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Abstract: Claudin-4 (CLDN4) is a key component of tight junctions (TJs) in epithelial cells. CLDN4
is overexpressed in many epithelial malignancies and correlates with cancer progression. Changes
in CLDN4 expression have been associated with epigenetic factors (such as hypomethylation of
promoter DNA), inflammation associated with infection and cytokines, and growth factor signaling.
CLDN4 helps to maintain the tumor microenvironment by forming TJs and acts as a barrier to the
entry of anticancer drugs into tumors. Decreased expression of CLDN4 is a potential marker of
epithelial-mesenchymal transition (EMT), and decreased epithelial differentiation due to reduced
CLDN4 activity is involved in EMT induction. Non-TJ CLDN4 also activates integrin beta 1 and
YAP to promote proliferation, EMT, and stemness. These roles in cancer have led to investigations
of molecular therapies targeting CLDN4 using anti-CLDN4 extracellular domain antibodies, gene
knockdown, clostridium perfringens enterotoxin (CPE), and C-terminus domain of CPE (C-CPE),
which have demonstrated the experimental efficacy of this approach. CLDN4 is strongly involved in
promoting malignant phenotypes in many epithelial cancers and is regarded as a promising molecular
therapeutic target.
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1. Introduction

Tight junctions (TJs) are multiprotein complexes present at the tip of the lateral mem-
brane of polarized epithelial and endothelial cells [1]. The main function of these structures
is to mediate adhesion and polarity between cells. Therefore, it is believed that the impair-
ment of TJs and the concomitant loss of cell-to-cell adhesion are necessary for the early
stages of cancer invasion and metastasis. However, it is becoming increasingly clear that
TJ proteins such as claudins play important roles not only in adhesion but also in the
activation of intracellular signaling, which contributes to tumor progression and metastasis.
Claudin (CLDN) is a cell-to-cell adhesion component of the tight junctions and forms a
protein family with 27 highly homologous members [2,3]. CLDN4 is the major CLDN
involved in TJs in epithelial cells, such as those in the intestines and lungs, and is associated
with many epithelial malignancies [4,5]. This review provides an overview of CLDN4
expression, function, and the therapeutic targeting of this protein. In particular, the latest
findings are presented on the function of non-TJ CLDN4 and antibody therapy targeting
CLDN4 including our data.

2. CLDN4 Expression and Regulation in Cancer

Overexpression of CLDN4 has been reported in various cancers, such as gastric can-
cer [6–8], pancreatic cancer [9–11], colorectal cancer [12,13], breast cancer [14,15] (especially
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triple-negative breast cancer [16,17]), oral squamous cell carcinoma [18], ovarian cancer [19],
bladder cancer [20,21], non-small cell lung cancer [22], and cholangiocarcinoma [23]. In all
of these cases, CLDN4 expression correlated with disease progression and poor prognosis.
CLDN4 is also overexpressed in thyroid cancer [24] and prostate cancer [25,26]; however,
in these cancers, decreased expression correlated with poor prognosis. Interestingly, in
kidney cancer [27] and hepatocellular carcinoma [28], TJ CLDN4 is expressed at low levels
and does not correlate with disease progression.

Several factors have been reported to regulate CLDN4 expression, including epigenetic
and inflammatory processes.

2.1. Epigenetics

Epigenetic alterations play a major role in carcinogenesis and cancer progression in
various malignancies [29–31]. Changes in DNA methylation, histone modifications, chro-
matin remodeling, and microRNAs are considered useful indicators of cancer development
and progression [29], and epigenetic changes in the regulation of CLDN4 expression have
recently been reported. Hypermethylation of CpG islands in the CLDN4 promoter region re-
duces CLDN4 expression in gastric, bladder, and colon cancers [32–34]. In contrast, CLDN4
hypomethylation and CLDN4 overexpression have been reported in gastric, breast, ovarian,
and bladder cancers [21,35–37]. In bladder cancer, CLDN4 promoter DNA hypomethylation
was shown to correlate with CLDN4 overexpression, high-grade tumors, and invasion, and
the increase in CLDN4 promoted anti-apoptosis, stemness, and epithelial-mesenchymal
transition (EMT) [21]. Several studies have suggested that the depletion of methyl donors by
the upregulation of methyltransferases may be a likely cause of hypomethylation [38–40].

