previous study [46] were tested as biomarkers,
along with miR 150-5p that was downregulated and miR 191-5p that was not changed after
15 Gy WTLI [46]. In the current study, total RNA was prepared from whole blood from
control rats (0 Gy) and rats irradiated to 10 Gy or 13 Gy WTLI at 2 weeks after WTLI by the
same method described for rats given 15 Gy WTLI [46]. Briefly, RNA was isolated from
whole blood using TRIzol Reagent (Ambion/RNA (Life Technologies, Carlsbad, CA, USA).
High purity total RNA (A260/280 > 1.6) was used for RT-qPCR without pre-amplification.
LNA-primers, RT-qPCR and calculation of miRNA were performed as described [46,67].
The expression of each target that was upregulated: miR 144-5p, miR 144-3p, miR142-5p,
miR19a-3p and miR 21-5p was separately compared to the expressed level of miR 191-5p in
the same blood sample.

4.7. Statistical Analyses

Kruskal–Wallis test with Dunn’s test for multiple comparisons were used to test signif-
icance for lung perfusion, blood counts and miRNA. Median values with 95% confidence
intervals are presented.

4.8. Strategy for Identifying and Testing Biomarkers

Candidate biomarkers from previous results from rats exposed to 15 Gy along with
nonirradiated controls [44,46] were used to serve as a base to narrow down an informative
set of biomarkers to predict lethal radiation injury to the lungs. SPECT imaging had yielded
2 biomarkers, Tc-MAA and Tc-DU, that determined the volume of perfused lung as well
as apoptosis in the lung respectively after 15 Gy WTLI as published [44]. miRNA-seq at
2 weeks had yielded 5 plasma miRNA that were upregulated after 15 Gy WTLI [46]. A
third set of rats given 15 Gy WTLI along with nonirradiated controls was used to measure
total and differential blood cell counts at the same time point, 2 weeks after 15 Gy WTLI. In
the current study, all 3 sets of biomarkers were measured in the same rat at 2 weeks after
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13 Gy WTLI, a radiation dose which had been characterized to cause lethal pneumonitis
to ~50–70% of irradiated rats [45,47]. After biomarkers were measured at 2 weeks with
13 Gy WTLI, the same rats were followed to 100 days to determine survival of each animal
and then correlate the biomarker results with survival. The 3 sets of biomarkers (SPECT
probes, miRNA and blood cells counts) were also evaluated at 2 weeks after radiation in
nonirradiated controls (0 Gy) and rats given 10 Gy WTLI, a dose that is survived by all
rats. In previous studies, rats surviving to 100 days went on to survive at least 210 days
and 1 year after irradiation [47,57]. Statistical methods were then developed to define a
biomarker signature to predict survival after radiation as well as determine the sensitivity
and specificity of the selected biomarker panel.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms24065627/s1.
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