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Abstract: DNA methylation is one of the epigenetic marks which has been studied intensively in 
recent years for age predicting purposes in the forensic area. In order to integrate age prediction 
into routine forensic workflow, the purpose of this study was to standardize and optimize a DNA 
methylation-based protocol tailored to the Italian context. A previously published protocol and age-
predictive method was implemented for the analysis of 84 blood samples originating from Central 
Italy. The study here presented is based on the Single Base Extension method, considering five 
genes: ELOVL2, FHL2, KLF14, C1orf132, now identified as MIR29B2C, and TRIM59. The precise 
and specific steps consist of DNA extraction and quantification, bisulfite conversion, amplification 
of converted DNA, first purification, single base extension, second purification, capillary 
electrophoresis, and analysis of the results to train and test the tool. The prediction error obtained, 
expressed as mean absolute deviation, showed a value of 3.12 years in the training set and 3.01 years 
in the test set. Given that population-based differences in DNA methylation patterns have been 
previously reported in the literature, it would be useful to further improve the study implementing 
additional samples representative of the entire Italian population. 
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1. Introduction 
In the last ten years, forensic genetics techniques, that enable investigators to infer 

additional traits from an unidentified specimen, have been developed to reduce the 
number of suspects, generate fresh leads in cold cases, or identify an unknown person or 
mass casualty victims. In particular, these approaches concentrate on age, phenotypic 
traits (such as eye, skin, and hair color), and biogeographic origin prediction. While the 
phenotypic characteristics and biogeographical origins are mainly studied through the 
analysis of specific SNP groups, age prediction is primarily conducted through the 
analysis of specific epigenetics patterns [1,2]. 

DNA methylation is one of the epigenetic marks and it has been studied intensively 
in recent years; in particular, measuring the DNA methylation levels of various genes is 
very important across many forensic and medical areas. As already mentioned, the 
survival, growth, and differentiation of cells are regulated by changes in the epigenetic 
state of specific genes [3]. 

Assuming that scientific and technological progress in human epigenomics 
continues to accelerate, we can imagine the establishment of an “epigenomic fingerprint” 
from crime scene traces to answer various forensically relevant questions that cannot be 
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detected only through genetics. Furthermore, we expect to involve predicting forensically 
valuable lifestyle and environmental information of an unknown trace donor in the near 
future [4]. 

Nowadays, the three main forensic applications of methylation analysis are tissue 
type determination of human biological traces, differentiation of monozygotic twins, and 
age prediction of an unknown donor [5]. 

Aging is a very complex phenomenon; it is multi-dimensional in nature, from a 
qualitative, quantitative, and inter-individual point of view [6]. We now have evidence 
that aging is, at least in part, genetically and epi-genetically controlled. The control and 
subsequent interruption of cellular activities demonstrate the cell’s programmed decision 
to continue or discontinue maintenance procedures as it ages [7]. A chronological age 
clock counts the years since birth. Individuals of the same chronological age may have 
distinct biological ages and might have quite different amounts of age-related 
dysfunction, pathology, and mortality risk and be considered to be of varied biological 
age. The scale of chronological or biological age may match or diverge depending on both 
the individual’s lifestyle and the presence of disease. While chronological age has been 
shown to be a valuable tool in forensics, biological age may also be used to track the 
development of a person suffering from an illness or seeking therapy for a medical 
condition [8]. 

Initially, clock models were created using a single sort of biomarker, that is DNA 
methylation, which was used to predict chronological age. This first generation is referred 
to as “chronological clocks.” A second generation of epigenetic clocks has been developed 
that utilizes DNA methylation to forecast biological qualities such as time to death or 
functional deterioration. These so-called “biological clocks” have been demonstrated to 
predict better outcomes in specific disease patterns [8–10]. 

Different factors may contribute to defining individuals’ DNA methylation clocks. 
The chronological component is associated with epigenomic maintenance, which 
guarantees a most precise forensic age determination. Meanwhile, the biological 
component may be positively influenced by physical exercises and a healthy diet, or 
negatively influenced by epigenomic alterations, unhealthy habits (smoking, alcohol 
consumption, sedentariness), diseases, species-specific effect, gender-specific effect, 
tissues/cells specific effect, and environmental factors (air pollution, temperature, 
humidity, UV exposure, and pathogens). Therefore, separating aging into distinct 
chronological and biological components has been challenging, such that all clocks lay 
between the two extremes. Relative to this concept, as illustrated in the figure below 
(Figure 1), defining the chronological and biological drivers of these DNA methylation 
clocks will need a deep analysis separately. The precise separation of these two elements 
due to particular sets of CpGs would result in more powerful specialized clocks and 
independent mechanistic research, especially in the case of legal measures of the human 
age [4,9–13]. 

