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Complementary results of the structural comparison at the 2D and 3D levels 

The complete results of both 2D and 3D structural comparisons between biguanides and the candidate 

metabolites can be observed in Supplementary Material part B, including the different TC, ST, CT, and combo 

T values. 

Complementary results of the physicochemical comparison 

The complete list of physicochemical parameters employed in the physicochemical comparisons between 

biguanides and the candidate metabolites can be observed in Supplementary Material part B, including the 

molecular weight, consensus log P, topological polar surface area, hydrogen bond donors, hydrogen bond 

acceptors, Csp3 fraction, and rotatable bonds. 

 

Figure S1. Principal component analysis of biguanides and candidate metabolites in the non-ionized modality 



 

Figure S2. Principal component analysis of biguanides and candidate metabolites in the ionized modality 



 

Figure S3. Hierarchical clustering of candidate metabolites in the non-ionized modality 



 

Figure S4. Hierarchical clustering of metformin and candidate metabolites in the non-ionized modality 



 

Figure S5. Hierarchical clustering of buformin and candidate metabolites in the non-ionized modality. 



 

Figure S6. Hierarchical clustering of phenformin and candidate metabolites in the non-ionized modality. 



 

Figure S7. Hierarchical clustering of candidate metabolites in the ionized modality. 



 

Figure S8. Hierarchical clustering of buformin and candidate metabolites in the ionized modality. 



 

Figure S9. Hierarchical clustering of phenformin and candidate metabolites in the ionized modality. 

Methodology and complementary results of molecular docking simulations 

• Search of PDB files 

After we predicted the possible targets for biguanides using the SwissTargetPrediction tool, we decided to add 

targets whose ligand or substrate is reported to be one included in our arginine-related metabolites database. 

Our final list of candidate targets was composed of four urea cycle enzymes including arginase 1 (ARG1), 

arginase 2 (ARG2), ornithine transcarbamylase (OTC), and argininosuccinate synthase (ASS); three enzymes 

involved in nitric oxide production including inducible nitric oxide synthase (iNOS), neural nitric oxide 

synthase (nNOS), and endothelial nitric oxide synthase (eNOS); three enzymes involved in the production and 

breakdown of asymmetric dimethylarginine including protein arginine methyltransferase (PRMT) 1, 4, and 

dimethylarginine dimethylaminohydrolase 1 (DDAH1); five enzymes from creatine metabolism, including the 

muscle-type, brain-type, and ubiquitous creatine kinases (CK), arginine:glycine amidinotransferase (AGAT), 

and guanidinoacetate N-methyltransferase (GAMT); four enzymes from polyamine metabolism spermidine 

synthase (SPDS), spermine synthase (SPMS), ornithine decarboxylase, and diamine oxidase (DAO); two 

intracellular sensors of L-arginine, including CASTOR1 and SLC38A9. Once we defined the candidate targets, 

we search for them in the Protein Data Bank. We limited our search to Homo sapiens and proteins with a 

resolution lower than 3 Å. In the case of SLC38A9, we used a PDB file from Danio rerio because the human 

PDB files had a lower quality in terms of resolution. The targets that we selected and their corresponding PDB 

codes are shown below in Table S1. 

  



 

Table S1. Selected targets for molecular docking and their corresponding PDB codes 

Target PDB code 

ARG1 6Q92 

ARG2 6Q37 

OTC 1C9Y 

ASS 2NZ2 

iNOS 3E7G 

eNOS 4D1O 

nNOS 4D1N 

PRMT1 6NT2 

PRMT4 5DWQ 

DDAH1 3I2E 

ODC 7S3G 

CKB 3B6R 

CKU 1QK1 

CKM 1I0E 

GAMT 3ORH 

AGAT 2JDW 

CASTOR1 5I2C 

SLC38A9 6C08 

DAO 3HIG 

SPMS 3C6K 

SPDS 2O06 

 

• Validation of protein targets 

Once we identified the targets for molecular docking, we proceeded to download them in.pdb format and began 

with the quality analysis. First, we uploaded the different pdb files into the MolProbity platform to assess the 

quality of the crystallized protein models. Below, we show screen captures of the quality reports obtained in 

MolProbity.  

 

Figure S10. Quality report for 6Q92 (ARG1) obtained from MolProbity. 



 

Figure S11. Quality report for 1C9Y (OTC) obtained from MolProbity. 

 

Figure S12. Quality report for 2NZ2 (ASS) obtained from MolProbity. 

 

Figure S13. Quality report for 3E7G (iNOS) obtained from MolProbity. 



 

Figure S14. Quality report for 4D1O (eNOS) obtained from MolProbity. 

 

Figure S15. Quality report for 6NT2 (PRMT1) obtained from MolProbity. 

 

Figure S16. Quality report for 5DWQ (PRMT4) obtained from MolProbity. 



