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Abstract: Cholic acid is a trihydroxy bile acid with a nice peculiarity: the average distance between
the oxygen atoms (O7 and O12) of the hydroxy groups located at C7 and C12 carbon atoms is 4.5 Å, a
value which perfectly matches with the O/O tetrahedral edge distance in Ih ice. In the solid phase,
they are involved in the formation of hydrogen bonds with other cholic acid units and solvents.
This fact was satisfactorily used for designing a cholic dimer which encapsulates one single water
molecule between two cholic residues, its oxygen atom (Ow) being exactly located at the centroid of
a distorted tetrahedron formed by the four steroid hydroxy groups. The water molecule participates
in four hydrogen bonds, with the water simultaneously being an acceptor from the 2 O12 (hydrogen
lengths are 2.177 Å and 2.114 Å) and a donor towards the 2 O7 (hydrogen bond lengths are 1.866 Å
and 1.920 Å). These facts suggest that this system can be a nice model for the theoretical study of
the formation of ice-like structures. These are frequently proposed to describe the water structure
found in a plethora of systems (water interfaces, metal complexes, solubilized hydrophobic species,
proteins, and confined carbon nanotubes). The above tetrahedral structure is proposed as a reference
model for those systems, and the results obtained from the application of the atoms in molecules
theory are presented here. Furthermore, the structure of the whole system allows a division into two
interesting subsystems in which water is the acceptor of one hydrogen bond and the donor of another.
The analysis of the calculated electron density is performed through its gradient vector and the
Laplacian. The calculation of the complexation energy used correction of the basis set superposition
error (BSSE) with the counterpoise method. As expected, four critical points located in the H . . . O
bond paths were identified. All calculated parameters obey the proposed criteria for hydrogen bonds.
The total energy for the interaction in the tetrahedral structure is 54.29 kJ/mol, while the summation
obtained of the two independent subsystems and the one between the alkyl rings without water is
only 2.5 kJ/mol higher. This concordance, together with the calculated values for the electron density,
the Laplacian of the electron density, and the lengths of the oxygen atom and the hydrogen atom
(involved in the formation of each hydrogen bond) to the hydrogen bond critical point, suggests that
each pair of hydrogen bonds can be considered independent of each other.

Keywords: bile acid; cholic acid; hydrogen bond; atoms in molecules theory; electronic density;
critical points

1. Introduction

During evolution, nature has learned to distinguish what works from what does not.
Consequently, all living beings have adopted successful mechanisms and molecules for
solving the challenges they must face to achieve a particular purpose. The knowledge of
the involved processes provides the scientific community with strategies for designing
new molecules with specific properties to reach a desired target. According to Menger [1],
the design of a molecule from the beginning with a list of optimal functionalities is not an
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easy task, although it may be facilitated by emulating the biological mechanisms. Among
many other molecules, bile acids fulfill the steps described by Lenh [2] involved in the
evolution of matter. Hofmann [3] has discussed their structural variation and its possible
evolutionary significance. The steroid nucleus has been implied in a key evolutionary
step as it is ubiquitous in animals (as hormones, cholesterol, and bile acids) and plants (as
brassinosteroids).

All the above information led us to use natural bile acids as raw materials for synthe-
sizing derivatives that self-organize into new supramolecular structures [4–7]. Among the
designs, we studied a cholic dimer, which encapsulates one single water molecule between
two cholic residues [8].

Bile acids (BAs) have a bifacial polarity since the hydroxy groups (up to three at C3,
C7, and C12 carbon atoms) lie beneath the plane of the steroid nucleus (hydrophilic α-side).
The characterization of the crystal structures of BA and their derivatives by X-ray analysis
has been a topic of interest for years [9–17]. Common to all crystal structures is that the
hydroxy groups are always involved in the formation of hydrogen bonds (HB) with other
BA molecules, the solvent, or both species. In cholic acid (Figure 1), the average hydrogen
bond distances formed by the C7-OH and C12-OH hydroxy groups (from here these oxygen
atoms will be identified as O7 and O12) with water have been recompiled with values of
2.79 ± 0.09 Å and 2.86 ± 0.10 Å, respectively [9], the O7/O12 distance being 4.5 Å, a value
which perfectly matches with the O/O tetrahedral edge distance in Ih ice, respectively [18,19].
These facts suggest the design of the cholic dimer mentioned previously [8]. In this complex,
the water oxygen atom (Ow) is exactly located at the centroid of a distorted tetrahedron
formed by the four steroid hydroxy groups (Figure 2, left). Both O12-H are hydrogen bond
donors towards Ow, while both O7-H are acceptors from Ow. Figure 2 (right) shows the values
for the four hydrogen bonds. It may be noticed that the O7 . . . Ow distances are close to the
one measured in Ih ice while the O12 . . . Ow distances match the O . . . O distance observed in
the water dimer in gas phase (see below). In his review on the hydrogen bond in the solid
state, Steiner [20] has indicated average values of 1.880(2) Å and 2.825(2) Å for H . . . OH2 and
O . . . O distances, respectively, for the dimer HO-H . . . OH2.
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Figure 1. Structure of cholic acid. Significant carbon atoms are numbered as well as the four rings of
the steroid nucleus. In the text, the numbers of oxygen atoms are those of the carbon atoms to which
they are bonded.

