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Abstract: Cholesterol is a key component of all mammalian cell membranes. Disruptions in choles-
terol metabolism have been observed in the context of various diseases, including neurodegenerative
disorders such as Alzheimer’s disease (AD). The genetic and pharmacological blockade of acyl-
CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), a cholesterol storage
enzyme found on the endoplasmic reticulum (ER) and enriched at the mitochondria-associated ER
membrane (MAM), has been shown to reduce amyloid pathology and rescue cognitive deficits in
mouse models of AD. Additionally, blocking ACAT1/SOAT1 activity stimulates autophagy and
lysosomal biogenesis; however, the exact molecular connection between the ACAT1/SOAT1 blockade
and these observed benefits remain unknown. Here, using biochemical fractionation techniques,
we observe cholesterol accumulation at the MAM which leads to ACAT1/SOAT1 enrichment in
this domain. MAM proteomics data suggests that ACAT1/SOAT1 inhibition strengthens the ER-
mitochondria connection. Confocal and electron microscopy confirms that ACAT1/SOAT1 inhibition
increases the number of ER-mitochondria contact sites and strengthens this connection by shortening
the distance between these two organelles. This work demonstrates how directly manipulating local
cholesterol levels at the MAM can alter inter-organellar contact sites and suggests that cholesterol
buildup at the MAM is the impetus behind the therapeutic benefits of ACAT1/SOAT1 inhibition.

Keywords: cholesterol; ACAT1; SOAT1; ACAT inhibitors; endoplasmic reticulum; mitochondria-
associated membrane (MAM); Alzheimer’s disease; K-604; F12511; lipid metabolism

1. Introduction

Cholesterol is a lipid molecule present in all mammalian cell membranes. Consisting
of a rigid sterol-ring backbone, hydrocarbon tail and a hydroxyl group on the 3′ carbon,
cholesterol interacts with phospholipids and sphingolipids within the lipid bilayer [1,2].
This interaction introduces structure to the membrane which influences membrane rigidity,
fluidity, thickness and integrity [3–5]. Higher concentrations of cholesterol and sphin-
golipids can lead to the self-assembly of liquid-ordered domains, also known as lipid
rafts or raft-like domains [6]. These ordered domains were first biochemically isolated as
detergent-resistant membrane fractions [7], and have since been observed and extensively
studied on the cholesterol and sphingolipid-rich plasma membrane(PM) [8–11]. The unique
physical properties of these domains create lateral heterogeneity by recruiting specific pro-
teins and lipids [6,12,13]. Raft-driven compartmentalization of cellular components is
crucial for maintaining cell health through their involvement in membrane trafficking and
signal transduction [14]. Whether or not ordered domains can exist on relatively cholesterol-
poor intracellular membranes has long-been a question. Recently, ordered domains on the
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endoplasmic reticulum (ER) were observed at the point of contact between the ER and the
mitochondria [15]: a well-studied focal-point of many important homeostatic processes.

The connection between the ER and mitochondria was first observed as early as the
1950s using electron microscopy [16]. This region of the ER, also known as the mitochondria-
associated ER membrane (MAM), was first-described to be enriched with lipid-metabolic
properties [17], and has since been shown to play host to a range of other important
metabolic processes such as calcium homeostasis, mitochondrial division, and autophago-
some biogenesis, just to name a few [18]. This inter-organellar contact site is characterized
by closely apposed membranes, 10–80 nm apart, which are stabilized by peptide teth-
ers [19,20]. Additionally, compared to the rest of the ER, the MAM is rich in cholesterol and
sphingolipids such as ceramide, glucosylceramide and sphingomyelin: all raft-forming
lipids [21]. Recent work has demonstrated that ordered domains do, in fact, form at the
ER-mitochondria contact site [15], and it has been suggested that modulating cholesterol
levels at this domain can influence connectivity [22,23].

Because of its importance in governing membrane function, cholesterol levels within
the cell are tightly regulated. The bulk of this cholesterol sensing and regulation occurs on
the relatively cholesterol-poor ER. Cholesterol synthesis occurs over a series of reactions
catalyzed by enzymes found on the ER [24], and the well-characterized cholesterol sensing
mechanisms that regulate the expression of many of those synthesis enzymes are also
present at the ER [25]. The removal of cholesterol from the cell is largely facilitated by a fam-
ily of ATP-binding cassette (ABC) proteins, most prominently, ABCA1 [26]. ABCA1 expres-
sion is regulated by cholesterol metabolites known as oxysterols through their activation of
nuclear liver X receptors (LXR) [27]. Another mechanism by which the cell can regulate
cholesterol in the membrane is through the activity of acyl-CoA:cholesterol acyltransferase
(ACAT); also called sterol O-acyltransferase (SOAT). ACAT catalyzes the esterification
of membrane-associated cholesterol with an activated fatty acid to produce membrane-
incompatible cholesteryl ester (Figure S1A). Cholesteryl esters coalesce in cytosolic lipid
droplets, effectively removing cholesterol from the membrane [28]. In mammals, ACAT
has two isoforms, ACAT1 and ACAT2. ACAT1, gene name SOAT1, is widely expressed
throughout the body whereas ACAT2 (gene SOAT2) expression is limited to the liver and
intestinal enterocytes [28]. ACAT activity is primarily regulated post-transcriptionally
by substrate availability, and both isoforms are allosterically regulated by cholesterol
and oxysterol substrates; however, substrate levels do not affect the protein level [29,30].
ACAT1/SOAT1 is a 9-transmembrane domain protein that resides on the ER as a homote-
tramer [31–35]. ACAT1/SOAT1 has also been shown to be enriched at the metabolically
important subdomain of the ER known as MAM [36,37].