Epigenetic regulation of CLDN expression has also been reported for CLDN1 [34,41,42],
CLDN2 [43], CLDN3 [32,44,45], CLDN6 and CLDN9 [46], CLDN7 [47], and CLDN11 [48].
Several studies have also indicated the involvement of microRNAs in the regulation of
CLDN4 expression. CLDN4 is a target gene of miR497-3p and the long non-coding RNA
ELFN1-AS1, which promotes CLDN4 expression by sponging miR497-3p [49]. In contrast,
coxsackievirus infection suppresses CLDN4 expression and increases airway mucosal
permeability by inducing miR4916 expression [50].

2.2. Inflammatory Processes

In gastric cancer, CLDN4 expression is elevated in Helicobacter pylori-positive cases [8].
Here, CLDN4 expression is upregulated by CDX2, leading to an intestinal phenotype
induced by H. pylori infection [51]. CLDN4 is downregulated by inflammatory cytokines
such as TNFα and HMGB1 [13,52]. In rheumatoid arthritis, blood IL-4, -5, -6, and -13 levels
are elevated, while the levels of CLDN4, 7, 12, and 15, as well as ZO-1, are decreased [53].
IL-18 represses the expression of CLDN1, 3, 4, and 12 [54]. Furthermore, endotoxins (in
the form of LPS) reduce CLDN4 expression through IL-1β, -6, and -18 [55,56]. In contrast,
increased oxidative stress mediated by ROS results in inflammation that upregulates
CLDN4 expression through NFκB suppression [57,58]. Increased expression of CLDN4 in
acute pancreatitis is reportedly due to enhanced transcription by FOXP3 and USF2 [59].
These findings suggest that changes in CLDN4 expression may result from the balance
between inflammation, cytokine activity, and inflammation-associated ROS production.

2.3. Growth Factors

Smad signaling triggered by TGF-β induces CLDN4 promoter activity via c-Jun,
enhancing CLDN4 expression [60]. In mouse intestinal epithelium, knockdown of smad4
has been shown to reduce the expression of CLDN3 and 4, but increase that of CLDN2
and 8, resulting in increased intestinal permeability [61]. In glioblastoma, TGFβ promotes
CLDN4 expression and enhances invasive ability [62]. Other signaling pathways that affect
CLDN4 expression include PKCα [63], twist [64], ERK1/2 [65], p38MAPK [66], HIF1α [67],
and hedgehog [68].
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3. The Function of CLDN4 in Cancer
3.1. Carcinogenesis

CLDN4 overexpression has been detected in several cancers, including lung, gastric,
colorectal, endometrial, uterine cervical, and ovarian epithelial cancers. In these cancers,
precancerous lesions, atypical adenomatous hyperplasia, gastric dysplasia, sessile serrated
adenoma/polyp with dysplasia (SSA/P-D), atypical endometrial hyperplasia, cervical in-
traepithelial neoplasia (CIN), and borderline malignant lesions display increased expression
and/or abnormal distribution of CLDN4 [69–74]. Furthermore, even in liver cancer with a
low level of CLDN4 expression, CLDN4 expression is increased in liver cirrhosis compared
to normal liver tissue [75]. Thus, CLDN4 overexpression appears to represent an early
event in carcinogenesis in many cancers, and YAP activation by CLDN4 has been reported
as a molecular biological background in precancerous lesions of colorectal cancer [71]. In
papillary thyroid carcinoma, an oncogenic chromosomal gain of 7q11.22-11.23 leads to
CLDN4 upregulation [76]. In contrast, there are also reports suggesting that the expression
of CLDN4 suppresses carcinogenesis. CLDN4 knockout mice exhibit a hyperproliferation
of the urothelium [77], while activation of the tumor suppressor gene cancer-related regula-
tor of actin dynamics (CRAD) is associated with CLDN4 upregulation [78]. CLDN4 inhibits
EphA2 oncogenic signaling by inactivating the β-catenin and PI3K-AKT pathways [79].

