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Abstract: Xerostomia, the subjective feeling of a dry mouth associated with dysfunction of the
salivary glands, is mainly caused by radiation and chemotherapy, various systemic and autoimmune
diseases, and drugs. As saliva plays numerous essential roles in oral and systemic health, xerostomia
significantly reduces quality of life, but its prevalence is increasing. Salivation mainly depends on
parasympathetic and sympathetic nerves, and the salivary glands responsible for this secretion move
fluid unidirectionally through structural features such as the polarity of acinar cells. Saliva secretion
is initiated by the binding of released neurotransmitters from nerves to specific G-protein-coupled
receptors (GPCRs) on acinar cells. This signal induces two intracellular calcium (Ca2+) pathways
(Ca2+ release from the endoplasmic reticulum and Ca2+ influx across the plasma membrane), and
this increased intracellular Ca2+ concentration ([Ca2+]i) causes the translocation of the water channel
aquaporin 5 (AQP5) to the apical membrane. Consequently, the GPCR-mediated increased [Ca2+]i in
acinar cells promotes saliva secretion, and this saliva moves into the oral cavity through the ducts.
In this review, we seek to elucidate the potential of GPCRs, the inositol 1,4,5-trisphosphate receptor
(IP3R), store-operated Ca2+ entry (SOCE), and AQP5, which are essential for salivation, as cellular
targets in the etiology of xerostomia.

Keywords: 1,4,5-trisphosphate receptor; aquaporin 5; G-protein-coupled receptors; intracellular
calcium; parasympathetic nerves; store-operated Ca2+ entry; xerostomia

1. Introduction

Saliva is essential for maintaining a healthy oral environment and overall health. The
salivary glands regulate salivation according to the surrounding environment and circum-
stances, and various factors can affect the volume and composition of saliva. Xerostomia
(dry mouth), defined as a subjective feeling of oral dryness [1], is a term derived from the
Greek “xeros” (ξηρóς), meaning “dry”, and “stoma” (στóµα), meaning “mouth”. Xeros-
tomia results in decreased salivary flow and changes in the composition of saliva. This
condition has various causes and is affected by the function of the salivary glands. However,
a dry sensation in the mouth can also be observed in individuals with normal salivary gland
function [2,3]. The main causes of xerostomia are aging, radiation to the head and neck,
and Sjögren’s syndrome; however, the most common cause is drug-induced xerostomia,
which is associated with more than 400 different drugs. Xerostomia decreases normal saliva
function, which increases the occurrence of bad breath, dental caries, and dental erosion
and can decrease quality of life due to issues such as food intake problems and depression.
The estimated prevalence of persistent xerostomia varies between 10% and 50%, with a
conservative estimate of 20% in the general population. It is also more commonly found in
women (up to 30%) and older adults (up to 50%) [2,4–6], and medications and diseases, as
well as aging itself, are generally considered to be important factors [7,8]. However, there
is no permanent solution approved by the US Food and Drug Administration for salivary
gland hypofunction and resultant xerostomia [9–11]. This is also why more research on the
mechanism by which xerostomia occurs is needed. Herein, we summarize the mechanisms
of salivation at the cellular level and targeted studies of xerostomia.
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2. Unidirectional Movement of Fluid in the Salivary Glands
2.1. Structure of the Salivary Glands

Saliva performs a variety of functions essential for oral and systemic health. These
include moisturizing and lubricating the mouth; enabling gustatory and olfactory sensation;
protecting the teeth and oropharyngeal mucosa; facilitating speech articulation; allowing
mastication, swallowing, and digestion; and maintaining a balanced microbiome [12–19].
The salivary glands, which are exocrine glands, secrete saliva, which is a mixture of proteins
and fluids, into the mouth. A healthy adult produces between 0.5 and 1.5 L of saliva per day,
90% of which is produced by the three main salivary glands: parotid (PAR), submandibular
(SM), and sublingual (SL) glands [20,21].