The term ice-like is frequently used to describe the structure of water found in a
plethora of systems. Among them, we can mention water clusters (H2O)n in compounds
as metal-organic networks in the solid state [21], liquid water solubilizing hydrophobic
species [22–25] or proteins [26,27], and in water interfaces [28]. However, Bonn et al. [29]
have concluded that the vibrational spectrum of water at both water-lipid and water-protein
interfaces is inconsistent with the presence of “ice-like” structures. Ice-like behavior is also
recognized in carbon nanotubes (CNTs) [30–33] and in sub-nanometer carbon slit pores [34],
but it can be suppressed in supercooled water in tight confinements [35].
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Figure 2. Left: Oxygen–Oxygen distances (lines and data in amethyst color) of the tetrahedron
formed by the O7-H and O12-H hydroxy atoms of the two steroid residues encapsulating a water
molecule located at their centroid [8]. The four hydrogen bonds are indicated with blue lines, as are
the hydrogen bond distance values (Ow-H . . . O7 and O12-H . . . Ow). All data in Å. Right: Simplified
system model.

Weissmann et al. [36] self-limited their study on the hydrogen bond in an ice-like
structure to “the interactions of one water molecule with its four nearest neighbors” some-
how accepting that a water molecule should form four hydrogen bonds, the oxygen atom
simultaneously being a hydrogen bond donor and acceptor (two of each). Therefore, in the
analysis of published structures that we have carried out, only tetrahedral water and the
interaction with neutral oxygen atoms have been considered. Different O . . . O hydrogen
bond distances are observed in water clusters in metal-organic complexes, depending
on the role of the oxygen atom as acceptor or donor of a hydrogen bond [21,37,38]. This
difference can be as high as 0.17 Å (measured from cif files) [38]. In our opinion, this
distinction has not been sufficiently analyzed in the literature. Obviously, such a distinction
cannot be made in Ih ice, as all O . . . O hydrogen bond distances have the same value.

All the previous facts, together with the perfect distinction between hydrogen bond
donors and acceptors for water linked to a tetrahedral hydroxy structure, surrounded by
apolar alkyl skeletons, constitute a unique model to pursue a theoretical study. Keeping
this in mind, the “atoms in molecules” (AIM) theory [39,40] has been applied to a model
system derived from this ice-like structure. On the other hand, when analyzing BA crystals
for the acceptance of the formation of a hydrogen bond, the geometric criteria (bond lengths
and angles) [41] have been used exclusively. This is the first time that the AIM theory has
been applied to a BA crystal.

2. Results and Discussion

2.1. Complex O12a-H . . . Ow-H . . . O7a//O12b-H . . . Ow-H . . . O7b

The electron density, ρ, is the starting point of the AIM theory. Its topology is easily
deduced from the gradient vector, ∇ρ, and the Laplacian, ∇2ρ. The electron density is usu-
ally visualized by drawing contour lines connecting electron density points with the same
value. Figures 3 and 4 show two examples for the present system. In Figure 3, the plane is
defined by the oxygen nuclei O7a, O7b, and Ow, while in Figure 4, the plane is defined by
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oxygen atoms O12a, O12b, and Ow. The thin gray lines are defined by infinitesimal gradient
vectors, which describe gradient paths.
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oxygen atoms of the pseudo-bile acid residues and water, respectively. Thin gray lines correspond to
the gradient of the electron density.

