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Abstract: Aldosterone, a vital hormone of the human body, has various pathophysiological roles. The
excess of aldosterone, also known as primary aldosteronism, is the most common secondary cause of
hypertension. Primary aldosteronism is associated with an increased risk of cardiovascular disease
and kidney dysfunction compared to essential hypertension. Excess aldosterone can lead to harmful
metabolic and other pathophysiological alterations, as well as cause inflammatory, oxidative, and
fibrotic effects in the heart, kidney, and blood vessels. These alterations can result in coronary artery
disease, including ischemia and myocardial infarction, left ventricular hypertrophy, heart failure,
arterial fibrillation, intracarotid intima thickening, cerebrovascular disease, and chronic kidney
disease. Thus, aldosterone affects several tissues, especially in the cardiovascular system, and the
metabolic and pathophysiological alterations are related to severe diseases. Therefore, understanding
the effects of aldosterone on the body is important for health maintenance in hypertensive patients. In
this review, we focus on currently available evidence regarding the role of aldosterone in alterations
of the cardiovascular and renal systems. We also describe the risk of cardiovascular events and renal
dysfunction in hyperaldosteronism.

Keywords: primary hyperaldosteronism; vascular system; metabolic alterations; oxidative stress;
thrombosis

1. Introduction

Aldosterone, a hormone that regulates sodium balance and blood pressure in humans,
has also various pathophysiological roles. Overproduction of aldosterone, also known as
primary aldosteronism (PA), is the most common secondary cause of hypertension, and
the prevalence of PA in patients with hypertension is 5–15% [1,2]. It is also associated with
cardiovascular and renal complications, as well as metabolic alterations, such as insulin
intolerance and obesity [3–5]. Moreover, mortality due to cardiovascular complications is
higher in patients with PA than in those with essential hypertension (EH) [6]. Thus, the
excess of aldosterone can have adverse systemic effects and lead to poor prognosis.

The excess of aldosterone induces pathophysiological alterations such as exacerbated
inflammation, oxidative stress, and fibrosis. These altered mechanisms are related to
each other and cause metabolic abnormality, coronary artery disease (CAD), and renal
dysfunction [1,6,7]. Especially, vascular and structural changes in the heart are reported
to increase the risk of cardiovascular disease and mortality. In fact, excess aldosterone
induces vascular stiffness, thrombosis, and left ventricular remodeling, and enhances
mortality rate [8,9]. Aldosterone can exert its functions through its interaction with the
mineralocorticoid receptor (MR). Therefore, MR antagonists can reduce cardiovascular
disease and mortality as well as suppress the progression of renal dysfunction [10]. MR
antagonists such as spironolactone and eplerenone are well-evidenced medications for
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resistant hypertension with PA and heart failure with reduced ejection fraction [10,11], and
can prevent the effect of excess aldosterone and reduce the risk of cardiovascular morbidity
and mortality.

In this review, we focus on the current evidence of pathophysiological alterations of
the metabolic and cardiovascular systems by the excess of aldosterone. The physiology
of aldosterone is also described. In this context, we discuss the connection between these
aldosterone-induced alterations, especially in PA, and the risk of cardiovascular disease
(CVD). Moreover, due to the association between renal damage and alterations in the
cardiovascular system, we also aim to describe the association between aldosterone and
the renal system.

2. Aldosterone Synthesis and Physiology
2.1. Basic Mechanism of Aldosterone Synthesis and Physiological Processes

Aldosterone is a mineralocorticoid, a class of steroid hormones. It raises blood pressure
and regulates the water–mineral balance in the body [12,13]. It is mainly produced in the
zona glomerulosa of the adrenal cortex by the aldosterone synthase (CYP11B2), which
belongs to the cytochrome P450 family [14,15]. Aldosterone synthesis is mainly stimulated
by extracellular potassium concentrations, adrenocorticotropic hormone, and the renin-
angiotensin system (RAS) [16]. It is synthesized from cholesterol, which is transported to
the inner mitochondrial membrane. Cytochrome P450scc (cholesterol side-chain cleavage,
encoded by CYP11A1) converts cholesterol to pregnenolone [17,18], which is transported
to the smooth endoplasmic reticulum and converted to 11-deoxycorticosterone (11DCS)
by 3β-hydroxysteroid dehydrogenase and 21-hydroxylase. In the mitochondria, 11DCS is
11-hydroxylated, 18-hydroxylated, and 18-oxidated continuously by aldosterone synthase
to produce aldosterone [19]. Aldosterone easily diffuses through the cell membrane and
binds to MR in the cytoplasm. After the binding of aldosterone to MR, the receptor is
dimerized, translocates to the nucleus, and acts as a ligand-activated transcription factor
that leads to the expression of genes that encode proteins such as serum and glucocorticoid-
stimulated kinase 1 (SGK-1), which regulates and activates ionic transport proteins such as
the epithelial cell sodium channel (ENaC) in principal cells [20]. Activated ENaC promotes
sodium and water reabsorption and regulates fluid volume and sodium balance [21].
Sodium homeostasis is regulated by proton pumps, such as H+-ATPase and H+-K+-ATPase,
in intercalated cells [22,23].