Most of the secretion from the PAR glands occurs in response to stimuli, while the
SM and SL glands are responsible for the majority of unstimulated saliva production [22].
These glands differ in the types of secretion they produce: the PAR glands produce a serous,
watery secretion; the SM glands produce a mixed serous and mucous secretion; and the SL
glands secrete saliva that is predominantly mucous in character [22]. One striking example
of a gland-specific expression is salivary amylase, which shows abundant expression at
the protein level in the PAR and SM glandular tissue while being virtually absent in the
SL glands [23]. This functional specialization of the adult salivary glands occurs during
late-stage development [23]. In 2020, a new set of salivary glands, called the tubarial glands,
was suggested as a fourth pair of salivary glands; these glands are situated posteriorly
in the nasopharynx [24]. In addition, hundreds of minor salivary glands are distributed
throughout the oral cavity, among which glands in the lower lip are easily biopsied and
used clinically to diagnose Sjögren’s syndrome. Some studies have obtained RNA-seq data
that suggest that cellular heterogeneity within gland types underlies gland-specific protein
secretions [23].

The secretion of saliva from the three main salivary glands into the oral cavity occurs
through their respective ducts. Stensen’s duct pierces the buccinator and connects the PAR
gland to the buccal mucosa adjacent to the maxillary second molar [25,26]. Wharton’s duct
is the main excretory duct of the SM glands and arises from the smaller, deep lobe inferior
to the mucosa of the floor of the mouth and opens into the oral cavity under the tongue
by the lingual frenulum at the SL caruncle [25,26]. The SL gland drains through a series of
short ducts, all of which open into the floor of the mouth and are collectively termed the
ducts of Rivinus [25,26].

2.2. Polarized Acinar Cells and Support Cells

To understand the mechanism of salivation, it is important to understand the structure
of the cell level constituting the salivary gland. The salivary glands are composed of various
epithelial cells, including acinar cells, which produce saliva; ductal cells, which transport
saliva to the oral cavity; and myoepithelial cells, which facilitate the secretion of saliva [22].

Acini are formed by clusters of several pyramidal secretory cells, acinar cells, and are
identified by the expression of markers, such as the water channel aquaporin 5 (AQP5) and
the transcription factor muscle, intestine, and stomach expression 1 (Mist1) [27–30]. These
cells can be serous, mucous, or seromucous, depending on the nature of their secretions
and are present in relative proportions varying between glands and species [31–33]. Acini
are linked to the lateral membrane through tight junctions formed with adhesion molecules,
and this structure serves to prevent lateral movement of membrane proteins between the
apical and basolateral membranes, contributing to cell polarity [34–36]. In the salivary
glands, tight junctions permit unidirectional salivary secretion and maintain a cellular
barrier between blood and tissue fluid [36].

The ductal system of the salivary glands serves as a conduit to modify the electrolyte
content of saliva and to transport secretions to the oral cavity. In general, acinar cells secrete
an isotonic plasma-like fluid, which is deposited in the lumen [37–39]. As it passes through
the ductal system, saliva is progressively transformed into a hypotonic solution by the
selective reabsorption of certain ions [40,41]. The intercalated ducts (IDs), which are the
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parts of an exocrine gland leading directly from the acinus to striated ducts (SDs), are
formed from a single layer of cuboidal cells with a central nucleus and small secretory
granules containing lysozyme and lactoferrin [22,25,33]. The SDs, which are lined by a
long columnar epithelium with a central nucleus, participate in bidirectional transport
and reabsorption of electrolytes and are characterized by numerous mitochondria forming
cytoplasmic folds or striations in the basolateral membrane [25,33]. Along with the IDs,
these function to modify salivary fluid by secreting bicarbonate (HCO3

−) and potassium
(K+) and reabsorbing sodium (Na+) and chloride (Cl−), making the saliva hypotonic. They
compose most of the duct systems in the major salivary glands [33,42] and drain into
interlobular ducts situated between the lobules of the gland.

Myoepithelial cells surround acinar cells and are sometimes found around the IDs [43].
These cells are smooth muscle epithelial cells characterized by the expression of contractile
proteins [44]. Thus, these are essential for the contractile process around acinar cells to
promote salivary excretion in response to nerve stimulation [45–47].