3.2. Barrier Function and Maintenance of Intratumoral Microenvironment

CLDN4 is a major structural protein of epithelial TJs in intestines and lungs and is in-
volved in epithelial differentiation, polarity maintenance, and substance trafficking [80,81].
In normal epithelial tissue, TJs act as barriers or gates that separate the outside from
the inside of the body and restrict material transport; however, in tumor tissue, the po-
larity of the cells and tissues is ambiguous. Thus, in CLDN4-overexpressing epithelial
malignancies, the barrier function of TJs serves to maintain the tumor microenvironment
and retain tumor-secreted growth factors to promote the malignant cancer phenotype
(Figure 1) [8,11,13,16,20]. VEGF and IL-8, cancer cell-derived angiogenic factors, are upreg-
ulated by CLDN4 and their accumulation in tumors promotes tumor angiogenesis [20,82].
In addition, cancer cells exhibit enhanced glycolysis (known as the Warburg effect) that
results in the release of extracellular lactate [83]. The barrier function of CLDN4 leads to
the accumulation of lactate within the tumor microenvironment and maintains an acidic
environment around the cancer cells [16]. A decrease in extracellular pH is associated with
the pH-sensitive G-protein-coupled receptors (GPCRs) GPR4, GPR65 (TDAG8), GPR68
(OGR1), and GPR132 (G2A). This acidic environment promotes the proliferation, migration,
invasion, and metastasis of cancer cells. An acidic tumor microenvironment, linked with
a hypoxic environment, promotes the expression of malic enzyme 1 and brings EMT to
tumor cells through YAP1 activation [83]. An acidic environment also suppresses immune
cells (allowing cancer cells to escape from cancer-targeted immunity) [84]. Furthermore,
TJs restrict the movement of external substances into the tumor microenvironment, thus
enabling cancer cell drug resistance [85].

In assessing the barrier action of TJ CLDN4, it is necessary to consider its involvement
in transport in normal TJs. TJ controls material transport through the paracellular and
transcellular routes. Utilization of these pathways is affected by the ratio of ionized and
unionized species (which depends on the pKa of the drug, the size of the molecules, and
the pH of the solution), the intrinsic partition coefficient of the drug, and the size of the
molecule and its charge [86]. For example, most of the filtered Cl- is reabsorbed in the
proximal tubules. A key component of Cl reabsorption is passive, paracellular, driven by
the luminal-negative potential of the early proximal tubule and the outward concentration
gradient for Cl in the late proximal tubule. Moreover, CLDN4 forms paracellular chloride
channels in the kidney, and CLDN8 is required for tight junction localization [87].
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Figure 1. Barrier function of TJs: CLDN4, which is overexpressed in epithelial malignancies, sepa-
rates the intratumoral microenvironment from the tumor exterior by forming TJs. As a result, 
growth factors (such as EGF and VEGF) and metabolites (such as lactate) accumulate in the intra-
tumoral microenvironment, resulting in amplification of their effects. This promotes increased tu-
mor grade and suppression of immune cell infiltration into the tumor. TJs also inhibit the penetra-
tion of anticancer drugs from the tumor exterior into the microenvironment and enhance resistance 
to anticancer drugs. CLDN4, claudin-4; TJ, tight junction; EGF, epidermal growth factor; VEGF, vas-
cular endothelial growth factor. 
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Figure 1. Barrier function of TJs: CLDN4, which is overexpressed in epithelial malignancies, separates
the intratumoral microenvironment from the tumor exterior by forming TJs. As a result, growth
factors (such as EGF and VEGF) and metabolites (such as lactate) accumulate in the intratumoral
microenvironment, resulting in amplification of their effects. This promotes increased tumor grade
and suppression of immune cell infiltration into the tumor. TJs also inhibit the penetration of
anticancer drugs from the tumor exterior into the microenvironment and enhance resistance to
anticancer drugs. CLDN4, claudin-4; TJ, tight junction; EGF, epidermal growth factor; VEGF, vascular
endothelial growth factor.

Small intercellular distances, high rates of drug influx into cells, low rates of drug
efflux, and high intracellular and extracellular drug binding promote the development of
drug gradients. In the absence of drug metabolism, the gradient “levels out” over time and
may even reverse when blood concentrations decrease. Understanding the drug transport
process from microvessels to individual cancer cells is important for optimizing cancer
chemotherapy. Cancer cells that can ‘hide’ from drugs may lead to tumor regrowth [88].