Due to its critical influence on cell function, it is no surprise that disruptions in choles-
terol metabolism can lead to disease. One such example is Alzheimer’s disease (AD). AD is
estimated to effect 6.5 million people in the United States, a number that is expected to grow
to 12.7 million by the year 2050 [38]. Alzheimer’s disease is a complex neurodegenerative
disorder characterized histologically by extracellular amyloid beta (Aβ) plaques, intracellu-
lar tau tangles and neuroinflammation [39]. It has also been shown that cholesteryl esters
accumulate within the brain of AD patients and mouse models [40–42]. Additionally, the
e4 allele of apolipoprotein E (ApoE), the major extracellular cholesterol carrier in the brain,
has been identified as the most prominent genetic risk factor for late onset AD [43,44]. The
e4 allele leads to ApoE with structural and trafficking differences that ultimately lead to an
altered intracellular lipid metabolism [45–47]. The exact cause of this metabolic disruption
is not known, but each e4 allele present confers an increased AD risk [48]. The first attempts
at targeting cholesterol metabolism in AD as a potential therapeutic were focused on treat-
ment with statins as a means of reducing cellular cholesterol levels by block cholesterol
synthesis. These studies show that the whole-cell reduction of cholesterol by extraction
with cyclodextrin, or treatment with statins, reduce the processing of the amyloid precursor
protein (APP) into toxic Aβ species [49–52]. Despite promising pre-clinical evidence that
statins may reduce the risk of AD, studies in humans have been less convincing [53,54].
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The connection between ACAT activity and AD was first demonstrated when it was
observed that ACAT1/SOAT1 knockout cells had reduced Aβ production [55]. Since then,
it has been shown that reducing ACAT1/SOAT1 activity by genetic manipulation or small
molecule inhibition reduces amyloid pathology and rescues deficits seen in mouse mod-
els of AD [56–59]. Subsequent work has shown that ACAT1/SOAT1 inhibition leads to
enhanced Aβ degradation by microglia and reduced tau burden in neurons as a result of en-
hanced autophagy and lysosomal biogenesis [60,61]. It was also shown that ACAT1/SOAT1
inhibition cleared cholesterol ester lipid droplets in microglia bearing mutant TREM2 [62],
and in human IPSC-derived neurons from AD patients [63]. We understand that block-
ing ACAT1/SOAT1 activity in the context of AD proves beneficial; however, the initial
molecular events linking ACAT1/SOAT1 inhibition and phenotypic rescue remain to be
defined.

Here, we demonstrate that acute ACAT1/SOAT1 inhibition with small molecule
inhibitors lead to the rapid accumulation of cholesterol as well as ACAT1/SOAT1 pro-
tein at MAM. This local cholesterol buildup also correlates with a strengthening in ER-
mitochondria connectivity.

2. Results
2.1. Initial Observation of the ACAT1/SOAT1 Blockade Cholesterol Pool

ACAT1/SOAT1-specific small molecule inhibitors K-604 [64] and F12511 [65] are
commonly used to study ACAT1/SOAT1 biology. Both compounds exhibit a preference
for ACAT1/SOAT1 over ACAT2/SOAT2 and both have passed phase 1 clinical safety tests
as anti-atherosclerosis therapeutics; reviewed in [66]. In order to measure ACAT activity
independent of endogenous membrane lipid composition, a method has been developed
that involves the solubilization of the ACAT1 membrane protein by CHAPS detergent
and reconstitution into a mixed micelle solution with a defined lipid composition [67]
(Figure S1B). Here, we used N9 cells. These are an immortalized mouse microglia cell
lines that share many characteristics with primary microglia [68], and have been used to
study Aβ uptake and degradation in our lab previously [60]. Using the mixed micelle
ACAT assay, we show that treatment with K-604 inhibits ACAT from N9 microglial cells
with sub-micromolar efficacy (Figure 1A). When paired with an in-cell washout to remove
K-604 prior to the reconstitution and measurement of enzyme activity, results show it takes
about 60 min for the ACAT1/SOAT1 activity of K-604 treated cells to return to the level of
uninhibited activity measured in vehicle-treated cells (Figure 1B). This demonstrates that
K-604 can be removed from cells and ACAT by washing.

Next, we wanted to monitor K-604 washout with a different assay by measuring
ACAT activity in intact cells using a [3H] oleate pulse [69,70] (Figure S1C). In this assay,
cells are pulsed with [3H] oleate which is rapidly activated to [3H] oleate coenzyme A
and subsequently used as a substrate for the production of cholesteryl esters, triglycerides
and phospholipids. Surprisingly, upon drug washout, we observe that cells pre-treated
with K-604 showed a robust spike in ACAT activity well above that of vehicle-treated
cells (Figure 1C); this result was confirmed in SHSY5Y and CHO cells (Figure S2A,B).
The key difference between these two assays (Figure S1B,C) is that the mixed micelle
assay measures reconstituted ACAT activity with exogenous cholesterol provided in excess
whereas the [3H] oleate pulse assay measures esterification of endogenous cholesterol from
the membrane surrounding ACAT1/SOAT1. This suggests that upon inhibition, there
is a buildup of cholesterol in the membrane surrounding ACAT1/SOAT1. When K-604
inhibition begins to be released by drug washout, the accumulated cholesterol becomes
available as a substrate; this is observed as a spike in ACAT activity. This substrate buildup
appears to occur rapidly as its presence is seen with K-604 treatments as short as 5 min
(Figure S2C). Similar experiments were performed with another ACAT1/SOAT1 inhibitor:
F12511. The results showed that F12511 could not easily wash out of cells; a pre-treatment
with this compound strongly inhibits ACAT activity after 8 h of repeated washing [71].
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We attribute this to F12511′s higher binding affinity, and the fact that it is much more
hydrophobic and cannot be removed from the membrane easily.