3. Salivation by G-Protein-Coupled Receptor (GPCR)-Mediated Intracellular Calcium
(Ca2+) Signaling
3.1. Mode of Action of Salivation

The salivary response to seeing or even imagining sour food occurs because the sali-
vary glands in the oral system receive strong neural input. Salivation is primarily under the
control of the autonomic nervous system and is regulated by neurotransmitters and hor-
mones [41,48,49]. Fluid secretion is initiated primarily by the binding of neurotransmitters
released from parasympathetic nerves to a specific GPCR. Here, an increase in the intracel-
lular Ca2+ concentration ([Ca2+]i) stimulated by neurotransmitter–GPCR binding in acinar
cells is a major trigger for salivation [50,51]. Protein secretion from the salivary glands is
regulated primarily by intracellular 3′,5′-cyclic adenosine monophosphate (cyclic AMP) via
sympathetic nerves [50]. Cyclic AMP signaling contributes to digestion by lubricating food
when chewing and swallowing, and it exerts important antiviral and antibacterial effects
on oral tissues (Figure 1).
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Figure 1. Neural control of salivation. Stimuli, such as food, smells, and fear, are integrated into the 
solitary nucleus in the medulla through the afferent pathway. Parasympathetic efferent pathways 
from the SL and SM glands originate from the facial nerve (VII), and the pathway to the PAR gland 
originates from the glossopharyngeal nerve (IX). Fluid and electrolyte secretion is activated by the 
binding of acetylcholine (ACh) to M3 subtype muscarinic ACh receptors (M3 mAChRs). Protein 
secretion is activated by the binding of norepinephrine (NE) to β adrenergic receptors. cAMP, cyclic 
adenosine monophosphate; CN, cranial nerve; T1–T3, thoracic segments. 
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Salivary gland cells are non-excitatory cells that lack voltage-sensitive channels and 

communicate with other cells, such as neurons, through GPCRs. Thus, saliva secretion 
begins with the activation of specific GPCRs on released neurotransmitters [38,52,53], and 
GPCR-mediated signaling and salivary gland dysfunction are closely related [51–54]. 
mAChRs, specifically M3 subtype mAChRs (M3 mAChRs), are essential for the 
parasympathetic control of salivation in mice [53,55]. In the case of M1 or M3 single-
knockout (KO) mice, the amount of pilocarpine-induced salivation was greatly reduced 
at a low concentration (1 mg/kg), but there was no significant difference compared with 
wild-type mice at a high concentration (15 mg/kg). In the case of double-KO mice, 
salivation was completely lost regardless of the pilocarpine concentration [55]. Carbachol 
(CCh)-induced increased [Ca2+]i in SM gland cells showed little difference in M1 KO mice 
compared with control mice but was greatly reduced in M3 KO mice and completely lost 
in double-KO mice [53]. Two-dimensional Ca2+ imaging analysis in response to CCh in 
individual acinar cell clusters suggested that the distribution of M1 in SM gland acini is 
not ubiquitous and that some acinar cells express M1 at a high level [53]. mAChRs are 
expressed at different levels of abundant subtypes by a gland or species type, and human 
labial glands express M1, M3, and M5 mAChRs [56]. Interestingly, upregulation of M3, M4, 
and M5 expression was observed in samples from patients with Sjögren’s syndrome 
[56,57]. 
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solitary nucleus in the medulla through the afferent pathway. Parasympathetic efferent pathways
from the SL and SM glands originate from the facial nerve (VII), and the pathway to the PAR gland
originates from the glossopharyngeal nerve (IX). Fluid and electrolyte secretion is activated by the
binding of acetylcholine (ACh) to M3 subtype muscarinic ACh receptors (M3 mAChRs). Protein
secretion is activated by the binding of norepinephrine (NE) to β adrenergic receptors. cAMP, cyclic
adenosine monophosphate; CN, cranial nerve; T1–T3, thoracic segments.

3.2. GPCRs as Keys for Cell-to-Cell Communication

Salivary gland cells are non-excitatory cells that lack voltage-sensitive channels and
communicate with other cells, such as neurons, through GPCRs. Thus, saliva secretion
begins with the activation of specific GPCRs on released neurotransmitters [38,52,53],
and GPCR-mediated signaling and salivary gland dysfunction are closely related [51–54].
mAChRs, specifically M3 subtype mAChRs (M3 mAChRs), are essential for the parasym-
pathetic control of salivation in mice [53,55]. In the case of M1 or M3 single-knockout
(KO) mice, the amount of pilocarpine-induced salivation was greatly reduced at a low
concentration (1 mg/kg), but there was no significant difference compared with wild-type
mice at a high concentration (15 mg/kg). In the case of double-KO mice, salivation was
completely lost regardless of the pilocarpine concentration [55]. Carbachol (CCh)-induced
increased [Ca2+]i in SM gland cells showed little difference in M1 KO mice compared with
control mice but was greatly reduced in M3 KO mice and completely lost in double-KO
mice [53]. Two-dimensional Ca2+ imaging analysis in response to CCh in individual acinar
cell clusters suggested that the distribution of M1 in SM gland acini is not ubiquitous and
that some acinar cells express M1 at a high level [53]. mAChRs are expressed at different
levels of abundant subtypes by a gland or species type, and human labial glands express
M1, M3, and M5 mAChRs [56]. Interestingly, upregulation of M3, M4, and M5 expression
was observed in samples from patients with Sjögren’s syndrome [56,57].