 

Figure S17. Quality report for 3I2E (DDAH1) obtained from MolProbity. 

 

Figure S18. Quality report for 7S3G (ODC) obtained from MolProbity. 

 

Figure S19. Quality report for 6Q37 (ARG2) obtained from MolProbity. 



 

Figure S20. Quality report for 4D1N (nNOS) obtained from MolProbity. 

 

Figure S21. Quality report for 1QK1 (CKU) obtained from MolProbity. 

 

Figure S22. Quality report for 1I0E (CKM) obtained from MolProbity. 



 

Figure S23. Quality report for 3ORH (GAMT) obtained from MolProbity. 

 

Figure S24. Quality report for 2JDW (AGAT) obtained from MolProbity. 

 

Figure S25. Quality report for 5I2C (CASTOR1) obtained from MolProbity. 



 

Figure S26. Quality report for 3HIG (DAO) obtained from MolProbity. 

 

Figure S27. Quality report for 3B6R (CKB) obtained from MolProbity. 

 

Figure S28. Quality report for 6C08 (SLC38A9) obtained from MolProbity. 



 

Figure S29. Quality report for 2O06 (SPDS) obtained from MolProbity. 

 

Figure S30. Quality report for 3C6K (SPMS) obtained from MolProbity. 

As can be observed, some parameters were bad for different targets according to the quality reports obtained 

from MolProbity. For this reason, we decided to perform a minimization of energy in UCSF Chimera in the 

low-quality targets, aiming to improve some parameters before the molecular docking simulations. We 

performed the minimizations using 1000 steepest descent steps in the minimize structure tool. The quality 

reports after the minimization of energy of proteins are shown below: 

 

Figure S31. Quality report for 1C9Y (OTC) after the energy minimization obtained from MolProbity. 



 

 Figure S32. Quality report for 2NZ2 (ASS) after the energy minimization obtained from MolProbity.  

 

Figure S33. Quality report for 3E7G (iNOS) after the energy minimization obtained from MolProbity. 

 

Figure S34. Quality report for 3ORH (GAMT) after the energy minimization obtained from MolProbity. 



 

Figure S35. Quality report for 1I0E (CKU) after the energy minimization obtained from MolProbity. 

As can be observed from the quality reports, some parameters improved after the energy minimization in UCSF 

Chimera. After this, we decided to proceed to the identification of the docking site. It is noteworthy that despite 

the improvement in the parameters not being large, the clashscore, the poor rotamers, and the favored rotamers, 

among other parameters, were better after the energy minimization. We tried to increase the steepest descent 

steps to >1000, but contrary to our expectations, the quality became worse. For this reason, we decided to 

perform the molecular docking simulations with these targets and test their quality in the molecular docking 

validation process. 

• Identification of the docking site 

In order to perform the molecular docking simulations, we needed to establish our docking sites. For this 

purpose, we searched for amino acid residues present in the active sites of the selected targets. First, we 

performed the search in UniProt, where we collected the reported amino acid residues in the function section. 

Additionally, to better delimitate the active site, we performed the prediction of pockets for our targets in the 

DoGSiteScorer tool. We chose those pockets that accomplished two characteristics: 1) the pocket selected had 

to include the amino acid residues reported in UniProt, and 2) we selected the pocket with the best drug score. 

Below, we show the selected pockets for our candidate targets. 



 

Figure S36. Predicted pockets for ARG1 using DoGSiteScorer. 

 

Figure S37. Predicted pockets for OTC using DoGSiteScorer. 



 

Figure S38. Predicted pockets for ASS using DoGSiteScorer. 

 

Figure S39. Predicted pockets for iNOS using DoGSiteScorer. 



 

Figure S40. Predicted pockets for eNOS using DoGSiteScorer. 

 

Figure S41. Predicted pockets for PRMT1 using DoGSiteScorer. 



 

Figure S42. Predicted pockets for PRMT4 using DoGSiteScorer. 

 

Figure S43. Predicted pockets for DDAH1 using DoGSiteScorer. 



 

Figure S44. Predicted pockets for ODC using DoGSiteScorer. 

 

Figure S45. Predicted pockets for CKB using DoGSiteScorer. 



 

Figure S46. Predicted pockets for ARG2 using DoGSiteScorer. 

 

Figure S47. Predicted pockets for nNOS using DoGSiteScorer. 



 

Figure S48. Predicted pockets for DAO using DoGSiteScorer. 

 

Figure S49. Predicted pockets for CKU using DoGSiteScorer. 



 

Figure S50. Predicted pockets for CKM using DoGSiteScorer. 

 

Figure S51. Predicted pockets for CASTOR1 using DoGSiteScorer. 



 

Figure S52. Predicted pockets for SLC38A9 using DoGSiteScorer. 