Glucocorticoid (GC) is also a steroid hormone that binds to MR, which is determined
by the balancing of expression levels of 11β hydroxysteroid dehydrogenase types 1 and 2
(11βHSD1 and 2) [24]. These enzymes act as a prereceptor gateway expressed in most cells,
although the expression levels differ, e.g., 11βHSD1 is highly expressed in the liver, central
nerve, and smooth muscle, while 11βHSD2 is highly expressed in the renal distal nephron
and colon. Cardiomyocyte and inflammatory cells are not expressed 11βHSD2 [24,25].
11βHSD1 reactivates intracellular GC via reductase activity, while 11βHSD2 decomposes
GC via dehydrogenase activity, suggesting a selectivity for binding of aldosterone to MR
in cells.

The gene translational pathway activation through MR is associated with the genomic
effect of aldosterone, whereas the non-gene translational pathway is associated with the
non-genomic effects of aldosterone characterized by the rapid vascular response through
direct aldosterone actions or MR [26]. G protein-coupled estrogen receptor 1 (GPER1) has
been proposed as a likely aldosterone receptor, and it may contribute to the rapid effects
of aldosterone in several tissues. This receptor is located in the cell membrane. GPER1 is
expressed in endothelial cells, vascular smooth muscle cells, and cardiomyocytes [27,28].
GPER1 is also expressed in tubular epithelial cells, mesangial cells, and renal interlobular
arteries in the kidney [29–31]. GPER1 activation is associated with protective effects in the
vasculature and with the regulation of cell growth, migration, and cell death. Moreover,
GPER1 contributes to the rapid activation of the extracellular signal-regulated kinase
(ERK) and apoptosis, which is induced by aldosterone in vascular smooth muscle cells.
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However, it remains unclear whether GPER1 is a receptor for aldosterone or not. The
non-genomic effects of aldosterone are also modulated by other membrane receptors such
as the epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor
(PDGFR), insulin-like growth factor 1 receptor (IGF1R), and angiotensin II receptor type 1
(AT1). EGFR, PDGFR, and IGF1R are transactivated via receptor tyrosine kinases, while
AT1 is a G protein-coupled receptor, like GPER1. Scaffolding proteins, such as striatin
(STRN) and caveolin-1 (CAV1), facilitate MR attachment to the cell membrane, and the
aldosterone–MR complex interacts with these receptors and elicits non-genomic effects [32].

2.2. Pathophysiological Effect of Aldosterone

As mentioned above, aldosterone is an essential hormone that maintains electrolytes
and fluid homeostasis. However, the homeostasis collapses when aldosterone is pathologi-
cally in excess, such as in PA. PA is a clinical syndrome caused by autonomous aldosterone
overproduction and suppressed plasma renin, which leads to hypertension, hypokalemia,
and metabolic alkalosis. Major forms of PA are unilateral (usually aldosterone-producing
adenoma) and bilateral (bilateral adrenal hyperplasia) [33]. The screening test of PA is
performed to determine the ratio of plasma aldosterone concentration (ng/dL) to plasma
renin activity (ng/mL/h), which is expressed as the aldosterone-to-renin ratio (ARR). The
test is positive when ARR is greater than 20 (ng/dL)/(ng/mL/h). The patients with a
positive screening result need confirmatory tests such as the captopril challenge test and
saline infusion test to prove autonomous aldosterone production. For example, a positive
result is that ARR is greater than 20 (ng/dL)/(ng/mL/h) at 60 or 90 min after 50 mg
of captopril intake orally in the captopril challenge test [34]. Thus, clinical abnormality,
such as hypertension and hypokalemia caused by aldosterone, needs higher aldosterone
concentration in the plasma. However, it may not become an abnormal clinical status
to be plasma aldosterone only, as was stated in an interesting report about New Guinea
inhabitants. People in the highlands of New Guinea have a very low sodium intake because
the staple diet consists of yams, which have a low sodium content. They have low normal
blood pressure and prominently high levels of plasma aldosterone. The plasma aldosterone
levels in this population are much higher than those in patients with PA. Interestingly,
these people in New Guinea have no cardiovascular damage [35]. In animal models, aldos-
terone causes cardiovascular and renal injury only with an inappropriate intake of salt [36].
Thus, aldosterone is a risk factor for CVD when the physiological aldosterone feedback is
disturbed and the individual has a high salt intake.