In addition to mAChRs, a series of GPCRs, including GPR39, histamine H1 receptor,
sphingosine–1–phosphate (S1P) receptor, bradykinin receptor, and P2Y2 receptor (P2Y2R),
has been investigated to identify salivary gland-related functions [52,58–61]. GPR39 is
a type of GPCR with zinc as a ligand and is expressed in human SM gland tissues [52].
Interestingly, this study showed that salivary secretion significantly increased when human
subjects gargled with a zinc-containing solution. These effects were observed both in
a normal group and various hyposalivation groups, including a group of patients with
Sjögren’s syndrome [52]. In primary cultured cells of the human SM gland and human SM
gland (HSG) cell lines, histamine increased the [Ca2+]i, and the histamine H1 receptor was
expressed [59]. Other types of receptors, including S1P 1, 2, 3, and 4 receptors, are expressed
in human SM gland cells [60]. S1P triggers Ca2+ signaling and induces the expression of
interleukin 6 (IL-6) and Fas, which are known to be involved in a Sjögren’s syndrome-
related apoptotic pathway [60]. Bradykinin B2 receptors are expressed in human SM
gland tissue, and treatment with bradykinin induces intracellular Ca2+ signaling [61]. P2
purinergic receptors for extracellular nucleotides, including P2Y1 and P2Y2, are expressed
in rat SM acinar and ductal cells and are involved in intracellular Ca2+ signaling [62–65]. In
particular, due to its ability to stimulate water transport across epithelial cell membranes,
the P2Y2R agonist diquafosol has undergone human clinical trials for the treatment of dry
eye disease and is currently approved for human use in South Korea and Japan under the
trade name Diquas [66–68].

3.3. Stimulation of Fluid Secretion by GPCR-Mediated Increases in [Ca2+]i in Acinar Cells

The salivary gland cells regulate their secretions through neurotransmitter-generated
Ca2+ signaling. This is regulated by autonomic sympathetic and parasympathetic stimuli.
In particular, ACh secreted from parasympathetic nerves is known to be the most important
salivary secretory factor in the salivary glands. Enhancing fluid secretion in the salivary
glands requires a series of processes, including activation of membrane receptors, including
mAChRs, through binding between neurotransmitters and specific GPCRs, increases in
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cytoplasmic [Ca2+]i, and stimulation of ion transport pathways. When there is an increase
in [Ca2+]i in the acinar cells, ion channel activity is regulated in various domains of the cells,
the AQP5 channels are translocated to the apical membrane, and water secretion occurs.

Two steps (Ca2+ release from the ER and Ca2+ influx via the plasma membrane) are
required to increase [Ca2+]i in the salivary glands and maintain the saliva secretion state
(Figure 2). Stimulation of GPCRs, such as mAChRs and α1-adrenergic receptors, results
in phospholipase C (PLC) activation. Sequentially, PLC hydrolyzes phosphatidylinositol
4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG).
The initial increase in [Ca2+]i after external stimulation of acinar cells is triggered by the
release of Ca2+ from the ER via the binding of cytosolic IP3 and IP3 receptors (IP3Rs) at
the ER membrane. In exocrine gland cells, IP3R2 and IP3R3 are concentrated in the apical
pole of the cell [69,70], and in response to external stimuli, [Ca2+]i increases in the apical
region, spreads to the basal pole, and activates various ion channels and transporters to
coordinate fluid secretion [41,71–73]. Pilocarpine-induced salivation is seriously impaired
in IP3R2 and IP3R3 double-KO mice, which lose weight and die within four weeks without
wet mash food [74].
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Figure 2. Ca2+ signal transduction and regulation of fluid secretion in salivary gland acinar cells. This
figure shows the key signaling events and components involved in the regulation of fluid secretion
in salivary gland cells: Fluid is activated by the binding of ACh to subtype M3 mAChRs. Binding
activates a GPCR, and the target enzyme is phospholipase C (PLC), which splits phosphatidylinositol
4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). IP3 acts by
binding to the IP3R on the endoplasmic reticulum (ER) and releasing the Ca2+ stored there. (First step;
Ca2+ release from the ER). Stromal interaction molecule–1 (STIM1) in the ER membrane acts as a Ca2+