We also wanted to understand where the cholesterol available to ACAT1/SOAT1 as
a substrate comes from. To do this, we employed the use of small molecule inhibitors
U18666A [72], and lovastatin [73]. At low concentrations, U18666A inhibits NPC1, a lyso-
somal protein responsible for the cellular distribution of lysosomal cholesterol [74,75].
Lovastatin inhibits HMG CoA reductase, the rate-limiting step in cholesterol synthesis [73].
Treatment with U18666A will effectively block the input of exogenously-derived cholesterol,
while lovastatin treatment will effectively block the input of endogenously synthesized
cholesterol. Here, we see that treatment with either inhibitor blocks ACAT activity, indicat-
ing that ACAT1/SOAT1 receives inputs from multiple cholesterol sources (Figure 1D).
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Figure 1. Initial observation and characterization of the ACAT1 blockade cholesterol pool. (A) N9
cells were treated with various concentrations of K-604 or DMSO vehicle control for 8 h prior to
lysis followed by reconstitution and measurement of ACAT activity by mixed micelle ACAT assay.
n = 8 (B) N9 cells were treated with 0.5 µM K-604 or DMSO vehicle control for 4 h prior to aspiration
and incubation with drug-free media for given amounts of time. Cells were then lysed followed by
reconstitution and measurement of ACAT activity by mixed micelle ACAT assay. n = 3 (C) N9 cells
were treated with 0.5 µM K-604 or DMSO vehicle control for 4 h prior to aspiration and incubation
with drug-free media for given amounts of time. ACAT activity was measured in intact cells by
[3H] oleate pulse. n = 6 (D) N9 cells were treated with DMSO, 0.5 µM K-604, 70 nM U18666A or
50 µM lovastatin and 230 µM mevalonate for 4, 4, 8 and 24 h respectively. Mevalonate is added
during lovastatin treatment to allow for the synthesis of non-cholesterol products downstream of
HMGCR [76]. ACAT activity was measured in intact cells by [3H] oleate pulse. n = 3. Error bars
represent SEM. Note for (A–C): all datapoints have error bars, some are smaller than the data point
and are difficult to see. p-value determined using Student’s t-test; n.s.= not significant; * p < 0.05;
** p < 0.01; *** p < 0.001.
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2.2. Direct Observation of Cholesterol Buildup around ACAT1/SOAT1

In order to directly measure the substrate buildup around ACAT1/SOAT1, we used
a fractionation approach combined with thin-layer chromatography (TLC) lipid analysis.
First, using OptiPrep gradient ultracentrifugation [77], we were able to achieve the crude
separation of cellular components and observed a significant increase in cholesterol in cell
fraction #10, one of the fractions enriched in ACAT1/SOAT1 protein (Figure S3). Seeking a
cleaner separation of cellular components, we took advantage of ACAT1/SOAT1′s presence
on the mitochondria-associated ER membrane (MAM). The MAM fractionation technique
is able to separate microsomes from MAM from mitochondria [17,78]. Indeed, we see
that ACAT1/SOAT1 is enriched at the MAM along with other canonical MAM markers:
sigma 1 receptor (Sigma1R) and acyl-CoA synthetase long-chain family member 4 (ACSL4)
(Figure 2A,B). Interestingly, ACAT1/SOAT1 is selectively enriched at the MAM upon inhi-
bition. Analyzing cholesterol in these fractions reveals a 20% increase in MAM cholesterol
upon K-604 treatment (Figure 2C,D). Selective ACAT1/SOAT1 enrichment and cholesterol
buildup at the MAM is confirmed with a second ACAT1/SOAT1 inhibitor F12511 (Figure 3).
This is the first direct observation of cholesterol buildup around ACAT1/SOAT1 upon
inhibition. Importantly, this cholesterol buildup at the MAM represents a redistribution
of intracellular cholesterol as the whole cell cholesterol levels remained unchanged with
acute (4 h) K-604 treatment (Figure 2E).
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Figure 2. Direct observation of cholesterol accumulation at the MAM with K-604. N9 cells were
treated with 0.5 µM K604 or DMSO vehicle control for 4 h. (A–D) After drug treatments, cells were
lysed and subject to MAM fractionation protocol to isolate microsomal, MAM and mitochondria
fractions: (A) Representative Western blots depicting distribution between fractions of MAM proteins
ACAT1, Sigma1R and ACSL4, mitochondria protein Tom20 and ER protein HMGCR, 200 µg protein
per lane. (B) Quantification of Western blots for ACAT1, Sigma1R and ACSL4 in the MAM fraction.
For each experiment, the protein band for K-604-treated cells was standardized to DMSO-treated
cells n = 4. (C) Representative TLC plate. Arrow denotes cholesterol band. RF = 0.3, 250 µg protein
per lane. (D) Quantification for bulk cholesterol measured in the MAM fraction. n = 4. (E) After drug
treatment, cells were lysed and subject to cholesterol analysis without fractionation. n = 3. Error bars
represent SEM. p-value determined using Student’s t-test; n.s.= not significant; * p < 0.05; ** p < 0.01;
*** p < 0.001.
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Figure 3. Direct observation of cholesterol accumulation at the MAM with F12511. N9 cells were
treated with 0.5 µm F12511 or DMSO vehicle control for 4 h. (A–C) After drug treatments, cells were
lysed and subject to MAM fractionation protocol to isolate microsomal, MAM, and mitochondria
fractions. (A) Representative Western blots depicting ACAT1, Sigma1R and ACSL4 distribution
within fractions, 200 µg protein per lane (B) Quantification of Western blots for ACAT1, Sigma1R
and ACSL4 in the MAM fraction. For each experiment, the protein band for K-604-treated cells was
standardized to DMSO-treated cells n = 3. (C) Quantification for bulk cholesterol measured in the
MAM fraction. n = 4. Error bars represent SEM. p-value determined using Student’s t-test; * p < 0.05;
** p < 0.01.