3. Metabolic and Other Pathophysiological Alterations Caused by Aldosterone
3.1. Aldosterone and Metabolic Alterations

Aldosterone levels are associated with insulin resistance and visceral obesity. Some
reports described sex differences, whereas other studies found none [37–39]. Several
mechanisms underlie insulin resistance and visceral obesity. Aldosterone induces impaired
vasodilation and limits insulin signaling [40]. Aldosterone treatment of cultured vascular
smooth muscle cells increases the proteasomal degradation of the insulin receptor substrate-
1 (IRS-1) and attenuates insulin-induced Akt phosphorylation and glucose uptake. This
prevents the activation of Src kinase, which decreases the expression of IRS-1 and the
generation of reactive oxygen species (ROS) induced by the MR antagonist. Therefore,
aldosterone-induced insulin resistance is caused by excessive serine phosphorylation of
IRS-1 [41]. Moreover, aldosterone induces insulin resistance in skeletal muscles. In a rat
model, aldosterone treatment impaired the rate of glucose uptake, glucose oxidation, and
insulin signal transduction in the gastrocnemius muscle via reduced expression of IRS-1,
Akt, and plasma membrane glucose transporter (GLUT) 4 genes [42]. Aldosterone also
impairs glucose uptake in adipose cells. Several studies have demonstrated that impaired
glucose uptake in adipose cells by aldosterone reduces cell surface localization of GLUT4, as
well as IRS-1, phosphoinositide 3-kinase, and Akt phosphorylation [43,44]. In another study,
obesity-related insulin resistance was improved by an MR antagonist by reducing excessive
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ROS production [45]. A comparison between patients with PA and those with EH showed
low C-peptide levels, together with a reduction of pancreatic beta-cell function indices in
patients with PA after a homeostasis model assessment [46]. Thus, these findings suggest
that aldosterone could influence beta-cell function, leading to impaired glucose metabolism.

Obesity is a common condition in individuals with high aldosterone levels [47]. In
a preclinical study, obese mice with a high-fat diet had higher levels of aldosterone than
lean mice [48]. However, this does not confirm that aldosterone excess promotes obesity.
A pathophysiological explanation may be the leptin-related aldosterone overproduction
in obese individuals. Leptin was proposed as one of the direct aldosterone-stimulating
factors. Allegedly, it stimulates aldosterone synthesis because it can act directly on adrenal
glomerulosa cells to increase aldosterone synthase expression and enhance aldosterone pro-
duction via calcium-dependent mechanisms [49]. Interestingly, only female mice showed a
marked increase in adrenal aldosterone synthase expression and plasma aldosterone levels
by leptin [50]. Moreover, female mice treated with spironolactone showed reduced blood
pressure compared to male mice. Leptin deficiency or impaired leptin signaling in mice
or humans does not cause elevated plasma aldosterone levels. Endogenous high leptin
levels or exogenous leptin supplementation increased aldosterone synthase expression and
aldosterone production [49]. Therefore, obesity-induced high leptin levels play a central
role in the elevation of aldosterone levels. Another factor related to aldosterone release is
adipokine-like complement-C1q tumor necrosis factor-related protein 1 (CTRP1), which is
released from adipose tissue [51]. The role of CTRP1 is to regulate the body’s energy home-
ostasis and sensitivity to insulin. CTRP1 affects the expression of CYP11B2 and stimulates
aldosterone synthesis in the adrenal cortex [52]. CTPR1 is higher in individuals with obesity
and increased in those with hypertension [51]. Increased CTRP1 is also associated with
obesity and cardiovascular events [53]. However, plasma CTRP1 levels are not associated
with plasma aldosterone levels in obese and non-obese patients with chronic kidney disease
(CKD) [54]. Thus, the increase in CTRP1 in obesity remains controversial. Moreover, the
role of CTRP1 in releasing aldosterone remains unclear. Further investigation is needed to
clarify the association between CTRP1 and obesity for releasing aldosterone.