When ∇2ρ < 0, the electronic charge is locally concentrated, as in the case of covalent
bonds [42]. When ∇2ρ > 0, the electronic charge is locally depleted [40], resulting in what
are called closed-shell interactions. This happens in hydrogen bonds (HB), in which the
charge concentrations are separately localized in the basins of the neighboring atoms [43].
Figure 5 shows bond critical points where the gradient ∇ρ vanishes. Numbers 17, 43, 50,
and 59, located between hydrogen and oxygen atoms, correspond to hydrogen bond critical
points (HBCP), which are (3,−1) saddle points. Other numbers correspond to covalent
bonds (located, for instance, between two carbon atoms).
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In Figure 3, the contour lines of the electronic density around the water oxygen (Ow)
basin resemble a Mickey Mouse profile. This is a consequence of the fact that the two
hydrogen atoms of water (named H2 and H3 in the Figure) form covalent bonds with Ow.
In other words, Ow is behaving as a HB donor, while from this perspective, the basin of
the O7 oxygen atom has a circle shape. Similarly, Figure 4 shows the contour lines of the
hydrogen bonds between Ow and the two O12-H hydroxy groups. The plane in the Figure
is defined by these three oxygen atoms. Now the contour around the Ow resembles a basin,
while the profiles around the O12-H groups resemble peanuts. The two O12 are donors,
and Ow is the acceptor. Furthermore, the bond paths of the four hydrogen bonds link the
expected two atoms, the hydrogen and the acceptor. It is evident that the first condition
of the criteria to characterize a hydrogen bond published by Popelier [42,44] is fulfilled.
Furthermore, according to Popelier [42], the ρ values at the HBCP, ρb, should be in the
range 0.002−0.035 au, Table 1 showing that this is the case for the four HB. These values are
about one order of magnitude smaller than those found for a covalent bond (ρb = 0.391 au,
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for O-H in H2O) [45]. On the other hand, it may be noticed that the values when water is a
donor (towards O7) are almost double than when it behaves as an acceptor (from O12).
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Figure 5. Bond critical points (BCP) and hydrogen bond critical points (HBCP) obtained for the
complex O12a-H . . . Ow-H . . . O7a//O12b-H . . . Ow-H . . . O7b. HBCPs are identified with numbers 17,
43, 50, and 59.

The correlation between the O–O length and ρb has been published [46,47]. The shorter
the former, the higher the latter. The values obtained here differ by less than ±0.004 au
with those obtained from the equation ρb = 2.71× exp(−2.40× rO...H), (rO...H in Å) [47].
They also match values recompiled by Steiner [20] (see Figure 3 of this reference).

Table 1. Lengths involved in the formation of hydrogen bonds were determined from the crystal
structure and calculated along with electron density and Laplacian values.

Complex O12a-H . . . Ow-H . . . O7a//O12b-H . . . Ow-H . . . O7b

Identification HBCP (Figure 5) 50 59 17 43

Property at HBCP O12a-H . . . Ow Ow-H . . . O7a O12b-H . . . Ow Ow-H . . . O7b

O-O length/Å crystal 2.936 2.738 2.935 2.710

O . . . H length/Å crystal 2.114 1.920 2.177 1.866

Electron density ρb, au 0.0154 0.0239 0.0138 0.0270

ρb calculated according to [47] 0.0170 0.0270 0.0146 0.0308

Laplacian of the electron density at
HBCP, ∇2ρb, au 0.0667 0.106 0.0616 0.118

HBCP . . . O length/ Å, r1 1.355 1.242 1.383 1.217

HBCP . . . H length/ Å, r2 0.759 0.679 0.795 0.650

r1+ r2 = rO . . . H length/Å 2.114 1.921 2.178 1.867

∆rO = ro
vdW − r1/Å 0.225 0.338 0.197 0.363

∆rH = rH
vdW − r2/ 0.341 0.421 0.305 0.450

A third criterion proposed by Popelier refers to the Laplacian of the charge density
evaluated at the bond critical point, where charge density is a local minimum along the
bond path, i.e., ρb is locally depleted with respect to neighboring points along the bond
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path. The range values (Table 1) are also within the proposed range of 0.024–0.139 au. ∇2ρb
follows an analogous dependence with the O-O length than ρb.