sensor, causing structural changes when the ER is depleted, and forms store-operated Ca2+ entry
(SOCE) with Orai channels or transient receptor canonical (TRPC) channels expressed in the plasma
membrane of acinar cells. This leads to an influx of extracellular Ca2+ (second step; Ca2+ influx via
the plasma membrane), followed by the translocation of AQP5 at the apical membrane (third step).
These increases in [Ca2+]i as a result of neurotransmitter–GPCR binding induce the regulation of ion
transport, the production of an osmotic gradient, and the flow of water.
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The IP3-induced increase in [Ca2+]i from the ER is essentially transient in the absence
of extracellular Ca2+ [49]. Subsequent activation of store-operated Ca2+ entry (SOCE)
converts the transient increase in [Ca2+]i into a sustained increase essential for long-term
salivation [49] (Figure 2). Ca2+ depletion of the ER initiates the activation of SOCE [49,72].
Stromal interaction molecule–1 (STIM1) at the ER membrane acts as a Ca2+ sensor, which
causes a conformational change when the concentration of Ca2+ in the ER is lowered and
forms SOCE with Orai channels or transient receptor potential canonical (TRPC) channels
expressed in the plasma membrane of acinar cells [75–79]. This process allows extracellular
Ca2+ to enter the cell. Orai1 is the best characterized among the members of the Orai channel
family, and it generates a highly Ca2+-sensitive, inwardly rectifying Ca2+ current when
activated by STIM1 [77,79,80]. TRPC channels function as Ca2+-permeable nonselective
cation channels, and all members are activated in response to PIP2 hydrolysis stimulated
by neurotransmitters [81,82]. TRPC1 is an essential channel for salivary gland function,
and lack of this channel results in an attenuation of store-operated Ca2+ current and a
significant loss of fluid secretion [75,76]. Perturbation of SOCE activity is thought to be an
important toxic mechanism because SOCE is required for the maintenance of a constant
intracellular Ca2+ pool and GPCR signaling [83].

[Ca2+]i plays a particularly important role in regulating K+, Na+, and Cl− fluxes
and salivary secretion in acinar cells. Salivation is initiated when an increased [Ca2+]i
activates K+ and Cl− channels and is maintained as long as this is sustained [41,49]. For
fluid secretion, transepithelial transport of Cl− from the basolateral to the apical side of
the cell is required, and Na+ flux through the tight junction leads to the accumulation of
NaCl in the lumen, resulting in water secretion through the AQP5 channel expressed in
the apical membrane with the generated osmotic gradient [41,49]. In addition, the cell
enters a hyperpolarized state through K+ efflux via the apical and basolateral membranes
to support fluid secretion. [Ca2+]i is maintained at approximately 50–100 nM in resting
cells, which is less than the threshold required to activate the K+ and Cl− channels [49].