3.3. Apoptosis

Several studies have suggested that CLDN4 expression is involved in promoting cancer
cell viability. CLDN4 suppresses cell death caused by apoptosis [15,89] and endoplasmic
reticulum stress [90]. It is believed that non-TJ CLDN4 activates integrin β1 as a binding
partner and suppresses apoptosis via FAK signaling [8,21]. In addition, CLDN1 [91,92]
increases resistance to anoikis, whereas CLDN6 decreases it [93]. However, the effect of
CLDN4 on anoikis is still unclear.

3.4. Stemness and EMT

In EMT, epithelial cells lose epithelial differentiation and transition to mesenchyme,
which involves background dedifferentiation from the epithelium and enhanced stem-
ness [94]. It has become clear that cancer stemness is the basis of tumorigenicity, self-
renewal, and differentiation, as well as tumor heterogeneity, metastasis, and treatment
resistance [95]. Decreased expression of CLDN4, an epithelial marker in tumors, reflects
EMT and is also associated with metastasis [96,97]. EMT correlates with hypermethy-
lation of the CLDN4 promoter, which causes downregulation of CLDN4 [98], while the
transcription factor Bach1 directly suppresses the expression of CLDN4 and E-cadherin
to induce EMT [99]. Thus, CLDN4 expression is a marker of epithelial traits, and its de-
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crease is thought to be suggestive of EMT. However, Ma et al. reported that repression
of CLDN4 expression suppresses invasion and metastasis in breast cancer cell lines [15].
Accumulating knowledge indicates that CLDN4 plays a role in maintaining epithelial
differentiation. CLDN4 knockdown results in enhanced cell proliferation and invasive
capacity, suppression of apoptosis, and promotes metastatic potential [100,101]. While there
was no induction of vimentin expression, the authors did observe decreased E-cadherin
and increased N-cadherin expression, suggesting EMT. Analyses of the signaling changes
underpinning this phenomenon show that decreased CLDN4 expression leads to GSK-3β
phosphorylation, Wnt signal activation by β-catenin nuclear translocation, PI3K/AKT
signal activation, and the induction of Twist expression [100,101]. This results in enhanced
proliferation and anticancer drug resistance [102].

4. Non-TJ Functions of CLDN4

Although CLDN4 acts primarily as a structural protein in tTJs, research has revealed
that this protein also exhibits a diverse range of non-TJ functions [103]. These include
functions of membrane-bound CLDN4 outside of TJs, as well as free cytoplasmic CLDN4.

4.1. Non-TJ Plasma Membrane CLDN4

CLDN4 is overexpressed in bladder cancer due to promoter DNA hypomethyla-
tion [21]. Further demethylation via aza-2′-deoxycytidine (AZA) treatment induces ex-
pression of CLDN4 to levels above that necessary for TJ function. This is accompanied
by the formation of CLDN4 monomers that do not incorporate into TJs [21]. This process
is considered to be one of the mechanisms responsible for generating non-TJ CLDN4. In
gastric cancer, plasma membrane CLDN4 is overexpressed in well-differentiated carcino-
mas, whereas plasma membrane CLDN4 that forms a TJ with E-cadherin is decreased in
poorly differentiated carcinomas, reflecting EMT phenotype. In contrast, non-TJ CLDN4 is
increased. Non-TJ CLDN4 is associated with EMT phenotypes [8].

4.2. Cytoplasmic CLDN4

CLDN4 can also be taken from TJs to form a non-plasma membrane (cytoplasmic)
CLDN4. Studies have demonstrated that the C-terminus domain of Clostridium perfringens
enterotoxin (CPE) binds to the second extracellular loop of CLDN4, disrupting homotypic
claudin binding, impairing TJs, and leading to diarrhea [104]. As a result, CLDN4 is
released from TJs and translocated into the cytoplasm [13,18]. In addition, when EphA2
on the plasma membrane is activated by binding to its ligand Ephrin A1, the C-terminal
tyrosine residue of CLDN4 in the adjacent TJ is phosphorylated by EphA2, promoting
the release of CLDN4 from the TJ and resulting its translocation into the cytoplasm [27].
Furthermore, cytoplasmic CLDN4 is transported into the nucleus after phosphorylation of
the C-terminal serine residue by protein kinase C (PKC)-ε [27].