 
Figure 1. Modulation of DNA Methylation Clocks. 
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Another important concept in the study of epigenetics includes the distinction 
between epigenetic drift and the epigenetic clock. In fundamentally separate mechanisms, 
epigenetic drift and the epigenetic clock contribute to age-related DNA methylation 
alterations [14,15]. 

The study here presented is based on the Single Base Extension method, considering 
five genes: ELOVL2 (located on 6p24.2), FHL2 (located on 2q12.2), KLF14 (on chromosome 
7q32), C1orf132, now identified as MIR29B2C (located on 1q32.2), and TRIM59 (located on 
3q25.33) 

This study aimed to predict the age of different individuals starting from human 
biological samples collected from Italian volunteers. The development of this analysis 
method was based on the original DNA methylation works of Jung et al. [16] and Cho et 
al. [17]. However, some modifications to the primer mixes for both the PCR and SBE 
reactions, and to the annealing temperature were performed in order to optimize the 
protocol for our laboratory. As stated above, the DNA methylation clock is influenced by 
different factors; therefore, the age-predictive models previously proposed in the 
literature need to be shaped on the specific population [16,17]. For this reason, a literature 
study was considered necessary for the creation of a DNA methylation analysis protocol 
for forensic application in the Italian context, where a specific protocol in this field has not 
yet been proposed nor validated. 

2. Results 
A pool of 84 peripheral blood samples was analyzed in replicates following precise 

and specific steps consisting on DNA extraction and quantification, bisulfite conversion, 
amplification of converted DNA, first purification, Single Base Extension, second 
purification, capillary electrophoresis, and lastly, analysis of the results (as reported in 
Figure 2). 

 
Figure 2. Experimental workflow. 

A DNA extract of each sample was bisulfite-converted twice and each converted 
eluate was amplified twice, for a total of four replicates per individual sample. The four 
amplification products followed the same downstream process and the SBE step was 
repeated once for each of them. After capillary electrophoresis, the methylation levels at 
each locus (namely, ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, TRIM59) were 
calculated and initially inserted in the tool developed by Lee et al. [18]. However, given 
the modifications performed on the original protocol and the different populations 
studied, the data thus obtained were used to create a novel age-predictive tool. The 
samples’ replicates were considered independent data, bringing the total number to 336 
observations. Two-thirds of the 336 samples were used as a training set to create a 
multivariate linear regression model, and the remaining one-third of the samples made 
up the test set. Replicates of the same sample were included in the same dataset. 
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For the training set, methylation levels vs. chronological age were plotted per each 
locus using the ggplot2 package in R (Figure 3). 

 
Figure 3. Scatterplots displaying the correlation of DNA methylation levels at each of the five loci 
studied with chronological age for all three datasets. 

Pearson correlation coefficients r between chronological age and methylation levels 
at each locus were calculated and they were evaluated according to the same rule of thumb 
adopted by Jung et al. [16] (Table 1). Four loci, ELOVL2, C1orf132, FHL2, and TRIM59, 
showed a strong correlation between chronological age and methylation levels, while 
KLF14 showed a moderate correlation. 

As a reference, the correlation between chronological age and methylation patterns 
in the test set and in the combined dataset (training and test set samples) was plotted 
(Figure 3) and calculated (Table 1). The values obtained for the test set were higher than 
those of the training set, especially in the case of TRIM59. An exception was KLF14, whose 
value was slightly lower. The combined dataset showed a correlation between DNA 
methylation levels and chronological age that mirrored the one observed in the training 
set. 

Table 1. Pearson correlation coefficient r of DNA methylation level variations with chronological 
age and predicted in each of the five loci studied, for the training, test, and combined datasets. 
Correlation for predicted age with chronological age in the three data sets is also displayed. 