3.2. Oxidative Stress and Inflammation

Aldosterone directly affects the vascular system through inflammation, oxidative
stress, endothelial dysfunction, fibrosis, and hypertrophic remodeling [55,56]. These con-
tribute to the occurrence of CAD, left ventricular (LV) hypertrophy, heart failure (HF), atrial
fibrillation (AF), increased carotid intima–media thickness, and CVD [1,57–59]. Patients
with PA have an increased risk of cardiovascular death compared to those with primary hy-
pertension [6]. Thus, excess aldosterone induces harmful alterations in the cardiovascular
pathophysiology and results in worse clinical outcomes.

Aldosterone (Aldo) binds to the mineralocorticoid receptor (MR) and this complex
induces oxidative stress by the production of reactive oxygen species (ROS) through
the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and
mitochondria. Increased production of ROS promotes the activation of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB), activator protein-1 (AP-1), and
oxidized Ca2+/calmodulin-dependent protein kinase II (CaMK II) via NADPH oxidase
activation. These factors contribute to inducing inflammation. This complex also stimulates
the expression of profibrotic molecules, including plasminogen activator inhibitor-1 (PAI-1),
transforming growth factor-β1 (TGF-β), endothelin 1 (ET-1), and connective tissue growth
factor (CTGF). These molecules are known to increase the risk of fibrosis onset. Cortisone
is converted to cortisol by the action of 11 β–hydroxysteroid dehydrogenase 1 (11β–HSD1)
and binds to MR. The cortisol–MR complex contributes to oxidative stress.

The Aldo–MR complex is attached to the cell membrane by caveolin–1 (CAV-1) and stri-
atin, thereby phosphorylating of tyrosine receptors (TK) and extracellular signal-regulated
protein kinases 1 and 2 (ERK1/2) occurs. TK, like the epidermal growth factor receptor
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(EGFR), and G-protein coupled receptors, like the G-protein estrogen receptor (GPER),
crosstalk and interact with the Aldo–MR complex.

3.2.1. Oxidative Stress

The aldosterone–MR complex induces an increase in inflammation through oxidative
stress (Figures 1 and 2). Oxidative stress is an imbalance between the production of free
radicals and antioxidant protection in the body. Free radicals are produced by normal bio-
logical processes such as breathing and digesting food. Especially, free radicals that contain
oxygen are called reactive oxygen species (ROS). The ROS are generated by nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase. The ROS induces protein oxidation
and dysregulates cell signaling, which leads to cell damage and death. It also contributes to
inflammation and fibrosis. Aldosterone is also associated with ROS production and induces
oxidative stress on the vascular system [55]. Aldosterone increases NADPH oxidase activity
and oxidative stress in macrophages, endothelial cells, and cardiomyocytes [60–62]. In
addition, aldosterone promotes cardiovascular inflammation by inducing the oxidation of
Ca2+/calmodulin-dependent protein kinase II (CaMK II) via NADPH oxidase activation,
and it contributes to LV remodeling after MI [63,64]. Aldosterone decreases the endothe-
lial expression of glucose-6-phosphate dehydrogenase (G6PD). G6DP reduces oxidized
NADPH to NADPH, which is utilized as a reducing equivalent to limit ROS levels [65].
Thus, aldosterone stimulation results in the accumulation of ROS due to the reduction of
G6DP levels leading to decreased NADPH concentrations. These responses are attenuated
by antioxidants and MR antagonists [60].
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Figure 1. The mechanism underlying oxidative stress, inflammation, and fibrosis through the genomic
pathway by aldosterone. * In the renal nephron and colon, 11β-HSD2 converts cortisol to the inactive
form of 11-ketometaabolite; therefore, cortisol is not associated with genomic pathological effects of
aldosterone in the kidney.
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Figure 2. The mechanism underlying the pathological non-genomic effect of aldosterone in cardiomy-
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3.2.2. Inflammation

Inflammation is a biological defense mechanism by the immune system which de-
fends the body from harmful agents or stimuli such as pathogens and damaged tissues.
First, recruiting immune cells produces inflammatory mediators which contribute to local
inflammation. Usually, the inflammation is controlled and repairs the damage. Finally,
remodeling and fibrosis occurs to heal the inflammation site. However, when the inflam-
mation is exacerbated and chronic, it can cause serious tissue changes and fibrosis such as
atherosclerosis and ventricular hypertrophy.