Previous ρb and ∇2ρb values may be compared with those for the water dimer, H-O-
H . . . OH2 in the gas phase. The water dimer is a system of two water molecules bound
by a single hydrogen bond, often used as the paradigmatic system [48,49]. Its equilibrium
geometry is well-known, as is the dissociation energy. The dimer has a “trans-linear”
structure, and the O . . . O distance was first measured by Dyke et al. from the microwave
spectrum [50–52], the value being rO . . . O = 2.98 ± 0.04 Å. Lane [53] has calculated a value
of rO . . . O = 2.91 Å (truncated value to the hundredth of Å) as the best estimation. The O-H
distances depend on the role of the water molecules, with values of rOH = 0.958 pm Å and
rOH = 0.95 Å when water is a donor or acceptor, respectively [48]. Bader et al. [45] have
obtained that ρb and ∇2ρb are 0.0199 and 0.0624 (data in au), respectively. Other values
can be found elsewhere [54,55]. From the four values of ρb (Table 1), an average value
of 0.020 au is obtained, which matches the one for the water dimer. The ∇2ρb value for
H-O-H . . . OH2 is closer to those in which the oxygens (O12) of hydroxy groups are donors
and Ow is an acceptor. It should be noticed that in these last two cases, the rOO lengths are
also closer to that of the H-O-H . . . OH2 dimer.

The mutual penetration of the hydrogen (H) and acceptor atoms (A, oxygen) is another
criterion of hydrogen bond formation. This criterion is often considered a necessary and
sufficient condition for the classification of an intermolecular interaction as hydrogen
bonding [56]. It is estimated as ∆ri = ri − ro

i (i, are the atoms involved in the hydrogen
bond, A or H), ri being the bonded radius of each atom and ro

i the corresponding nonbonded
radius [44]. The nonbonded radius is the distance of a nucleus from a given electron density
contour (usually 0.001 au) in the absence of interaction. This value is taken because it yields
atomic diameters in good agreement with van der Waals radii in the gas phase [44]. The
bonded radius is the distance from a nucleus to the bond critical point (HBCP). Numbers
17, 43, 50, and 59 identify these HBCPs in Figure 6. Table 1 shows the HBCP . . . O and
HBCP . . . H lengths calculated for the complex. Obviously, the sum of both lengths should
coincide with the imposed one from the crystal (r1+ r2 = rO . . . H length in Table 1). The
HBCP . . . H length, r2, for the hydrogen bonds with Ow as acceptor is larger (>0.1 Å) than
those for Ow being the donor. All of them are considerable smaller than this distance
for the water dimer in the gas phase (=1.34 Å). Accepting that ro

H = rH
vdW = 1.1 Å [57],

∆rH < 0 in all cases. Similarly, if rO
vdW = ro

O = 1.58 Å [57], then ∆rO < 0. These data provide
evidence of a mutual penetration of hydrogen and oxygen atoms, a conclusion which
may be raised from checking the contour electron density values of Figures 4 and 5. It
should be noted that Isaev has defined [56] ∆ri = ro

i − ri, i.e., ∆rO = ro
vdW − rO...HBCP and

∆rH = rH
vdW − rH...HBCP. In all cases, ∆rH > ∆rO, meaning that the hydrogen atom is more

penetrated than the acceptor one.

2.2. Complexes O12a-H . . . Ow-H . . . O7a, O12b-H . . . Ow-H . . . O7b and
O12a-H/H . . . O7a//O12b-H/H . . . O7b

Without changing the coordinates of the atoms, the whole complex O12a-H . . . Ow-
H . . . O7a//O12b-H . . . Ow-H . . . O7b can be divided into two independent complexes, O12a-
H . . . Ow-H . . . O7a and O12b-H . . . Ow-H . . . O7b, in which the water molecule only interacts
with one of the pseudo-steroid residues of the original complex. It must be noticed that in
both hemicomplexes, the water molecule is participating in the formation of two hydrogen
bonds, being an acceptor and donor towards the O12 and O7 oxygen atoms, respectively.
Thus, in each complex, only one O-H bond of water participates as a donor.
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Figure 6. The electron density contour of the O12a-H . . . Ow-H . . . O7a complex (thin black lines) and
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water, respectively. Thin gray lines correspond to the gradient of the electron density.

Figures 6 and 7 show the contour lines at the planes defined by O7a-Ow-O12a and
O7b-Ow-O12b, respectively. In both cases, Ow and O12 exhibit peanut profiles directed
towards the associated acceptor atoms O7 and Ow, respectively. In all cases, the bond paths
of the four hydrogen bonds link the expected two atoms, and the HBCP is indicated with a
blue color point. The analysis of the data was carried out as previously. The HBCPs are
identified by numbers (Figure not shown), and, for association purposes, the HBCPs of the
full complex are shown in brackets. Table 2 shows the obtained results.
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Table 2. Electron density, Laplacian of the electron density, and lengths involved in the formation of
hydrogen bonds of the two semi complexes: O12a-H . . . Ow-H . . . O7a and O12a-H . . . Ow-H . . . O7a.