 Correlation of DNA Methylation Levels with Chronological Age Correlation of Predicted Age 
with Chronological Age  ELOVL2 FHL2 KLF14 C1orf132 TRIM59 

TRAINING SET 0.862 0.786 0.682 −0.823 0.753 0.779 
TEST SET 0.940 0.852 0.651 −0.858 0.869 0.958 
COMBINED 0.889 0.807 0.655 −0.831 0.791 0.950 

A multivariate linear regression model was created with the training set using 
Microsoft Excel. The model was then applied to the test set for its validation. The 
multivariate predictive model allowed for an estimation of the age (predicted age) of 
individuals based on the methylation pattern of each gene, according to the following 
formula: 
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Predicted age (in years) = 73.8686066416537 × ELOVL2 DNA methylation level + 
21.6625107564553 × FHL2 DNA methylation level + 47.5538289868233 × KLF14 DNA 
methylation level −37.6472633609841 × C1orf132/MIR29B2C DNA methylation level + 
4.49257531145724 × TRIM59 DNA methylation level +35.8493598840537. 

The correlation between predicted age and chronological age was plotted for the 
training, test, and combined datasets and evaluated (Figure 4 and Table 1). The 
correlations observed in the training set and test set resulted in strong and very strong 
values, respectively. 

 
Figure 4. Scatterplots displaying the correlation between the age predicted using the tool here 
described and chronological age, for training, test, and combined datasets. 

The prediction accuracy of the model was assessed for both the training set and test 
set separately, and for the combined set, by calculating the Mean Absolute Deviation 
(MAD) for all the samples pooled together and for each age category (Table 2). In the 
training set, the overall MAD had a value of 3.12 years, while the test set had a value of 
3.01 years. As can be seen from the MAD value, the prediction model’s output was 
accurate and homogeneous, both for the training set and for the test set. With regard to 
MAD values of each age category, in the training set the lowest MAD of 2.79 years was 
found for the 41–50 age category while in the test set the lowest MAD of 2.41 years was 
found for the youngest category (18–30 years). The highest MAD of 3.67 and 4.09 years in 
training and test set, respectively, was observed for the 51–65 years of age category. The 
combined dataset showed the lowest MAD value in the 31–40 years of age category, while, 
as expected, the highest MAD was found in the 51–65 age category. The youngest category 
showed the third lowest error value. 

The four replicates of each sample were then analyzed as a group, the MAD for each 
sample replicate group was calculated, and the results were evaluated based on the age 
category the samples belonged to (Table 2). The maximum value for the MAD was around 
4 to 6 years, across all age categories; however, five individuals showed a MAD greater 
than 6 years, with a maximum value of around 8 years. 
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Table 2. Mean Absolute Deviation (years) values calculated for both datasets separately in their en-
tirety and after dividing the samples into age classes (top rows). MAD was also calculated consid-
ering the sample replicates as a group and according to their age class (bottom rows). The same 
analysis was applied to the combined data set. 

Mean Absolute Deviation (MAD) in years 
 

Entire dataset 
MAD per age class    

 18–30 31–40 41–50 51–65    

TRAINING SET 3.12 3.14 2.84 2.79 3.67    

TEST SET 3.01 2.41 2.57 2.97 4.09    

COMBINED 3.08 2.91 2.74 2.85 3.78    
 MAD per age class per sample replicates 
 18–30 31–40 41–50 51–65 
 MIN MAX MIN MAX MIN MAX MIN MAX 

TRAINING SET 0.67 6.10 0.70 5.81 0.46 4.77 0.35 8.53 
TEST SET 1.31 5.33 1.22 5.50 1.34 5.84 2.03 8.24 

COMBINED 0.67 6.10 0.70 5.81 0.46 5.84 0.35 8.53 

Four Loci Model Construction 
Given the strong correlation of TRIM59 with chronological age observed in the sim-

ple linear regression analysis, the results of the multivariate linear regression analysis 
highlighted a higher p-value for this locus (p = 0.374). Given this observation, a model with 
four CpG sites was built excluding TRIM59. The four loci model showed the same age 
correlation value as the model with five CpG sites (r = 0.945) explaining 89.2% of age var-
iation (adjusted R2 = 0.892). Applying this model, the age prediction was obtained through 
the formula: 

Predicted age (in years) = 74.816 × ELOVL2 DNA methylation level + 22.601 × FHL2 
DNA methylation level + 49.334 × KLF14 DNA methylation level—37.6771 × C1orf132 
DNA methylation level + 36.3226. 