Aquaporins (AQPs), a family of transmembrane channel proteins, are responsible for
water transcellular permeability in most living organisms [84]. In mammals, AQPs are
largely divided into classical AQPs permeable only to water (AQP1, AQP2, AQP4, AQP5,
AQP6, and AQP8) and aquaglyceroporins permeable to small solutes such as glycerol and
urea in addition to water (AQP3, AQP7, AQP9, and AQP10) [85–87]. In human salivary
glands, AQP1 expression is restricted to the vascular endothelium and myoepithelial cells
surrounding acini [29,88,89]. In acinar cells, AQP3, AQP4, and AQP5 are expressed, and
the subcellular localization enriched in each is different [29,88–91]. Expression of AQP3, an
aquaglyceroporin, has been detected at the apicolateral membrane of serous cells and at
the apical pole of mucous acinar cells [29], while AQP4 expression has been localized to
the basal membrane of acinar cells [90]. AQP5 is predominantly expressed at the apical
membrane in acinar cells and not expressed in mature ducts [29,88,89,91]. AQP5 plays a key
role in the secretion of saliva, and briefly, activation of subtype M1 and M3 mAChRs leads
to an increased [Ca2+]i that induces AQP5 trafficking to the acinar apical membrane [92–95].
Parasympathectomy has been found to significantly decrease salivary AQP5 protein levels
without affecting mRNA levels [96], through a post-transcriptional mechanism involving
protein degradation [91,97]. The neural signal via the parasympathetic nerve innervating
the SM glands, i.e., the chorda tympani nerve, has been suggested to be responsible for
maintaining a certain degree of AQP5 expression [96]. Sympathetic activation leads to
increased cAMP and a subsequent increase in RNA levels and the translocation of AQP5
to the cell apical membrane [91,98,99]. AQP5 KO mice presented an approximately 60%
reduction in pilocarpine-induced saliva secretion, indicating that AQP5 plays a major role
in water permeability in acinar cells and saliva secretion [94,95].

4. Increasing Prevalence of Xerostomia

The majority of the 550,000 patients who undergo radiation treatment for head and
neck cancer annually and more than 4 million patients with Sjögren’s syndrome worldwide
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suffer from salivary gland dysfunction [100]. More than 400 different drugs, including
antidepressants, antipsychotics, antihistamines, antihypertensives, and others, are also
major causes [8,101–105]. Aging itself is also a cause of xerostomia, but its incidence
continues to increase as polypharmacy among the elderly increases [106,107]. The combined
number of multiple drugs greatly increases xerostomia, and among them, long-term use of
drugs, including psychotropic drugs, causes chronic xerostomia and significantly reduces
the quality of life. However, there is currently no permanent curative therapy, and the
general management approach is directed at palliative treatment for the relief of symptoms
and prevention of oral complications [104,108]. Systemic sialagogues approved by the Food
and Drug Administration (FDA) for salivary gland dysfunction include muscarinic agonists,
such as pilocarpine and cevimeline, as mimic form parasympathetic nerve action [109,110].
However, since mAChRs are widely expressed in various organs and tissues of the body,
their use has various side effects [9–11].

4.1. Xerogenic Drugs as the Most Common Cause of Xerostomia

Drugs are the most frequent cause of dry mouth [111] and are called xerogenic
drugs [112] (Table 1). These include antidepressants, antiemetics, antihistamines, antihyper-
tensives, antipsychotics, appetite suppressants, anxiolytics, bronchodilators, cardiovascular
agents, and muscle relaxants [8,101–105]. Some cause subjective dry mouth symptoms, and
many can cause decreased salivation. Although there appear to be several mechanisms by
which drugs can cause dry mouth, few have been subjected to in-depth scientific investiga-
tion [111]. Early antidepressants, including tricyclic antidepressants (TCAs), unfortunately
block histaminergic, cholinergic, and α1-adrenergic receptor sites, resulting in a variety of
adverse drug reactions (ADRs), including dry mouth as well as weight gain, constipation,
drowsiness, and dizziness [111]. Muscarinic receptor antagonists, which are recommended
as first-line therapy for an overactive bladder, can also cause dry mouth [111].

Table 1. Xerogenic drugs.

Classification Drugs

Analgesics Opioids, pregabalin, tramadol.

Anticonvulsants Carbamazepine, gabapentin, lamotrigine.

Antidepressants

Tricyclics (e.g., amitriptyline, clomipramine, desipramine, doxepin,
imipramine, nortriptyline, protriptyline, trimipramine), selective

serotonin reuptake inhibitors (e.g., citalopram, escitalopram,
fluoxetine, fluvoxamine, paroxetine, sertraline), serotonin and

noradrenaline reuptake inhibitors (e.g., venlafaxine), and atypical
antidepressants (e.g., bupropion, duloxetine, mirtazapine, trazodone).

Antiemetics Buclizine, cyclizine, dimenhydrinate, meclizine, metocloopramide,
prochloperazine, scopolamine, thiethylperazine, trimethobenzamide.