Aldosterone increases the expression of inflammatory adhesion molecules such as
intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1. It leads
to tissue infiltration of CD68-positive cells [60,66]. Other inflammatory markers such as
cyclooxygenase-2 and monocyte chemoattractant protein 1 are highly expressed in the
heart, vasculature, and kidney [66,67]. Aldosterone also stimulates macrophage infiltration
and increases the production of ROS, such as superoxide and hydrogen peroxide. This
triggers the activation of proinflammatory transcription factor activator protein (AP)-1
and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which in turn
induces the production of adhesion molecules and chemokines [68]. In addition, the infil-
trating macrophages also act on oxidized low-density lipoproteins and form atherosclerotic
plaque. As aldosterone induces endothelial dysfunction such as fibrosis, aldosterone-
induced inflammation with atherosclerotic plaque in the endothelium causes vascular
ischemia [8]. Fibrosis occurs when collagen and matrix production exceed their degrada-
tion by matrix metalloproteinases. Aldosterone stimulates the expression of profibrotic
molecules, including plasminogen activator inhibitor-1 (PAI-1), TGF-β, endothelin 1, CTGF,
placental growth factor, osteopontin, and galectin-3. Aldosterone increases the expression
of PAI-1, which is a member of the serpin (serine protease inhibitor) superfamily and
inhibits the activation of plasminogen to plasmin by the tissue plasminogen activator in
clustered endothelial cells, cardiomyocytes, and monocytes [69,70]. In turn, PAI-1 induces
fibrosis and remodeling by disturbing plasmin-mediated metalloproteinase activation and
extracellular matrix degradation. Aldosterone promotes collagen secretion and synthesis
from cardiac myocytes and fibroblasts through the activation of MRs, oxidative stress,
and chronic inflammation [71]. Aldosterone activates mitogen-activated protein kinase
(MAPK) pathways, promoting the proliferation of myofibroblasts that contribute to colla-
gen deposition in the myocardium [72]. Aldosterone also increases the expression of TGF-β
and CTGF via MR activation, and it stimulates the production of matrix proteins in the
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myocardium [64]. In the myocardium, CTGF expression increases via the activation of the
G-protein-coupled receptor kinase 2 (GRK2) and results in collagen deposition.

4. Vascular Stiffness and Thrombosis

As mentioned above, increased aldosterone levels change metabolic and other patho-
physiological effects in the body. Especially in the vasculature, the lumen is narrowed by
inflammation and oxidative stress in the endothelium, and stenosis and obstruction can
occur. Thus, hemodynamical changes or thromboembolic events can result in cardiovascu-
lar events.

4.1. Aldosterone and Vascular Stiffness

Aldosterone activates ENaC thereby controlling sodium balance and blood pressure.
Excess aldosterone enhances ENaC signaling, which plays an important role in the de-
velopment of endothelial and vascular stiffness. ENaCs consist of three subunits: α, β,
and g. The α/β subunit complex is essential for channel function. Endothelial ENaC α

subunit knockout in mice prevents ENaC activation, endothelium stiffness, reduction of
endothelial nitric oxide synthase (eNOS) activity, inflammation, oxidative stress, and aortic
remodeling. Thus, physiological changes caused by enhanced ENaC signaling lead to
endothelial stiffness, reduction of eNOS activity, inflammation, oxidative stress, and aortic
remodeling [73].

4.2. Aldosterone and Thrombosis

Aldosterone levels are positively correlated with an increased risk of acute cardio-
vascular thrombotic events [9]. This aldosterone effect is related to enhanced coagulation,
reduced fibrinolysis, increased oxidative stress, and reduced nitric oxide bioavailability [74].
MR antagonists and angiotensin II receptor antagonists do not completely suppress the
prothrombotic effect of aldosterone [75]. Therefore, the thrombosis mechanism through
aldosterone suggests not only a genomic effect but also a non-genomic effect. The STRN
and CAV1 interacts with MR to regulate the rapid non-genomic actions of aldosterone [76].
In a human study, individuals with a single nucleotide polymorphic gene variant of STRN,
rs2540923, exhibited salt-sensitive blood pressure [77]. STRN heterozygote knockout
(Strn+/−) mice also exhibited salt-sensitive blood pressure, mildly chronically elevated
aldosterone levels, enhanced aortic vasoconstriction, decreased vascular relaxation, and
reduced aortic eNOS expression [78].