This model was able to estimate age with a correlation between predicted and chron-
ological ages of 0.945 and MAD of 3.13 years in the training set and 0.958 and 3.04 years 
in the test set. MAD values between predicted and chronological ages tended to increase 
with age, slightly in the training set, and more in the test set (Figure 5). 

 
Figure 5. Correlation of MAD and chronological age in the training, test, and combined sets in the 
4 markers model. Samples are sorted in ascending order of age. 
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3. Discussion 
Forensic genetics techniques’ recent advances have allowed investigators to acquire 

additional information from their samples to reduce the number of suspects, generate 
fresh leads in cold cases, or identify an unknown person or mass casualty victims. Among 
these innovative techniques, age estimation through DNA methylation has recently at-
tracted great attention in the forensic community. The purpose of this study was to eval-
uate the individual epigenetic age clock at the level of specific CpG sites to create a pre-
dictive tool dependent on individual chronological age. Through a careful literature anal-
ysis, five relevant loci (ELOVL2, FHL2, KLF14, C1orf132, and TRIM59) were identified. At 
these loci, the methylation status of each individual was studied, and the protocol thus 
developed was used to create the prediction model for age estimation specifically in the 
Italian population. The samples were analyzed as replicates and as mentioned before, 
two-thirds were used for the training set, and thus for creating a multivariate linear re-
gression model, whereas the remaining one-third was used as a test set to validate the 
tool. 

In the training set samples, the DNA methylation levels at each locus were correlated 
with chronological age. Considering the linear regression trend of each of the five genes, 
it can be observed that all genes presented hypermethylation with increasing age, except 
for C1orf132, which showed a tendency to hypomethylation. This observation is in ac-
cordance with a previous study by Correia Dias et al., who reported a positive correlation 
with age for ELOVL2 and FHL2 genes, and a negative correlation with age for the 
C1orf132 gene [19]. The result of this observation was that, at C1orf132, younger people 
presented a much higher level of methylation which then progressively decreased with 
increasing age, while for the other four genes (ELOVL2, FHL2, KLF14, and TRIM59) the 
opposite was true: the percentage of methylation increased with age [3,20]. 

As shown in Table 1, a strong correlation for ELOVL2, FHL2, C1orf132, and TRIM59 
genes (0.7 < |r| ≤ 0.9) was observed, whereas a moderate correlation resulted for the KLF14 
gene (0.5 < |r| ≤ 0.7). These data are in agreement with what emerged from the study of 
Cho et al., where the Pearson correlation index in KLF14 was lower in comparison to the 
other genes analyzed [17]. 

The fact that the ELOVL2 gene had the highest Pearson coefficient reflects what has 
already been indicated in the literature: ELOVL2 has been heralded as one of the most 
reliable genes to be used in this type of analysis [17,21–23]. Indeed, Aliferi et al., high-
lighted the success of CpG markers located in the ELOVL2 gene region and how this is 
probably due to their larger methylation range which improves age prediction accuracy 
[24]. Moreover, other scholars have suggested its reliability as a multi-tissue age-predic-
tive marker also [16,25,26]. 

The second strongest correlation was observed in C1orf132, for which the Pearson 
coefficient resulted to be –0.823. Comparing our results with those of Jung et al., it is pos-
sible to highlight a difference in the outcome. Indeed, our value fell within the strong 
range of correlation (0.7 < |r| ≤ 0.9) whereas Jung et al. had a moderate value (0.5 < |r| ≤ 
0.7) [16]. This difference may be attributed to the different populations considered in the 
studies, suggesting for this locus a higher correlation between methylation status and age 
for the Italian population rather than the Korean one. 

Additionally, a strong correlation for the FHL2 CpG site with individual chronolog-
ical age was observed, suggesting its reliability for use in the age prediction tool. This was 
also highlighted by numerous studies which included the gene for the generation of an 
age-estimating model [16,17,27,28]. 

As for the TRIM59 gene, a strong correlation with chronological age was found in 
our population sample. This outcome is also supported by what was obtained by Jung 
and colleagues in a pool of volunteers of Korean nationality and in the study conducted 
by Zbiec-Piekarska on Polish people, albeit the latter analyzed a different CpG site [16,27]. 

Lastly, KLF14 gene methylation status had the second lowest Pearson correlation co-
efficient, with a value that fell within a moderate range of correlation (0.5 < |r| ≤ 0.7). 
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Nevertheless, its correlation was approximately near to what was reported in the literature 
[16,17,27]. 