4.3. Function of Non-TJ CLDN4
4.3.1. Integrin β1 Activation

Integrin β1 activates FAK and induces the expression of stem cell-related genes such as
Oct4, Sox2, and Nanog through Notch signaling [105,106]. Non-TJ CLDN4 binds to integrin
β1 and enhances stemness, anti-apoptotic effects, drug resistance, and metastatic capacity
of cancer cells (Figure 2A) [8,21]. In poorly differentiated gastric cancer, TJ formation is
reduced, but EMT is mediated by non-TJ CLDN4 [8]. CLDN7, like CLDN4, also binds
to integrin β1, leading to downstream FAK phosphorylation [107,108]. CLDN4 exhibits
approximately 40% of the affinity of CLDN7 for integrin β1 [8].
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Figure 2. The function of non-TJ CLDN4. (A) CLDN4 monomer that does not form TJs is a binding
partner for integrin β1 expressed in neighboring tumor cells, activates FAK, and promotes expression
of stemness-associated genes. (B) CLDN4 translocates into the cytoplasm from TJs disrupted by CPE
and forms a stable complex with TAZ, MST, LATS, and ZO1, but YAP is released from the complex
and translocates into the nucleus with ZO2 to induce expression of YAP target genes, leading to
proliferation and EMT. (C) EphA2 activated by Ephrin A1 expressed on the surface of neighboring
cells phosphorylates CLDN4 and releases it from TJs. The released CLDN4 is translocated into the
nucleus with YAP. CLDN4, claudin-4; TJ, tight junction; CPE, Clostridium perfringens enterotoxin;
TAZ, tafazzin; YAP, yes-associated protein; ZO, zonula occludens; MST, mammalian Ste20-like kinase;
LATS, large tumor suppressor kinase; Eph A2, ephrin type-A receptor 2; FAK, focal adhesion kinase;
EMT, epithelial-mesenchymal transition.

4.3.2. YAP Activation

Cytoplasmic CLDN4 is also involved in YAP activation [18,27,71]. CLDN4 translocated
to the cytoplasm by C. perfringens CPE in the intestinal flora forms a stable complex
involving TAZ, LATS, MST of HIPPO inhibitory system, and ZO-1. This sequestration of
the YAP co-activator TAZ leaves YAP free to bind to ZO-2 and translocate to the nucleus,
where it promotes the expression of target genes such as cyclin E and snail, stimulating
proliferation and inducing EMT (Figure 2B) [71]. As a result, it promotes carcinogenesis
of SSA/P-D, a colonic precancerous lesion, and is associated with BRAF mutations in
colorectal cancer [71]. In contrast, in oral squamous cell carcinoma, CLDN4 released into
the cytoplasm by CPE from C. perfringens in the oral flora binds to YAP and ZO-2 and
translocates into the nucleus, promoting proliferation and inducing EMT. [18]. Nuclear
CLDN4 is found in 39% of oral squamous cell carcinomas and 81% of oral C. perfringens-
positive cases [18]. In renal cell carcinoma, unlike many epithelial malignancies, CLDN4
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expression level is low, but nuclear CLDN4 is observed in 2% of tumors, all of them at
an advanced stage [27]. As mentioned earlier, in renal cell carcinoma, EphA2/Ephrin
A1 and PKCε translocate CLDN4 into the nucleus, with YAP bound and co-translocated
alongside CLDN4. As a result, YAP is activated and increases the malignancy of cancer
cells (Figure 2C) [27]. YAP activation by CLDN also occurs with CLDN6 and CLDN18.
Several factors are involved in YAP nuclear translocation and activation, including the
inhibition of YAP phosphorylation by LATS [109], CLDN6-ZO2-YAP interactions [110], and
the binding of CLDN18 with YAP [111], which together lead to a poor prognosis in gastric
cancer [112].