Aldosterone administration promoted stasis-induced venous thrombosis in rats and
laser- or FeCl3-induced thrombosis in mesenteric venules in mice [74,79]. The aldosterone
mechanism of the prothrombotic action is related to its rapid and simultaneous effects on
platelets, plasma- and endothelium-dependent hemostatic factors, and alterations in the
clot structure, thereby making it resistant to fibrinolysis.

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), is characterized by severe inflammation, RAS
imbalance, and vascular coagulopathy [80]. In severe COVID-19 cases, hyperaldostero-
nism has been suggested based on the presence of hypokalemia [81]. Aldosterone levels
correlate with PAI-1 levels, and aldosterone directly increases PAI-1 production [82,83].
Thus, hyperaldosteronism may impede fibrinolysis by overexpression of PAI-1, cause clot
formation, and ultimately result in vascular thrombosis.

5. Aldosterone and Major Cardiovascular Disease
5.1. Coronary Artery Disease

The prevalence of ischemic heart disease (IHD) is 2.1% in Japanese patients with
PA [84]. Other ethnicities have similar CVD prevalence rates [6,85]. Patients with PA
experienced more non-fatal MIs or angina than patients with EH [86]. The reason patients
with PA have a high risk of IHD is not only that aldosterone affects the vasculature and
cardiac muscle, but it also increases the risk of CVD through pathophysiological alterations
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such as metabolic and inflammatory changes that contribute to the development and
progression of IHD. Table 1 shows the cardiovascular and renal disease associated with
aldosteronism.

Table 1. Reports of cardiovascular and renal disease by aldosteronism between 2018 and 2022.

Author (Year) Country Study Design
(Number) Findings

Cardiovascular disease

Youichi Ohno
(2018) [84] Japan Retrospective cross-sectional

study (n = 2582)
Patients with PA have a higher prevalence of CVD
than those who are age- and sex-matched with EH.

Min-Tsun Liao
(2019) [87] Taiwan

Prospective observational and
cross-sectional study

(n = 336)

In PA patients, the relationship between eGFR and
LVMI is not linear.

Yi-Yao Chang
(2019) [88] Taiwan

Prospective observational
study

(n = 249)

Adjusting by propensity score matching between the
patients with PA and EH, patients with PA had
worse LV diastolic function than patients with EH.

Chien-Ting Pan
(2020) [89] Taiwan

Retrospective matched
case-control study

(n = 11,010)

The patients with PA who underwent
adrenalectomy had a lower incidence of NOAF
compared with those with EH.

Jacopo Burrello
(2020) [90] Italy

Retrospective observational
study

(n = 5100)

PA and hypokalemia are associated with an
increased risk of cardiovascular events.

Youichi Ohno
(2020) [91] Japan

Retrospective observational
study

(n = 1186)

Nadir PAC in the patients with PA after
confirmatory tests is associated with LVMI, not the
basal aldosterone level itself.

Teresa M Seccia
(2020) [92] Italy

Prospective observational
study

(n = 411)

Unexplained atrial fibrillation in the hypertensive
patients shows a high prevalence of PA.

Jinbo Hu
(2021) [93] China Cross-sectional study

(n = 5521)

Patients with renin-independent aldosteronism are
more closely associated with CVD risk than those
with renin-dependent aldosteronism.

Tao Wu
(2021) [94] China

Prospective observational
study

(n = 70)

Compared with patients with EH, patients with PA
have a higher degree of LV hypertrophy.

Arleen Aune
(2021) [95] Norway Cross-sectional study

(n = 198)

Patients with PA have a higher prevalence of LV
hypertrophy both in women and men, compared to
EH.

Lin Gun
(2022) [96] China Retrospective cohort study

(n = 3173)

Higher plasma aldosterone concentration is
associated with increased risk of CVD and all-cause
mortality in the hypertensive patients, even
independent of OSA and PA.

Chronic kidney disease

María
Fernández-Argüeso

(2021) [2]
Spain Case-control study (n = 100)

Compared with patients with EH, patients with PA
have a higher prevalence of CKD at the time of
diagnosis.