Our results were then compared with previously published data. Comparison of 
DNA methylation levels obtained in blood samples from Italian, Portuguese [29], and Ko-
rean individuals [16] showed a strong and very strong correlation (|r| > 0.7) with age for 
all the CpG sites, except for KLF14 in Italians and C1orf132 in Koreans (Table 3). The high-
est correlation value with age was obtained for ELOVL2 in Italians and Portuguese indi-
viduals and for FHL2 in Koreans. 

In the multivariate analysis, the CpGs in KLF14 and TRIM59 genes showed non-sig-
nificant age correlation values in Portuguese individuals; in Italians, only TRIM59 showed 
a non-significant correlation, while in Koreans all the five markers showed significant age 
correlation. Age correlation similarities (i.e., ELOVL2 in Italian and Portuguese individu-
als) and differences in specific markers suggest that methylation levels might be popula-
tion-specific and specific loci may be more suitable for different population groups in or-
der to estimate the chronological age. 

Table 3. Comparison of age correlation values in blood samples from individuals of Italian, Portu-
guese, and Korean ancestry. For all populations, the analysis was performed at the same CpG sites. 

Locus 
Italians Portuguese  Koreans 

R R2 R R2 R R2 
ELOVL2 0.862 0.744 0.951 0.904 0.879 0.773 

FHL2 0.786 0.618 0.946 0.895 0.893 0.797 
KLF14 0.682 0.465 0.791 0.625 0.777 0.604 

C1orf132 −0.823 0.677 −0.924 0.854 −0.637 0.406 
TRIM59 0.753 0.567 0.910 0.828 0.763 0.582 

Moreover, the predicted output of the model for each observation was correlated 
with the sample’s respective chronological age. A strong correlation between the two was 
observed in the training set, while a very strong correlation was observed in the test and 
combined sets. This suggests that the trend of the multivariate linear regression model, 
which allows age estimation, is actually influenced by the chronological age of individuals. 

The prediction accuracy of the multivariate linear regression model, calculated as a 
MAD, was evaluated for both the training and test datasets. This evaluation was per-
formed for the four sample replicates, considering them both as a single data observation 
and as a group. The prediction error obtained had a value of 3.12 years in the training set 
and 3.01 years in the test set. In addition, these values were slightly lower than those re-
ported in the literature where the MAD values fell in the range from 3.48 to 5.75 years 
[16,22,27]. When considering the samples according to their age groups, an increase in the 
error range corresponding to an increase in the chronological age of the samples was ob-
served. The progressively higher MAD value may be explained by the higher variability 
in methylation levels of older people due to the accumulation of environmental factors, 
stressors, and pro-methylation lifestyle habits. 

The highest MAD observed per sample replicates was around 8 years for both the 
training set and test set. Five were the samples with a Mean Absolute Deviation greater 
than 6 years. These results were cross-referenced with the questionnaires filled out by vol-
unteers. It was noted that, in 80% of the cases (4 out of 5 samples), the high MAD values 
observed may be attributed to past or present smoking habits. Indeed, as already men-
tioned, many scholars have highlighted how these habits may influence the epigenetic 
modifications of individuals [4,10–12]. However, other factors, which are not currently 
under investigation, may be additional causes, which may have led to these results given 
the high complexity of epigenetic regulation. 

Indeed, given the relevance of age prediction in the scientific community, different 
studies have focused on the development of age-predictive tools based on different types 
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of potential aging-related biomarkers. Nonetheless, the study of DNA methylation pat-
terns seems to be the most accurate and sensitive in terms of chronological age prediction 
and life span evaluation [24,30]. Moreover, despite the impossibility of controlling all the 
possible factors which can impact epigenetic variations, it remains important to outline a 
reliable tool for age estimation to infer additional information from an unidentified spec-
imen, especially in the forensic context. However, even in this case, further studies are 
needed to ensure that this tool reaches levels of accuracy and greater sensitivity in order 
to minimize the divergences between chronological and predicted ages. 