2.3. ACAT1/SOAT1 Inhibition Leads to Changes in ER-Mitochondria Connectivity

The close connection between the ER and mitochondria is a defining characteristic
of the MAM. ER–mitochondria connectivity has been shown to be altered in Alzheimer’s
models [3,79,80]. Additionally, we are starting to understand that there is a relationship
between cellular cholesterol levels and ER-mitochondria connectivity [23,81]. Based on
these findings, we wanted to understand whether or not ACAT1/SOAT1 inhibition would
lead to changes in ER-mitochondria connectivity; something that would have important
homeostatic implications. We performed mass spectrometry proteomic analyses of MAM
fractions isolated from cells treated with K-604 or a vehicle. While we do not observe
a significant change in any specific proteins using this technique, looking at the relative
change of large functional groups of proteins stratified by a subcellular location reveals
a notable increase in mitochondria proteins identified in this fraction when treated with
K-604 (Figure 4A). This stands in contrast to the overall change in total proteins identified,
as well as proteins identified from other subcellular compartments (Figure 4A). Changes
in MAM proteins identified in this screen are shown in Figure S4. The overall increase in
mitochondria proteins suggests a strengthening of the ER-mitochondria connection. This
data was only suggestive though, so we next used a microscopic approach to investigate
further. Using confocal fluorescent microscopy to look at the overlap between ER and
mitochondria-localized markers as a measure of ER-mitochondria connectivity [82] in
HMC3 cells (a human microglia cell line that is flat, making them better suited for imaging),
we did see a trending increase in the overlap that does not quite reach statistical significance



Int. J. Mol. Sci. 2023, 24, 5525 7 of 18

(p = 0.06) (Figure 4B,C). In order to definitively say whether or not there is a change in con-
nectivity though, we turned to electron microscopy. Here, we analyzed the contact site at
the closest point of contact between each mitochondria and the ER and, using an approach
similar to that described in Lak et. al. [81], we measured different contact site parameters
(Figure 4D–H). We see that, with K-604 treatment, the overall percentage of mitochondria
with a close contact (defined as a <30 nm intermembrane distance) increases compared to
vehicle-treated cells (Figure 4E). Looking at other contact site characteristics, as previously
measured [81], we see that ACAT1/SOAT1 inhibition has no effect on the length of the
contact site (defined by a 30 nm intermembrane distance cutoff); however, when looking at
the distribution of intermembrane distances measured within each contact site (between 0
and 100 nm), we see a multimodal distribution with notable differences between K-604-
and vehicle-treated cells (Figure 4F,G). We stratified these distances into close (5–25 nm),
intermediate (26–50 nm) and long-range (51–70 nm) distances, and were able to see sig-
nificant increases in short and intermediate inter-membrane distances, while the number
of long-range distances decreases (Figure 4G,H). This demonstrates that ACAT1/SOAT1
inhibition and resulting cholesterol accumulation at the MAM does lead to changes in
ER-mitochondria connectivity.
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Figure 4. ACAT1 inhibition alters ER–mitochondria connectivity. (A) Proteomic analysis of MAM
fractions of K-604 or DMSO-treated N9 cells. GO:cellular component annotations were assigned with
g:GOSt functional enrichment program on the g:Profiler website. Violin plot depicts distribution of
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Log2Fold Change between DMSO- and K-604-treated cells with black bar representing mean for
proteins stratified based on subcellular location. Number of proteins identified and average fold
change listed above. n = 5. (B) Representative confocal image of fixed HMC3 (human microglia
cell line) cells expressing KDEL-RFP and mitochondria-localized BFP representing ER in green,
and mitochondria in magenta, respectively. Whole cell (above) scale bar = 10 µm. Inset (below)
scale bar = 2 µm. (C) Quantification of overlap between ER and mitochondria in the cell periphery
as the area of overlapping ER and mitochondria signal standardized to the total mitochondria
area. DMSO, n = 60; K-604, n = 60. (D) Representative electron micrograph of A431 cell with
mitochondria pseudocolored in magenta, ER pseudocolored in green and example contact site
circled in red (E) Quantification of the percentage of mitochondria with close contacts as defined by
30 nm cutoff per field of view. DMSO, n = 166 mitochondria analyzed in 22 fields of view; K-604,
n = 155 mitochondria analyzed in 24 fields of view. (F) Quantification of the contact site length.
Continuous length along the membrane was measured where the ER and mitochondria were less
than 30 nm apart. DMSO, n = 72 contact sites; K-604, n = 88 contact sites. (G) Histogram showing
the distribution of all contact site distances measured between 0 and 100 nm. Bold trace represents
running average (window = 7). DMSO, n = 217 contact sites analyzed; K-604, n = 194 contact sites
analyzed. (H) Quantification of contact site distance distribution stratified into close (5–25 nm),
intermediate (26–50 nm) and long-range (51–70 nm) categories. DMSO, n = 174 contact sites analyzed;
K-604, n = 175 contact sites analyzed. Error bars represent SEM. p-value determined using Student’s
t-test; n.s. = not significant; * p < 0.05; ** p < 0.01.