O12a-H . . . Ow-H . . . O7a O12b-H . . . Ow-H . . . O7b

Property at HBCP CP71 (CP50)
O12a-H . . . Ow

CP74 (CP59)
Ow-H . . . O7a

CP68 (CP17)
O12b-H . . . Ow

CP71 (CP43)
Ow-H . . . O7b

Electron density ρb, au 0.0152 0.0239 0.0137 0.0270

Laplacian of ρb, ∇2ρb, au 0.0662 0.106 0.0610 0.119

HBCP . . . O length/Å, r1 1.353 1.243 1.381 1.218

HBCP . . . H length/Å, r2 0.761 0.679 0.797 0.650

r1+ r2 = O . . . H
length/Å 2.115 1.922 2.177 1.867

It may be observed that all the values in Table 2 perfectly match those in Table 1. This
is partially due to the fact that the original geometric parameters of the C-H2O-C crystal
are kept constant. Because of previous agreements, the mutual penetration of hydrogen
and oxygen atoms is not discussed.

Finally, the electron density of the complex without water, O12a-H/H . . . O7a//O12b-
H/H . . . O7b, has also been studied. Figure 8 shows the contour map of the two halves of
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the complex. As it was expected, the contour lines strongly differ from previous ones, and
HBCP are not observed.
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Figure 8. The electron density contour of the O12a-H/H . . . O7a//O12b-H/H . . . O7b complex (thin
black lines). O7a and O7b are oxygen atoms from the pseudo-bile acid residues. Thin gray lines
correspond to the gradient of the electron density.

2.3. Energy of Hydrogen Bonds

The interaction energy for the formation of the complex O12a-H . . . Ow-H . . . O7a//O12b-
H . . . Ow-H . . . O7b is −54.29 kJ mol−1. This value cannot be exclusively ascribed to the
formation of the four hydrogen bonds. In fact, for the complex O12a-H/H . . . O7a//O12b-
H/H . . . O7b (in which the water molecule has been removed), a value of −4.60 kJ/mol has
been calculated. Because of the length differences between the hydrogen bonds in which
Ow is the donor and those in which it is the acceptor (2.7 Å vs. 2.9 Å), the energy of each
hydrogen bond is expected to be different [58]. Having these considerations in mind, the
average energy of the hydrogen bonds is −13.57 kJ/mol. Such a value indicates that they
are moderate hydrogen bonds according to Jeffrey’s categories [59] or weak to medium
according to the ranges proposed by Emamian et al. [60]. Rocher-Casterline et al. [61] have
determined a value of 13.2 ± 0.5 kJ mol−1 for the bond dissociation energy (Do) of the
water dimer. Ruscic [62], from a new partition function for water, has obtained dissocia-
tion enthalpy values for the water dimer, the values being 13.220 ± 0.096 kJ mol−1 and
15.454± 0.074 kJ mol−1 at 0 K and 298.15 K, respectively, and Feyereisen et al. [63], from the
thermal conductivity of the vapor, measured a value of −15.07 ± 2.1 kJ mol−1. Most of the
values calculated theoretically for this dimer are within the interval
−13.4/−23.1 kJ mol−1 [45,53–55,60,63–66].

For the formation of hydrogen bonds between water and methanol, in gas phase,
Moin et al. [67] have obtained values of 1.96–2.04 Å (OmethH . . . Ow) and 1.94–2.02 Å
(OwH . . . Ometh), for the H . . . O distances, while the hydrogen bond energies were in
the ranges of −20.45/−27.04 kJ mol−1 (OmethH . . . Ow) and −21.24/−29.39 kJ mol−1

(OwH . . . Ometh), the values depending on the level of the theory. These values are in
line with the different behavior of water depending on whether it is a donor or acceptor, as
observed previously.