In our opinion, our findings have provided valuable insights that may serve as a 
starting point. Most importantly, given the quantitative nature of the bisulfite-dependent 
method of DNA methylation levels estimation, the analysis in replicates of the samples 
minimized variability in the results, thus showing an improved outcome in the predictive 
accuracy of the model. Additionally, our study can be considered as an opportunity to 
delve deeper into the definition of the most informative loci for age estimation in the Ital-
ian population. However, a number of subsequent steps would be appropriate to over-
come some aspects that could represent limits to this study. First, the implementation of 
a more diverse pool of individuals, in terms of lifestyle habits, disease status, and envi-
ronmental factors that may influence DNA methylation patterns is advisable. In fact, the 
possible correlation between these factors and methylation profiles has not been thor-
oughly investigated, which could affect the prediction accuracy of this tool. Second, given 
that the study was limited to 84 individuals, the investigation of a wider population, rep-
resentative of the Italian one, would be needed in order to increase the sensitivity of the 
predictive model for age estimation, through, for example, the structuring of a multicenter 
collaborative study. In addition, considering the limited amounts of DNA typically en-
countered in the forensic context, further studies of the amount of starting material are 
needed to improve the accuracy and reliability of age prediction for forensic analysis. 

In conclusion, given the observed variability among different populations, new spe-
cific markers are needed to better explain the age-related DNA methylation variance in 
different population groups; however, the variation due to environmental effects and dis-
eases will always play a confounding role [31]. 

4. Materials and Methods 
4.1. Sample Collection 

The study was approved by the Ethical Committee of Perugia University, Umbria, 
Italy. Written informed consent to sample collection and analysis was provided by all vol-
unteers. Additionally, volunteers filled out a general questionnaire pertaining to their age, 
gender, lifestyle, and known pathologies (without specifying which ones), as they are fac-
tors that may influence age prediction. The information was collected to aid the results’ 
analysis in case of any observed inconsistencies. Otherwise, 84 individuals known to be 
healthy were chosen for the study. Samples were collected from 44 females and 40 males 
aged 18–65, evenly distributed among four age classes: 18–30 years, 31–40 years, 41–50 
years, 51–65 years of age. All volunteers were located in Central and Central-Northern 
Italy. 

The samples consisted of peripheral blood samples collected with EDTA and they 
were processed right after collection. 

4.2. DNA Extraction and Bisulfite Conversion 
Aliquotes of 200 µL of blood were extracted using QIAamp® DNA Mini Kit (Qiagen, 

Hilden, Germany) and the DNA extracts were quantified using the QuantifilerTM Trio 
DNA Quantification Kit (Applied Biosystems®, Foster City, CA, USA). Optimally, around 
400 ng total of DNA were bisulfite-converted using EZ DNA Methylation-DirectTM Kit 
(Zymo Research, Irvine, CA, USA). A lower DNA yield was observed. Even if the kit’s 
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manual reported a yield of more than 80%, we found it to be slightly lower, so we assumed 
the DNA recovery to be 60%. 

The 84 samples were bisulfite-converted twice and both converted DNA eluates were 
amplified twice, for a total of four replicates per sample. 

4.3. Amplification of Converted DNA 
The primers implemented for PCR amplification were those used by Jung et al. [16], 

and Cho et al. [17], with modifications to the primers’ concentration mixtures. The modi-
fied primers’ concentration for the PCR amplification is reported in Table 4. 

Table 4. First amplification 10× primer mix forward and reverse primers’ concentration. 

Amplification Mix 
10× Primer Mix Concentrations 

Fwd Rev 
ELOVL2 1 µM 1 µM 
FHL2 0.5 µM 0.5 µM 
KLF14 0.5 µM 0.5 µM 
C1orf132/MIR29B2C 1 µM 0.5 µM 
TRIM59 0.5 µM 0.5 µM 

Since the primer concentrations were adjusted, the annealing temperature was recal-
culated by using a dedicated tool by Thermo Fisher Scientific [32]. The best results were 
obtained with the samples amplified with our modified primer mixture at a melting tem-
perature of 54 °C. According to these specifics, four replicates of the same sample were 
amplified, and the results obtained were consistent, with only negligible deviations ob-
served. 

For the PCR enrichment step, based on the converted DNA input suggested by Jung 
et al. [16], 10 ng of converted DNA was amplified. Samples were diluted accordingly 
based on the assumed yield of the bisulfite conversion. For a single sample, the amplifica-
tion reaction was prepared as follows: 
6.25 µL QIAGEN® Multiplex PCR Master Mix 2× (Multiplex PCR Kit); 
1.25 µL PCR PRIMER MIX 10×; 
1 µL H2O; 
4 µL bisulfite-treated DNA. 