Ashish Verma
(2022) [97]

United States
of America

Prospective observational
study (n = 3680)

Regardless of concomitant diabetes, high serum
aldosterone levels in the serum of patients with CKD
are independently associated with an increased risk
for CKD progression.

Abbreviations: PA: primary aldosteronism, CVD: cardiovascular disease, EH: essential hypertension, NOAF:
new onset atrial fibrillation, OSA: obstructive sleep apnea, PAC: plasma aldosterone concentration, LVMI: left
ventricular mass index, eGFR: estimated glomerular filtration rate, CKD: chronic kidney disease.
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5.2. Left Ventricular Remodeling and Heart Failure

LV remodeling is defined by LV hypertrophy and fibrosis. LV remodeling leads to LV
dysfunction and results in HF [98]. In clinical studies, patients with PA have LV remodeling
compared with patients with EH [99,100]. In animal studies, it was reported that aldos-
terone also stimulated LV rat myocytes directly, causing LV hypertrophy. Cardiotrophin-1
(CT-1) is a cytokine that induces cardiomyocyte hypertrophy, increases the expression of
myosin light chain and skeletal α-actin, and enhances myosin light chain phosphorylation
in rodents [101]. Moreover, increased myocardial expression of CT-1 has been found in
aldosterone-infused mice with high salt intake. Furthermore, CT-1-null mice have been
resistant to aldosterone-induced LV hypertrophy and fibrosis [102]. These findings support
aldosterone-induced fibrosis leading to remodeling such as LV hypertrophy, impaired
LV filling, and left atrial dilation. In addition, LV remodeling causes LV stiffness, which
increases LV end-diastolic pressure (LVEDP), and elevated LVEDP can lead to decreased
myocardial oxygen supply [103]. Thus, LV remodeling causes myocardial oxygen supply–
demand mismatch, which leads to myocardial ischemia.

5.3. Atrial Fibrillation

AF is a common disease in older adults, and its prevalence increases with age. In
patients with PA, the risk of AF is reported to be 3.52 times higher than in patients with
EH [1]. Another study demonstrated that patients with hypertension and unexplained
AF have a high PA prevalence [92]. A prospective study found that patients with PA who
underwent adrenalectomy had similar long-term outcomes as optimally treated patients
with EH. However, medically treated patients with PA had worse AF-free survival rates
than patients with EH. Aldosterone also promotes AF in rodents. Aldosterone leads
to structural and functional changes, mainly characterized by atrial fibrosis, myocyte
hypertrophy, and conduction disturbance [104]. Interestingly, patients with AF have higher
expression of atrial MR compared with those with sinus rhythm [105]. In an experimental
study in rodents, MR expression was increased with rapid depolarization through a calcium-
dependent mechanism [98]. MR expression is also upregulated directly by aldosterone [106].
Usually, atrial fibrosis is also found in AF and it is mediated by the profibrotic effect of
aldosterone. High aldosterone induces AF, hence blocking MR may prevent AF. Several
clinical studies reported the preventable effects of MR blockers on AF [107,108]. One study
evaluated the antiarrhythmic effect of spironolactone, an MR blocker, under β-blocker
treatment of patients with recurrent AF episodes and identified the preventable effect of
spironolactone on AF [107]. Eplerenone, another MR blocker, reduces the new onset of AF
in patients with low ejection fraction and mild symptoms [108]. These findings suggest
that MR antagonists suppress the incidence of AF.

6. Aldosterone and Renal Function

Excess aldosterone leads to CKD through tissue inflammation, injury, glomeruloscle-
rosis, and interstitial fibrosis. In an animal model, rats fed with a high-salt diet along with
chronically administered aldosterone exhibited intrarenal vascular and glomerular sclerosis,
as well as proteinuria [109]. In a clinical study, patients with PA showed higher serum
creatinine levels and lower glomerular filtration rates than those with EH [110]. This study
also demonstrated that lower glomerular filtration rates were predicted by initial potassium
and plasma aldosterone concentrations and the presence of hypokalemia [110]. Moreover,
24 h urinary albumin excretion was significantly higher in patients with PA than in those
with EH [111]. A recent prospective observational study demonstrated that individuals
with CKD and high aldosterone levels in serum had an increased risk of CKD progression
regardless of also having diabetes mellitus [97]. In another study, MR antagonists improved
the urinary albumin–creatinine ratio in patients with diabetic nephropathy, who were
receiving a treatment based on an angiotensin-converting enzyme inhibitor (ACEI) or an
angiotensin receptor blocker (ARB) [112]. Interestingly, most patients on ACEI or ARB
treatments are observed to present a phenomenon named “aldosterone breakthrough,”
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in which the plasma aldosterone concentrations return to, or even exceed, pretreatment
levels, following an initial reduction [113]. An aldosterone breakthrough is associated with
more severe proteinuria and a faster decline in renal function [114]. Thus, the patients on
ACEI/ARB may need MR antagonists to block aldosterone breakthrough.