3. Discussion

The link between cholesterol homeostasis and Alzheimer’s disease is well established,
and yet, poorly understood. Attempts to change whole cell cholesterol levels by modulating
synthesis with statins have shown initial promise at the pre-clinical stage, but benefits
in the clinic remain elusive [83]. Targeting ACAT1/SOAT1 activity has been another
promising avenue of therapeutic cholesterol modulation. Blocking ACAT1/SOAT1 activity
by genetic ablation or pharmacological inhibition has been shown to reduce amyloid
pathology in mice by lowering levels of the amyloid precursor protein (APP) and its
toxic product, Aβ [56,57,59]. This could be a result of reduced APP processing [55] due
to reduced APP palmitoylation and decreased localization to lipid rafts where it gets
processed [84], and/or by altering plasma membrane cholesterol levels [85]. It could also
be a result of the enhanced phagocytosis and subsequent degradation by upregulated
autophagy and lysosomal biogenesis seen with ACAT1/SOAT1 inhibition in microglia [60].
This upregulated degradation machinery also leads to a reduction of intracellular tau in
neurons [61]. The ACAT1/SOAT1 blockade has also been shown to enhance HMG-CoA
reductase degradation by increasing levels of 24S-hydroxycholesterol [58] and suppress
neuroinflammation by altering toll-like receptor 4 (TLR4) trafficking and activation [86].
Additionally, in a mouse model, genetic inactivation of ACAT1/SOAT1 was recently shown
to benefit a rare pediatric neurodegenerative disease, Niemann-Pick type C1 (NPC1) [87].
The effects of ACAT1/SOAT1 inhibition are undoubtedly beneficial in disease contexts, but
it is difficult to tie these results together with a single common thread. Studies have mostly
focused on the end-result of phenotypic rescue without understanding the molecular
explanation for these results.

Here, we provide important evidence demonstrating the initial molecular and cellular
responses to ACAT1/SOAT1 inhibition. Firstly, we observed cholesterol accumulation in
the metabolically important subdomain of the ER known as the mitochondria-associated
ER membrane (MAM). Changing the amount of cholesterol in a membrane will alter that
membranes’ physical properties. Cholesterol creates order in the membrane. This will have
an effect on membrane thickness and phase, which governs fluidity and flexibility, and
will also change the membrane permeability of hydrophilic molecules such as water and
molecular oxygen, thus altering hydrophobicity within the membrane [3,88]. Additionally,
cholesterol interacts with the transmembrane domains of membrane-embedded proteins in
an annular and non-annular fashion by general electrostatic interactions or with conserved
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domains [89–91]. These membrane characteristics will have an effect on protein localization
and function [4,12,92–95].

An example of cholesterol-driven protein localization is shown here with the selec-
tive enrichment of ACAT1/SOAT1 in the MAM fraction upon cholesterol accumulation.
ACAT1/SOAT1′s role in the cell can be boiled down to its ability to keep ER–cholesterol
levels low by removing it from the membrane. We know ACAT1/SOAT1 has at least
two cholesterol binding sites: a substrate binding site and an allosteric site [28,96]. It
is likely that the cholesterol-associated enrichment of ACAT1/SOAT1 in the MAM is
driven by ACAT1/SOAT1′s preference for the physical characteristics of membranes with
higher cholesterol content. This could potentially explain, at least in part, some of the
reports shown in the literature. For example, it has been previously observed that MAMs
are altered in Alzheimer’s disease [97], and this correlates with higher ACAT1/SOAT1
activity [37,79] and cholesterol accumulation within the MAM [98], similar to what is
observed here. Exactly what drives this cholesterol accumulation and the degree to which
ACAT1/SOAT1 activity is a symptom or driver of the disease remains unclear. It is possible
that, in the diseased state, APP or its 99-aa C-terminal fragment (C99) product [99] leads to
ATAD3A clustering which alters cholesterol turnover mediated by the ER–mitochondria
contact site [23]. Blocking this cholesterol disposal pathway causes cholesterol accumula-
tion at the MAM which leads to ACAT1/SOAT1 enrichment and an observed increase in
ACAT1/SOAT1 activity resulting in higher cholesteryl ester levels.

The mechanisms for cholesterol-mediated strengthening of the MAM–mitochondria
interaction are not known. It is possible that increased cholesterol will alter clustering,
recruitment or stabilization of the protein tethers that bridge the two organelles, but the
exact players involved remain to be seen. Additionally, the similarities between harmful
MAM disruptions observed in AD (i.e., increased ER–mitochondria contact, cholesterol
buildup, enhanced calcium transfer and phospholipid synthesis [23,37,100]) and the benefi-
cial response to ACAT1/SOAT1 inhibition (i.e., increased ER–mitochondria contact and
cholesterol buildup) are at odds with each other and require further investigation in cells
modeling the disease. It is possible that proximity-facilitated processes, such as calcium and
phospholipid transfer, become enhanced in the disease state while other MAM functions
and regulation become disrupted by an over-accumulation of APP and its C99 product [99].
ACAT1/SOAT1 inhibition could help to alleviate this by providing an additional functional
MAM domain at which these processes can resume while at the same time reducing MAM
levels of APP and subsequent processing. This brings up the need for a more in-depth
functional analysis of a “healthy” vs. “unhealthy” strengthening of the MAM in healthy
and disease contexts in future studies.

It is vital that we exhaust all therapeutic avenues when it comes to finding a treatment
for Alzheimer’s disease. Not only will this be important to the millions of patients and
their families affected by this devastating disease, but this work could also benefit patients
who suffer from other complex neurodegenerative disorders. Despite the presence of
different protein pathologies that affect different regions of the brain, neurodegenerative
disorders such as Alzheimer’s disease, Parkinson’s disease (PD) and amyotrophic lateral
sclerosis (ALS) have shockingly similar cellular and molecular deficits that can be linked
to disruptions in the MAM domain and ER–mitochondria connectivity [97]. Beneficial
modulation of the MAM domain could translate to these other cureless diseases.