Antihistamines

First-generation antihistamines (carbinoxamine, clemastine
dexchlorpheniramine, dimenhydranate, diphenhydramine,

hydroxyzine, meclizine, promethazine), and second-generation
antihistamines (cetirizine, desloratadine, fexofenadine,

levocetirizine loratadine).

Antihypertensives

α-agonists (clonidine, guanabenz, guanfacine, methldopa),
β-blockers (acebutolol, atenolol, bebivolol, betaxolol, bisoprolol,
carvedilol, esmolol, labetalol, metoprolol, nadolol, penbutolol,
pindolol, propranolol, stalol, timolol), diuretics (bumetanide,
furosemide, torsemide), Ca2+ channel blockers (amlodipine,

diltiazem, felodipine, isradipine, nifedipine, nimodipine, verapamil),
and angiotensin-converting enzyme inhibitors (benazepril, captopril,

enalapril, fosinopril, lisinopril, moexipril, perindopril, quinapril,
ramipril, trandolapril).
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Table 1. Cont.

Classification Drugs

Antiparkinsonian
amantadine, benztropine, bromocriptine, carbidopa, entcapone,

levodopa, pramipexole, rasagiline, ropinirole, selegiline,
trihexyphenidyl.

Antipsychotics

Typical antipsychotics (e.g., chlorpromazine, fluphenazine,
haloperidol, loxapine, perphenazine, pimozide, trifluoperazine) and
atypical antipsychotics (e.g., aripiprazole, amisulpiride, clozapine,

olanzapine).

Appetite suppressants/
stimulants

Benzphetamine, diethylpropion, phentermine, phendimetrazine,
sibutramine.

Anxiolytics Alprazolam, chlordiazepoxide, clorazepate, diazepam, doxepin,
hydroxyzine, lorazepam, meprobamate, oxazepam, prazepam.

Bronchodilators Albuterol, eformoterol, ipratropium, metaproterenol, pirbuterol,
salbutamol, salmeterol, tiotropium, umeclidinium.

Cardiovascular agents Atenolol, clonidine, metoprolol, prazosin.

Muscle relaxants Baclofen, cyclobenzaprine, orphenadrine.

The likelihood of xerostomia increases with the total number of medications taken,
regardless of whether the individual medications cause dry mouth. There are many other
types of receptors for endogenous substances in the salivary glands that can be causes of
drug-induced dry mouth, but anticholinergic actions contribute significantly. Synergistic
effects of drug combinations contribute to xerostomia; in addition, although saliva flow
does not necessarily decrease with age, older people are more likely than younger people
to develop xerostomia due to the increased prevalence of chronic conditions requiring
pharmacological treatment [106,113]. Drug-induced xerostomia is usually reversible, but
the conditions for which these drugs are prescribed are often chronic [114]. Long-term
treatment for schizophrenia with conventional phenothiazine antipsychotics is commonly
associated with ADRs, including dry mouth [111]. Cardiovascular medications in hospital-
ized elderly patients and respiratory diseases in the elderly outpatients are the main factors
for xerostomia, but the use of psychiatric drugs is also the strongest explanatory factor for
all patients [7].

4.2. Systemic Diseases and Salivary Gland Disorders That Compromise Glandular Tissue Integrity

Systemic diseases that affect the salivary glands can cause salivary dysfunction, re-
sulting in xerostomia [115] (Table 2). Among these, severe hyposalivation is frequently
caused by Sjögren’s syndrome, a chronic autoimmune disease [116]. Excessive infiltration
of inflammatory cells, resulting in increased production of cytokines and degradation of
tissue proteins, destroys the acinar cells and interferes with salivary synthesis, resulting
in dysfunction of the salivary glands [117]. Multiple innate immune pathways, including
the nuclear factor-κB pathway, are likely dysregulated in the salivary gland epithelium
in Sjögren’s syndrome [118]. Thus, both generic and oral health-related quality of life are
poor in these patients [116]. Intraoral imaging using ultra-high frequency ultrasonography,
a recently introduced diagnostic technique, plays an increasingly important role in small
salivary gland biopsy and subsequent focal scoring, which are critical in the diagnostic
workup of this disease [119,120].

Radiation therapy is an important treatment for patients with head and neck cancer.
However, the salivary glands are often inadvertently irradiated and damaged because they
are within the irradiated area [121]. Cumulative exposure to radiation causes excessive
destruction of saliva-producing acini and reduced salivary flux [122,123]. Many advances
in the management of radiation-induced salivary gland hypofunction still only offer partial
protection [123]. Decreased salivation in these patients has serious consequences for oral
somatosensory alterations that can lead to malnutrition [124].
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Table 2. Systemic diseases associated with xerostomia.