For a series of hydrogen-bonded complexes between nitrites and hydrogen chloride,
Boyd and Choi [68] have noticed a correlation between the electron density at the HBCP ρb
and the energy of the hydrogen bond. The energies ranged from 10 kJ/mol to 38 kJmol,
while the range of ρb was 0.01103−0.02391. Many other equations have been published;
the subject is being reviewed by Rozenberg [69]. There is no objective reason to choose one
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or another equation for the present system, and as an orientation, we will use the following
relationship that Rozenberg obtained from 24 equations:

E(kJ/mol) = −(6.6 ± 8.0) + (1215 ± 440)ρ

After its application to each hydrogen bond of the present system, the summation of the
individual values gives a total energy of −72 ± 24 kJ/mol, with a high standard deviation.

As indicated above, the nature of the complex O12a-H/H . . . O7a//O12b-H/H . . . O7b

allows the calculation of the interaction of two subsystems, O12a-H . . . Ow-H . . . O7a and
O12b-H . . . Ow-H . . . O7b, both having two hydrogen bonds with water acting as donor
and acceptor. The calculated values are −25.91 kJ/mol and −21.18 kJ/mol for the “a”
and “b” subsystems, respectively. By considering the interaction energy between the two
pseudosteroids) (see above) and the previous values, the difference between the calculated
energy of the whole system and that resulting from the sum of the three subsystems is only
2.5 kJ/mol.

3. Materials and Methods
Crystal Structure and Computational Details

The crystal structure of the reference system (C-H2O-C) was previously published [8].
In this reference, a complete image of Figure 2, is shown on the left. The Cif files (CCDC
867499) contain the supplementary crystallographic data for the C-suc-C crystal (the
acronym given in that paper). These data can be obtained free of charge from the Cambridge
Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Given the high number of atoms involved in the two bile acid dimers, to analyze
the interaction with the water molecule, we have simplified the system by reducing the
number of atoms in the bile acid unit while keeping the same geometric parameters of the
remaining atoms. Thus, A and D rings were suppressed, and the carbon atoms linking
them to B and C rings were replaced by hydrogen atoms. This system will be referred to as
O12a-H . . . Ow-H . . . O7a//O12b-H . . . Ow-H . . . O7b, where the superscripts “a” and “b” refer
to the upper and lower pseudo-bile acid residues, respectively (see Figure 2). This complex
is later divided into two independent subsystems, named O12a-H . . . Ow-H . . . O7a and
O12b-H . . . Ow-H, which allow the calculation of the interaction of the water molecule with
only one of the pseudo-steroid residues. The interaction between the two pseudo-bile acid
residues, without water complexed between them, O12a-H/H . . . O7a//O12b-H/H . . . O7b,
has also been studied.

We have maintained the original interatomic distances obtained from the x-ray reso-
lution of the C-H2O-C complex, and no minimization of the energy of the complex was
carried out. Calculations of the complexation energy used for correction of the basis
set superposition error (BSSE) with the counterpoise method implemented in Gaussian
19 [70]. Laplacian of electronic density and critical points (AIM) were calculated using the
Multiwfn_3.8_dev software [71].

4. Conclusions

There are two main oxygen-oxygen (rOO) distances when a hydrogen bond is formed
between water molecules: the one observed in the gas phase in the formation of a dimer
(rOO = 2.98 Å) and the one in ice (rOO = 2.75 Å). Both lengths are observed in the C-succ-C
crystal, in which a water molecule is encapsulated by four hydroxy groups belonging to
two cholic acid dimers. The shorter one corresponds to hydrogen bonds in which the
water oxygen is donor and the larger one when it is the acceptor. The application of
the AIM theory to a simplified system O12a-H . . . Ow-H . . . O7a//O12b-H . . . Ow-H . . . O7b

confirms the existence of saddle critical points (HBCP) in all four of these hydrogen bonds.
The estimated interaction energy in the formation of the complex, −54.29 kJ mol−1, is
in acceptable agreement with the summation of the energies of the two hemicomplexes,
O12a-H . . . Ow-H . . . O7a and O12b-H . . . Ow-H . . . O7b, in which the water molecule forms
two hydrogen bonds (acting as donor and acceptor) and the interaction energy of the

www.ccdc.cam.ac.uk/data_request/cif
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two pseudo-steroid nucleus O12a-H/H . . . O7a//O12b-H/H . . . O7b (i.e., without complexed
water). This fact and the calculated values for the electron density, the Laplacian of the
electron density, and the lengths of the oxygen atom and the hydrogen atom (involved in
the formation of each hydrogen bond) to the HBCP suggest that each pair of hydrogen
bonds can be considered independent of each other.
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