4. Materials and Methods
4.1. Materials

Antibodies: The rabbit polyclonal antibody (DM102) against the N-terminal fragment
(1–131) of human ACAT1 was described previously [29]. FACL4/ACSL4 (155282) is from
Abcam. Sigma1R (SC-137075), Na/K ATPase (SC-21712), Cytochrome C oxidase (SC-58347)
and Tom20 (SC-17764) are from Santa Cruz (Dallas, TX, USA). Syntaxin 6 is a kind gift from
Andrew Paden’s Lab. Vinculin (05-386) is from Millipore (Burlington, MA, USA). Secondary
Antibodies Goat Anti-Mouse IRDye 680RD (926-68070) and Goat Anti-Rabbit IRDye 800CW
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(926-32211) are from Li-Cor Biosciences (Lincoln, NE, USA). Other materials: oleic acid,
coenzyme A trilithium salt, sodium taurocholate, triglyceride, cholesterol, cholesteryl
oleate, fatty acid-free bovine serum albumin, CHAPS detergent, Percoll and the protease
inhibitor cocktail were from MilliporeSigma (Burlington, MA, USA). OptiPrep was from
Cosmo Bio USA (Carlsbad, CA, USA). Fugene 4K was from Promega (Madison, WI, USA).
[3H] Oleic acid is from Perkin Elmer (Waltham, MA, USA). The [3H] oleoyl-CoA was
synthesized as described previously [101]. The silica thin layer chromatography plates
are from Analtech (Newark, DE, USA). Mito-BFP (described in [102]; addgene #49151),
containing TagBFP localized to the mitochondria matrix with 1–22 amino acid sequence
from S. cerevisiae COX4, was a gift from Henry Higgs. KDEL-RFP containing TagRFP
localized to the ER by KDEL ER retrieval motif was a gift from Henry Higgs. K-604 and
F12511 were custom synthesized by WuXi AppTec (Shanghai, China); based on HPLC/MS
and NMR profiles, purity of F12511 was 98% and in stereospecificity; purity of K-604 was
98%.

4.2. Cell Culture

All cell lines were maintained at 37 ◦C under humidified conditions and 5% CO2.
The N9 cells were maintained in RPMI (Corning, Corning, NY, USA) with 10% calf serum
(Atlanta Biologicals, Flowery Branch, GA, USA). The HMC3 cells were maintained in
DMEM medium (Corning, Corning, NY, USA) supplemented with 10% calf serum. CHO
cells were maintained in DMEM:F-12 medium (Corning, Corning, NY, USA) 1:1 with 10%
calf serum. SHSY5Y cells were maintained in DMEM:F12 (Corning, Corning, NY, USA) 1:1
with 10% calf serum and non essential amino acids (Thermo Fisher Scientific, Waltham,
MA, USA).

4.3. Western Blot

Cells were grown, treated and collected by scraping into PBS. Cells were pelleted and
resuspended in 10% SDS. The protein concentration was determined using a modified
Lowry assay and equal amounts of protein were aliquoted and prepared for SDS page
analysis by adding DTT and SDS loading dye. After running, the proteins were transferred
to nitrocellulose membrane (Cytiva, Marlborough, MA, USA). After transfer, the membrane
was dried, blocked with 5% milk in TBST and incubated with a primary antibody for 3 h to
overnight. After the wash, the membrane was incubated with Li-Cor fluorescent secondary
antibodies, washed again and visualized on Li-Cor Odyssey CLx.

4.4. Measuring ACAT Activity by Mixed Micelle Assay

The mixed micelle assay was performed as described [67]. Briefly, cells were grown in
6-well plates at least 48 h before experimenting. At t = −24 h fresh media was added, and
cells were treated with small molecule inhibitors as described in the figures. Cells were
lysed in 75 µL buffer containing 50 mm tris, 1 mM EDTA, 1 M KCl, 2.5% CHAPS, with
protease inhibitor. Aliquots were removed for protein determination by modified Lowry
assay. On ice, 10 µL of lysate was added to 100 µL of prepared mixed micelle solution
containing 11.1 mM phosphatidylcholine, 1.8 mM cholesterol and 9.3 mm taurocholate. The
samples were then vortexed and equilibrated for 5 min on ice. An amount of 10 nm [3H]
oleoyl-coenzymeA/BSA was added, vortexed and placed in a 37 ◦C shaking water bath for
exactly 10 min before stopping the reaction with chloroform:methanol (2:1). To each sample,
50 µg cold cholesteryl oleate (carrier) was added, followed by a chloroform: methanol lipid
extraction. Isolated lipids were spotted on TLC plates and ran using a petroleum ether:
ethyl ether: acetic acid (90:10:1) solvent system. Lipids were visualized with iodine stain,
the cholesterol ester band was scraped, and [3H] was measured with a scintillation counter.

4.5. Measuring ACAT Activity by [3H] Oleate Pulse Assay

The [3H] oleate pulse assay was performed as described [69]. Briefly, cells were plated
at least 48 h before lyse. Cells were grown in 12-well dishes (N9, CHO cells) or 6-well dishes
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(SHSY5Y, HMC3 cells) until 90% confluent. Cells with wash had the drug-containing media
replaced by a conditioned drug-free media for given amounts of time. Cells were pulsed
with 10 µL of 10 mM [3H] oleate/BSA (containing about 4 µCi) for 30 min (N9, CHO cells)
or 60 min (SHSY5Y, HMC3cells) in a 37 ◦C water bath with 5% CO2. The reaction was
stopped by placing cells on ice, washed 3 times with cold PBS, and lysed with 0.2 M NaOH.
An aliquot was taken for protein determination with modified Lowry assay, and cold lipid
carriers were added for each species to be analyzed followed by chloroform: methanol
(2:1) extraction and spotted on TLC plates. Neutral lipids were separated using the solvent
system; petroleum ether: ethyl ether: acetic acid (90:10:1). Lipids were visualized with an
iodine stain. Bands were marked, iodine was evaporated off and bands were scraped and
[3H] was measured with a scintillation counter.