4.3.3. Activation of AKT

CLDN4 has also been linked to AKT signaling. CLDN4 has been shown to induce
PIK3R3 and MAP2K2 mRNA expression and activate AKT and ERK1/2 in acute myeloid
leukemia cells [113]. This results in accelerated proliferation and poor prognosis for this dis-
ease. Another study indicated that SPTBN2 cooperates with CLDN4 to stimulate PI3K/AKT
activation [114]. Conversely, there is also a report that silencing CLDN4 activates AKT [102].
CLDN4 limits the activity of β-catenin and PI3K and inhibits the phosphorylation and
activity of EphA2 by AKT [79].

5. Targeting CLDN4

The overexpression of CLDN4 in many cancers has drawn attention to this protein
as a new molecular target. There have been a number of attempts to target CLDN4
for cancer therapy. Targeting of CLDN4 is expected to provide multi-layered effects by
enabling direct attacks on CLDN4-overexpressing cancer cells, disrupting the intratumoral
microenvironment, and facilitating drug delivery by impairing TJs. It is also expected to
inhibit tumor-promoting signals generated by non-TJ CLDN4.

5.1. Antibodies

To target CLDN4 with antibodies, it is essential to generate an antibody against its
extracellular domain, but it is difficult to generate a single CLDN-specific antibody due
to the high homology among CLDN family members [115]. The antibodies reported to be
established thus far include monoclonal antibodies that recognize the extracellular loops of
both CLDN3 and CLDN4 and their antitumor effects have been confirmed both in vitro and
in vivo [116,117]. Suzuki et al. generated a monoclonal antibody (KM3900) that recognizes
CLDN4 extracellular loop 2 and induces antibody-dependent cytotoxicity (ADCC) and
complement-dependent cytotoxicity (CDC) in vitro and inhibited the growth of pancreatic
and ovarian tumors in SCID mice in vivo [118]. Using DNA immunization, Kuwada et al.
produced a monoclonal antibody (4D3) that recognizes CLDN4 extracellular loops 1 and 2
and confirmed its antitumor effect in a nude mouse model [20]. The 4D3 antibody induces
ADCC and CDC, but its particular advantage is its sensitizing effect on anticancer drugs
by promoting the delivery of anticancer drugs into the tumor microenvironment due to
TJ damage [20]. As a result, the antitumor effect of combining 4D3 with anticancer agents
such as CDDP, 5-FU, paclitaxel, and folfirinox has been observed in animal models of
bladder, colon, gastric, pancreatic, and breast cancers [8,11,13,16,20]. In addition, the 4D3
antibody also has sensitizing effects on cetuximab, tamoxifen, and bisphosphonates [13,16].
In addition, disruption of TJs by 4D3 reduces high levels of stored growth factors and
lactates within the tumor microenvironment, promoting antitumor effects [16,20].

Since CLDN4 is expressed in various epithelial tissues, it is essential to ensure that
antibodies targeting CLDN4 are safe for human use [2]. In a study using mouse anti-CLDN4
antibody, the anti-CLDN4 antibody did not show any marked alteration in the distribution
in the body (compared to non-specific IgG) in tumor-bearing mice and demonstrated higher
accumulations in the tumors of these animals. Furthermore, no specific organ damage was
observed [119].
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Although there are, as yet, no clinical trials underway testing anti-CLDN4 antibodies,
clinical trials of antibody drugs against CLDN6 and CLDN18 have begun [120,121], and
testing for clinical application of anti-CLDN4 antibodies is expected.

5.2. Knockdown

Knocking down CLDN4 in gastric cancer and bladder cancer results in a mild decrease
in transepithelial electrical resistance (TER), an indicator of TJ function [8,21]. For this
reason, CLDN4 knockdown only provides limited disruption of the microenvironment and
the promotion of anticancer drug permeability by impairing TJs. One possible reason for
this is that the knockdown of a single CLDN may result in other CLDNs maintaining TJ
function in its place. However, CLDN4 knockdown does reduce non-TJ CLDN4 and thus
inhibits stemness [21].