The harmful effect of aldosterone on the kidney occurs through the non-epithelial MRs
and can arise independent of the effect of aldosterone on blood pressure [115]. The MR
detrimental activation for renal damage is linked to several molecular mechanisms, such as
inflammation, oxidative stress, and vascular injury [115]. Mainly, inflammation and fibrosis
play central roles in the pathophysiology of renal injury through MR activation via aldos-
terone. MR activation can decrease eNOS activity and uncoupling, resulting in impaired
vasodilation [116]. Moreover, eNOS uncoupling increases hydrogen peroxide production
and activates the NF–κB pathway, leading to inflammation and fibrosis [117]. Impaired
NO activity enhances proteinuria and accelerates innate immune system activation, which
causes tubulointerstitial injury [118]. Aldosterone-infused rats showed increased renal
expression levels of proinflammatory cytokines from macrophages, which are key media-
tors of MR-induced injury [119]. Aldosterone also induced collagen synthesis in cultured
fibroblasts and glomerular mesangial cells [120,121]. Moreover, MR antagonists prevent
progressive kidney dysfunction by reducing blood pressure and decreasing profibrotic
and inflammatory mediators [122]. Spironolactone treatment in patients with refractory
hypertension reduced collagen synthesis independent of blood pressure reduction caused
by other medications [123]. Eplerenone treatment reduced aldosterone-induced kidney
fibrosis, as well as monocyte chemotactic protein 1(MCP-1), ICAM-1, and TGF-β expression,
in mice [124]. One clinical study also reported that MR antagonists longitudinally slowed
down the reduction of eGFR slope with enough MR blockage [125].

Patients treated with the MR antagonist and ACEI/ARB showed lower albuminuria
compared with those treated with ACEI/ARB alone [126]. MR antagonists may contribute
to the beneficial effect on the kidney by reducing proteinuria and suppressing CKD pro-
gression. As higher aldosterone levels are associated with CKD progression than lower
aldosterone levels, aldosterone may enhance renal damage; therefore, suppression of these
adverse effects can prevent kidney dysfunction.

Aldosterone may have a direct, harmful effect on the kidney and induce hypertension.
The physiological effects of aldosterone also increase urinary excretion of potassium. In PA,
hypokalemia occurs due to excess aldosterone [127]. Historically, hypokalemia has been
known to induce kidney dysfunction [128]. The renal disturbance due to excess aldosterone
may be caused by the direct aldosterone effect and the subsequently induced hypokalemia.
The renal dysfunction caused by chronic hypokalemia is hypokalemic nephropathy. The
pathogenesis of hypokalemic nephropathy is assumed to increase vasoactive mediators,
which leads to renal vasoconstriction, decreased medullary blood flow, and impaired renal
angiogenesis [129]. Some of the histological findings that can lead to progressive renal
dysfunction are the presence of intracytoplasmic vacuoles in renal tubular cells, chronic
inflammation, and interstitial fibrosis [130].

7. Conclusions

This review aimed to collect and put into perspective recent available research findings
regarding the effects of aldosterone on metabolic processes and the cardiovascular system.
Excess aldosterone alters both metabolism and RAS pathophysiology, which leads to
increased levels of inflammatory and fibrotic mediators, as well as the occurrence of
inflammation, oxidation, and fibrosis in the cardiovascular and renal systems. These events
cause adverse clinical outcomes, such as CAD, AF, CKD, and even the death of the patients.
Moreover, aldosterone changes vascular stiffness and induces vascular thrombosis, and
tends to promote the occurrence of cardiovascular ischemic events. Thus, it should be
considered that aldosterone-mediated cardiovascular and renal damage may be more severe
than expected. Therefore, excess aldosterone, especially PA, needs suitable management to
prevent worse outcomes.
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