4.6. Optiprep Fractionation

Cells were isolated on ice by washing 2× with cold PBS and 1× with homogenization
buffer (HB; 20 mM tris pH 7.4, 250 mM sucrose, 1 mM EDTA, protease inhibitor as needed).
Cells were collected in HB + protease inhibitor and homogenized in Dounce homogenizer.
A post-nuclear supernatant was carefully layered on top of a prepared 5%, 10%, 15%,
20%, 25% (top to bottom) OptiPrep gradient in a clear ultracentrifuge tube. Samples were
spun at 40,000 rpm in a Beckman L8-M Ultracentrifuge for 3 h at 4 ◦C under vacuum in
a SW41 swing rotor. Fractions were collected by aliquoting 800 µL from the top of the
ultracentrifuge tube. Aliquots of each fraction were removed for protein determination
with a modified Lowry assay. The samples were analyzed for protein by Western blot. For
cholesterol analysis, the lipids were extracted with chloroform: methanol (2:1) and spotted
on a TLC plate. Cholesterol was separated using the solvent system hexanes: ethyl ether:
acetic acid (30:20:1). To visualize the lipids, plates were submerged briefly with 3% Copper
acetate (w/v) in 8% phosphoric acid (v/v) and heated at 180 ◦C for approximately 15 min to
char [103].

4.7. MAM Fractionation

MAM fractionation was performed as described [92]. Briefly, cells were washed 2×
with cold PBS on ice, collected by scraping in homogenization buffer (HB; 250 mM sucrose,
10 mM HEPES pH 7.4) and lysed with Dounce homogenizer. The nuclei and whole cells
were removed with 2 × 600× g spins at 4 ◦C. Supernatant was moved to ultracentrifuge
tube. Using Beckman L8-M Ultracentrifuge with 70.1 Ti rotor, crude mitochondria were
pelleted by spinning at 12,000 RPM for 20 min at 4 ◦C under a vacuum. Supernatant was
removed and plasma membrane and lysosomes were removed by spin at 14,800 RPM for
30 min at 4 ◦C under a vacuum. Supernatant was removed and microsome fraction was
pelleted by spinning at 39,000 RPM for 1 h at 4 ◦C under vacuum. The crude mitochon-
dria were resuspended in HB and pelleted again to remove contaminants by spinning at
12,000 RPM for 20 min at 4 ◦C under vacuum. Crude mitochondria were resuspended in
isolation buffer (250 mm mannitol, 5 mm HEPES pH 7.4, 0.5 mm EGTA pH 7.4) by gentle
vortexing and layered on top of a percoll solution (225 mm mannitol, 25 mm HEPES pH
7.4, 1 mm EGTA pH 7.5, 30% percoll). The MAM and mitochondria were separated with a
SW41 swing bucket rotor by spinning at 38,000 RPM for 30 min at 4 ◦C under vacuum with
acceleration and deceleration set to 1. MAM band is seen 2/3 of the way towards the top,
mitochondria are at the bottom. Fractions were washed in PBS 3× by spin at 10,300× g for
20 min before final pelleting. The protein concentration was determined using a modified
Lowry assay. The protein was analyzed via Western blot. For cholesterol analysis, lipids
were extracted with chloroform: methanol (2:1) and spotted on a TLC plate. Cholesterol
was separated using the solvent system hexanes: ethyl ether: acetic acid (30:20:1), and
plates were dried. To visualize lipids, plates were submerged briefly in with 3% Copper
acetate (w/v) in 8% phosphoric acid (v/v) and heated at 180 ◦C for approximately 15 min to
char [103].
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4.8. Proteomic Analysis of MAM Fractions

MAM fractions were isolated and ACAT1 enrichment was confirmed using Western
blot. An amount of 100 µg of protein/sample were dried with a speedvac and sent to the
IDeA National Resource for Quantitative Proteomics for analysis. Protein samples were
reduced, alkylated, and purified by chloroform/methanol extraction prior to digestion
with sequencing grade trypsin (Promega). The resulting peptides were labeled using a
tandem mass tag 10-plex isobaric label reagent set (Thermo Fisher Scientific, Waltham, MA,
USA) and combined into one multiplex sample group. The labeled peptides were separated
into 46 fractions on a 100 × 1.0 mm Acquity BEH C18 column (Waters) using an UltiMate
3000 UHPLC system (Thermo Fisher Scientific, Waltham, MA, USA) with a 50 min gradient
from 99:1 to 60:40 buffer A:B ratio under basic pH conditions, then consolidated into 18
super-fractions. Each super-fraction was then further separated by reverse phase XSelect
CSH C18 2.5 um resin (Waters) on an in-line 150 × 0.075 mm column using an UltiMate
3000 RSLCnano system (Thermo Fisher Scientific, Waltham, MA, USA). Peptides were
eluted using a 75 min gradient from 98:2 to 60:40 buffer A:B ratio. Eluted peptides were
ionized by electrospray (2.4 kV) followed by mass spectrometric analysis on an Orbitrap
Eclipse Tribrid mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) using
multi-notch MS3 parameters. MS data were acquired using the FTMS analyzer in top-speed
profile mode at a resolution of 120,000 over a range of 375 to 1500 m/z. Following CID
activation with normalized collision energy of 31.0, MS/MS data were acquired using the
ion trap analyzer in centroid mode and normal mass range. Using synchronous precursor
selection, up to 10 MS/MS precursors were selected for HCD activation with a normalized
collision energy of 55.0, followed by acquisition of MS3 reporter ion data using the FTMS
analyzer in profile mode at a resolution of 50,000 over a range of 100–500 m/z.