5.3. CPE and C-Terminus Domain of CPE (C-CPE)

CPE recognizes specific amino acid sequences in the first and second extracellular
loops of CLDN4 and CLDN3 and docks via a pocket of the domain at the C-terminus to
disrupt TJs. Furthermore, it perforates the plasma membrane to cause cell death due to
the intracellular influx of calcium [104,122]. Therefore, CPE exhibits cytotoxicity against
cancer cells expressing CLDN4. The antitumor effect of CPE has been demonstrated
by experiments in prostate cancer [123,124], non-small cell lung cancer [22], pancreatic
cancer [10], gastric cancer [125], and ovarian cancer [126,127].

C-CPE is a C-terminal fragment of CPE. Like CPE, it binds to CLDN4 and CLDN3
and impairs TJs; however, unlike CPE, it does not perforate the cell membrane [128].
Impairment of TJs by C-CPE disrupts the barrier of the tumor microenvironment and
facilitates drug delivery [129], which enhances anticancer drug susceptibility [130] and
suppression of metastasis [131]. Furthermore, by conjugating toxins and anticancer drugs
to C-CPE, it becomes a carrier that delivers these to cancer cells expressing CLDN4 [63]. For
example, Pseudomonas aeruginosa exotoxin A [132,133], diphtheria toxin fragment A [134],
doxorubicin-loaded polysialic acid nanoparticles [135], 111In [136], TNF [137], and nano-
materials such as gold nanoparticles [138] bound to C-CPE induces cell death in CLDN4-
expressing cancer cells. However, the immunogenicity and potential toxicity of CPE may
limit its clinical application [139]. Just as C. perfringens causes food poisoning, CPE damages
the mucosal epithelium and marked cytokine reaction, resulting in gastrointestinal disor-
ders and CPE-induced shock [140,141]. In addition, C-CPE may bring about cytoplasmic
translocation of CLDN4 in the same way as CPE, and it is necessary to analyze the effects
on YAP activation and other CLDN interacting partners (see the section on YAP activation).

5.4. Peptide

Attempts have also been made to produce specific peptides as CLDN binding agents.
Hicks et al. showed that a small peptide that mimics the DFYNP sequence in the second
extracellular loop of CLDN4 impairs CLDN4, leading to the induction of apoptosis and
suppression of tumor growth [89]. In light of these promising data, further progress is
expected in peptide drug discovery to target CLDN4.

5.5. Delivery of Anti-CLDN4 Drugs

In many cases, CLDN4-targeting drugs such as those described above reach the
tumor through blood administration. At this time, the formation of tumor blood vessels is
important for the effective delivery of molecular-targeted drugs. As mentioned above, the
barrier action of CLDN4 leads to the accumulation of angiogenic factors within the tumor
microenvironment and may promote angiogenesis. However, in the future, a more detailed
examination is required regarding tumor blood vessels and the delivery of molecularly
targeted drugs. Drugs that use the extracellular route are more hydrophobic in nature,
whereas drugs that can pass through intercellular spaces are more hydrophilic. The nature
of such agents in CLDN4 targeting also needs to be considered. As mentioned in the
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antibody section, CLDN4 is expressed in a variety of normal tissues, and off-target effects
of anti-CLDN4 drugs other than antibodies should also be investigated.

6. Conclusions

CLDN4 has a well-established role in cell adhesion as a TJ protein. However, recent
studies have revealed that CLDN4 is not only involved in cell adhesion but also in sig-
nal transduction, which plays an important role in the formation of cancer pathologies
such as tumor initiation, progression, and metastasis. Our expanding knowledge of the
functions of TJs and elucidation of the role of non-TJ CLDN4 has revealed the variety of
CLDN4 functions and increased awareness of its importance in cancer. Various molecular
therapies that target CLDN4 are also being developed and are expected to result in new
therapeutic approaches that exhibit efficient antitumor effects when used in combination
with chemotherapy. The difficulty of developing CLDN4-specific molecular-targeted drugs
due to the high homology among the claudin family proteins and the fact that the pro-
tein is also widely expressed in normal tissues are barriers to CLDN4 targeting. Many
other issues, such as the diverse role of CLDN4 in tumors, interactions with other CLDNs,
and substance penetration by TJ CLDN4, complicate CLDN4 targeting. Even with these
considerations, it is emphasized that targeting CLDN4 is an attractive therapeutic ap-
proach that offers pleiotropic benefits, including cancer cytotoxicity, reprogramming tumor
microenvironments, and improvement of drug delivery.
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