The amplification conditions consisted of an initial denaturation at 95 °C for 10 min, 
followed by 45 cycles at 95 °C for 30 s, 54 °C for 30 s, and 72 °C for 30 s, and lastly an 
extension at 72 °C for 5 min, then hold at 4 °C. 

4.4. SNaPshot Protocol 
The PCR amplification step was followed by an enzymatic cleanup, carried out by 

the ExoSAP-ITTM Express PCR Product Cleanup reagent (Thermo Fisher Scientific, Wal-
tham, MA, USA), according to the manufacturer’s instructions. 

The multiplex SBE reaction was carried out using the SNaPshotTM Multiplex Kit 
(Thermo Fisher Scientific, Waltham, MA, USA). The same primers of Jung et al. [16], and 
Cho et al. [17] were used, albeit their concentrations in the 10× primer mix were also mod-
ified. All 100× SBE primers were diluted to achieve 10× primers at a concentration of 0.2 
µM. Based on the SNaPshot™ Multiplex Protocol [33], the SBE reaction per each sample 
wasprepared as follows: 
5 µL SNaPshot™ Multiplex Ready Reaction Mix; 
1 µL SBE PRIMER MIX 10×; 
1 µL H2O; 
3 µL ExoSAP™ purified DNA. 
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The temperature conditions in the thermal cycler for SBE were set as per the manu-
facturer’s instructions, and they consisted of 25 cycles of rapid temperature increase to 96 
°C, hold at 96 °C for 10 s, rapid temperature decrease to 50 °C, hold at 50 °C for 5 s, rapid 
increase to 60 °C, hold 60 °C for 30 s, lastly a final rapid decrease to 4 °C and hold at 4 °C 
until post-SBE purification. 

The SNaPshot multiplex reaction was followed by enzymatic purification with 
Shrimp Alkaline Phosphatase (SAP) (Thermo Fisher Scientific, Waltham, MA, USA) ac-
cording to the manufacturer’s instructions, meaning an incubation at 37 °C for 30–60 min. 
The reaction mix per sample was the following: 
12 µL H2O; 
2 µL 10x SAP Reaction Buffer; 
1 µL SAP; 
5 µL Post-SBE Product. 

4.5. Capillary Electrophoresis 
Capillary electrophoresis was carried out on the SeqStudioTM Genetic Analyzer, with 

a POP-1 universal polymer. The GeneScan E5 module parameters were the same as the 
kit’s protocol; however, the collection time was shortened from 24 min to 18 min. Firstly, 
post-SAP SBE products were prepared in 0.5 µL sample tubes according to the following 
mix for a single sample: 
15 µL Hi-Di formamide; 
0.15 µL GeneScan™-120 LIZ™ size standard; 
1.5 µL post-SAP SBE product. 

The sample data are then analysed by using GeneMapper® Software v 6. 

4.6. Age Calculation and Prediction Model Construction 
DNA methylation-based age prediction depends on the methylation levels at partic-

ular CpG sites. The methylation degree at ELOV2 and FHL2 CpG sites, given that C and 
T are detected, was calculated according to the formula: IେIେ + I୘. 

At KLF14, C1orf132 and TRIM59 sites, which had their SBE primers designed in re-
verse and thus G and A were detected, the methylation levels were calculated using the 
formula: IୋIୋ + I୅. 
where I is the intensity of either the methylated C or unmethylated C, meaning the height 
of their electrophoretic peaks. 

5. Conclusions 
The main purpose of this study was to implement a protocol and method for age 

prediction, and to define an age-predictive tool for the Italian population, given that some 
differences among methylation levels in different populations were observed. For these 
reasons, after a precise literature analysis we implemented a study protocol optimal for 
our laboratory and trained and tested the tool with samples originating from Central Italy. 
The samples were analyzed as replicates to determinate the DNA methylation level high-
lighting a strong correlation both with chronological and predictive age, either in the train-
ing set or in the test set. The deviation between the predicted age and the chronological 
age was calculated through Mean Absolute Deviation given a mean value of approxima-
tively 3 years suggesting the reliability of the predictive model. Moreover, based on our 
experience, to minimize the error rate of each sample, replicated analyses are suggested. 
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Eventually, despite our purpose to standardize DNA methylation analyses, protocol, and 
interpretation patterns for forensic application in the Italian context, it would be useful to 
implement the study with additional samples collecting more information about donors 
that would be helpful for a future more detailed analysis. 
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