Buffer A = 0.1% formic acid, 0.5% acetonitrile

Buffer B = 0.1% formic acid, 99.9% acetonitrile

Both Buffers Adjusted to pH 10 with Ammonium Hydroxide for Offline Separation

Proteins were identified and MS3 reporter ions quantified using MaxQuant (Max
Planck Institute) against the UniprotKB Mus musculus, January 2022) database with a
parent ion tolerance of 3 ppm, a fragment ion tolerance of 0.5 Da and a reporter ion
tolerance of 0.003 Da. Scaffold Q + S (Proteome Software) was used to verify MS/MS-based
peptide and protein identifications (protein identifications were accepted if they could be
established with less than 1.0% false discovery and contained at least 2 identified peptides;
protein probabilities were assigned by the Protein Prophet algorithm [104] and to perform
reporter ion-based statistical analysis.

Protein TMT MS3 reporter ion intensity values are assessed for quality and normalized
using ProteiNorm [105]. The data was normalized using cyclic loess [106] and statistical
analysis was performed using Linear Models for Microarray Data (limma) with empirical
Bayes (eBayes) smoothing to the standard errors [106]. Proteins with an FDR adjusted
p-value < 0.05 and a fold change > 2 are considered to be significant.

Proteins were annotated with g:Profiler web browser-based software using g:GOSt
functional profiling [107]. Groups of proteins were identified using GO term IDs as follows:
nucleus, GO:0005634; mitochondrion, GO:0005739; lysosome, GO:0005764; endosome,
GO:0005768; autophagosome, GO:0005776; peroxisome, GO:0005777; endoplasmic retic-
ulum, GO:0005783; Golgi apparatus, GO:0005794; lipid droplet, GO:0005811; cytosol,
GO:0005829; cytoskeleton, GO:0005856.

4.9. Confocal Microscopy

HMC3 cells were seeded in a 6-well dish and transfected with plasmid DNA using
Fugene 4K reagent in serum-free Opti-MEM (Thermo Fisher Scientific, Waltham, MA, USA)
for 4 h before replacing with full media. After 24–48 h, cells were trypsinized and re-plated
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onto poly-D-lysine coated coverslips and grown for at least another 24 h. Samples were
prepared for imaging as previously described [82]. Briefly, after drug treatments, cells were
washed with PBS and fixed with 1% glutaraldehyde in PBS for 10 min and treated with
1 mg/mL sodium borohydride in PBS 3 × 15 min to quench autofluorescence. Images
were taken using Andor (Belfast, Northern Ireland) spinning disk on a Nikon (Melville, NY,
USA) Eclipse Ti base equipped with Andor Zyla sCMOS camera and Yokogawa (Tokyo,
Japan) Power supply using 60 × 1.4 NA Plan-Apo γ Nikon oil objective.

ER–mitochondria overlap analysis was performed using ImageJ image analysis soft-
ware (version: 2.9.0/1.53t). Individual mitochondria were isolated from the cell periphery
and images were batch-processed using a macro written to auto-threshold and create binary
masks for ER and mitochondria signals followed by a calculation of the area of colocalized
pixels. This area was standardized back to the mitochondria pixel area to measure the %
mitochondria overlapping with ER.

4.10. Electron Microscopy

A431 cells were grown on fibronectin-coated glass-bottom Mattek (Ashland, MA,
USA) dishes, treated with conditions as described, and fixed with freshly prepared fixative:
2.5% glutaraldehyde, 3.2% paraformaldehyde in 0.1 M sodium cacodylate pH 7. Cells were
postfixed for 1 h on ice with 1% OsO4 in 0.1 M sodium cacodylate pH 7.2, rinsed 2 × 5 min
at room temp in 0.1 M sodium cacodylate pH 7.2, rinsed 2 × 1 min in water, incubated
overnight at RT in 2% aqueous uranyl acetate, dehydrated in graded ethanol (50%, 70%,
95%, 2 × 100%) and embedded in LX-112 resin using Thompson molds. Sections parallel to
the cellular monolayer were obtained using a Leica Ultracut 7 ultramicrotome, mounted
on carbon–coated 200-mesh copper grids (Ted Pella), stained with a mixture of rare earths
(UranylLess—EMS) and lead citrate (EMS), and examined and imaged under a Helios 5CX
electron microscope using a STEM3+ detector.

The images analyzed were obtained from duplicate biological replicates. Electron micro-
graph analysis was performed using ImageJ image analysis software (version: 2.9.0/1.53 t).
Individual mitochondria were analyzed by identifying the closest ER structure, and mea-
suring distances flanking either side of the minimum, inspired by [81]. With the use of
an ImageJ macro, the mitochondria and ER membrane surfaces were identified by hand.
Every 2 pixels (7.73 nm) along the mitochondria surface, a line representing the intermem-
brane distance was drawn to the closest point on the ER (Figure 4D). The contact site
length was calculated on the mitochondria surface by measuring the number of consecutive
intermembrane distances under 30 nm.

4.11. Data Analysis and Visualization

Data analysis and statistical comparisons were made using a two-tailed, unpaired
Student’s t-test performed with Microsoft Excel or GraphPad Prism 9. All graphs and data
visualization were completed with GraphPad Prism 9.

5. Conclusions

The benefits of ACAT1/SOAT1 inhibition in diseases have been known for some time,
but until now the immediate downstream molecular and cellular responses leading to
these benefits were unknown. This study provides the first known example of precise
modulation of cholesterol at the mitochondria-associated ER membrane (MAM) and shows
cholesterol accumulation at the MAM and a strengthening of the ER-mitochondria contact
site are some of the first downstream events following ACAT1/SOAT1 inhibition. Based
on genome-wide association (GWAS) studies, several genes identified as risk factors for
Alzheimer’s disease are closely linked with cholesterol/lipid homeostasis, and yet, the
effects of total cholesterol reduction therapy by statins have shown mixed results. Our
current study provides a strong rationale that we should perhaps be looking at altering
localized cholesterol within cells.
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