Systemic Diseases

Sjögren’s syndrome

Systemic lupus erythematosus

Diabetes (type 1 and type 2)

Viral infection (e.g., human immunodeficiency virus, hepatitis C virus, and human
T-lymphotropic virus type 1)

End-stage renal disease

Primary biliary cirrhosis

Ectodermal dysplasia

Graft-versus-host disease

Sarcoidosis

Salivary gland tumors are uncommon, representing less than approximately 5% of
all cancers of the head and neck [125]. Surgery is usually performed to remove the tumor
and surrounding tissue, but this can also lead to reduced salivary gland function and
xerostomia [126].

Both unstimulated and stimulated salivation decrease with age in humans [127]. His-
tological studies have demonstrated that with age, the mean volume of acini decreases
by approximately 30% in the SM glands, nearly 25% in the SL glands, and approximately
12% in the PAR glands [107]. In addition, the number of terminal deoxynucleotidyl trans-
ferase dUTP nick end labeling (TUNEL)-positive apoptotic cells in the SM glands has been
found to increase with age, suggesting that cell turnover and cellular changes contribute to
age-dependent salivary gland dysfunction [128].

4.3. Current Palliative Care and Pharmacological Therapies

Systemic sialagogues mimic the neural signals that stimulate saliva production in the
epithelium. Anterior sialagogues mentioned by the FDA and the National Institute for
Health and Care Excellence include pilocarpine and cevimeline [109,110], which stimulate
salivary tissue. Pilocarpine is a nonselective muscarinic agonist with a relatively high
affinity for CNS muscarinic receptors and cevimeline has a higher affinity for M1 and
M3 mAChRs. Head and neck radiation-treated patients with established hyposalivation
respond minimally to systemic sialagogues [129]. In addition, since mAChRs are widely
expressed in the body, the use of these drugs is associated with various side effects such as
nausea, diarrhea, increased urinary frequency, excessive sweating, cutaneous vasodilation,
bronchoconstriction, hypotension, and bradycardia [9–11].

Saliva substitutes or artificial saliva are often prescribed to temporarily relieve xe-
rostomia. They generally contain a thickening agent and have protective properties but
poor antibacterial and antifungal properties [130]. Most saliva substitutes aim to mimic the
rheological properties of saliva and consist of rheological modifiers such as xanthan and
guar gums, as well as carboxymethyl cellulose or hydroxyethyl cellulose, glycerol, mucins,
electrolytes, preservatives, and sweeteners. Saliva substitutes have not yet been able to
mimic the antibacterial properties of saliva [130].

Mouth rinses, mouthwashes, and toothpaste can provide short-term relief from dry
mouth and keep the patient’s mouth, teeth, and gums healthy. Such mouth rinses can
greatly increase saliva volume and improve pH buffering [131]. However, similar to saliva
substitutes, these treatments only treat symptoms for a short period of time (up to 4 h) and
do not solve the underlying clinical problem.
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5. Conclusions

Normal salivation is important for oral and overall health and wellbeing. Xerostomia
is clearly a problem faced by an increasing proportion of the population. Accordingly,
elucidating the mechanisms leading to the loss of salivary secretion and those involved
in functional rescue should be a major focus of salivary research in the future. Acinar
cells are polarized and are responsible for the unidirectional movement of fluid. Cellular
heterogeneity among gland types derived from RNA-seq data suggests that various cells
are coordinated within the salivary gland. Further elucidating this diversity will require a
detailed study of the components of each cell unit. Importantly, saliva secretion is precisely
regulated by GPCR-mediated intracellular Ca2+ signaling. Therefore, it is expected that
regulators controlling the exocrine intracellular Ca2+ mechanism contribute directly to
salivation. Key components involved in intracellular Ca2+ signaling include GPCR, IP3R,
SOCE, and AQP5, all of which can be targets of medication or diseases. Conversely, acinar
cell-specific GPCR agonists, such as mAChR and P2Y2R agonists, are potential therapeutic
candidates that can regulate intracellular Ca2+ signaling at specific cellular units.
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