 

Figure S53. Predicted pockets for AGAT using DoGSiteScorer. 



 

Figure S54. Predicted pockets for GAMT using DoGSiteScorer. 

 

Figure S55. Predicted pockets for DAO using DoGSiteScorer. 



 

Figure S56. Predicted pockets for SPDS using DoGSiteScorer. 

 

Figure S57. Predicted pockets for SPMS using DoGSiteScorer. 

• Validation of the molecular docking methodology 

Once we identified the docking site for our candidate targets, we performed the validation of the molecular 

docking methodology by employing the redocking method. In Supplementary Material part C, we report the 



parameters employed in defining the grid box during the validation process. Our docking simulations were 

carried out in AutoDock 4.2 in a rigid modality. In the redocking method, we followed our established 

methodology, employing selected candidate targets and their corresponding crystallized ligands to perform the 

simulation. After the simulation, we performed a comparison between our simulated conformation and the 

crystallized conformation of the original ligand in UCSF Chimera. The coordinates employed in docking 

simulations are shown below, including the RMSD values in those validated targets.  

Table S2. 3D coordinates and sizes for the grid boxes employed in the docking simulations 

Target 
Grid box Size Grid box Coordinates RMSD for the 

redocked ligand X Y Z X Y Z 

ARG1 38 40 30 2.08 22.624 -11.323 NV 

ARG2 34 34 34 35.198 89.007 68.774 4.603 

OTC 30 20 20 3.923 2.994 -22.584 1.269 

ASS 30 38 30 3.147 37.218 18.577 3.391 

iNOS 24 26 38 56.623 20.285 79.908 2.107 

eNOS 40 40 40 18.814 243.469 24.373 1.516 

nNOS 36 34 36 230.156 28.582 11.324 2.08 

PRMT1 40 40 40 -4.725 36.708 -14.904 1.083 

PRMT4 40 40 40 -16.476 21.323 13.604 1.27 

DDAH1 40 40 40 24.179 -5.728 45.845 NV 

ODC 40 40 40 9.372 -3.213 60.512 3.245 

CKB        

CKU 48 34 44 49.427 17.144 104.641 NV 

CKM 58 44 54 1.013 15.828 91.566 NV 

GAMT 40 48 40 64.371 62.13 14.016 1.249 

AGAT 44 44 44 47.049 65.583 13.552 NV 

CASTOR1 40 40 40 48.822 81.527 80.321 1.101 

SLC38A9 28 28 28 -54.894 35.9 70.782 4.314 

DAO 46 42 44 -32.828 -11.041 73.498 1.403 

SPMS 20 32 20 6.611 67.642 0.787 1.667 

SPDS 20 32 32 14.314 26.303 10.686 2.084 

     NV: Not validated. 

Some targets could not be validated because their original PDB files did not include a ligand to perform the 

redocking method. However, we still selected the grid box based on UniProt information and DoGSiteScorer, 

performed the simulations, and compared our results with the scientific literature to test if our methodology was 

generating reliable results. 

• Binding modes of biguanides and candidate metabolites in the docked targets 

 



Figure S58. Predicted binding mode of L-arginine in ARG2. 

 

Figure S59. Predicted binding mode of metformin in ARG2. 

 

Figure S60. Predicted binding mode of buformin in ARG2. 

 

Figure S61. Predicted binding mode of phenformin in ARG2. 

 

 



 

Figure S62. Predicted binding mode of L-citrulline in CASTOR1. 

 

Figure S63. Predicted binding mode of L-ornithine in CASTOR1. 

 

Figure S64. Predicted binding mode of creatine in M-type creatine kinase. 



 

Figure S65. Predicted binding mode of metformin in M-type creatine kinase. 

 

Figure S66. Predicted binding mode of buformin in M-type creatine kinase. 

 

Figure S67. Predicted binding mode of phenformin in M-type creatine kinase. 



 

Figure S68. Predicted binding mode of creatine in the ubiquitous creatine kinase. 

 

 

Figure S69. Predicted binding mode of metformin in the ubiquitous creatine kinase. 

 

Figure S70. Predicted binding mode of buformin in the ubiquitous creatine kinase. 



 

 

Figure S71. Predicted binding mode of phenformin in the ubiquitous creatine kinase. 

 

Figure S72. Predicted binding mode of L-arginine in iNOS. 



 

Figure S73. Predicted binding mode of ADMA in iNOS. 

 

Figure S74. Predicted binding mode of metformin in iNOS. 

  



 

 

Figure S75. Predicted binding mode of buformin in iNOS. 

 

 

Figure S76. Predicted binding mode of phenformin in iNOS. 



 

Figure S77. Predicted binding mode of L-arginine in SLC38A9. 

 

 

Figure S78. Predicted binding mode of metformin in SLC38A9. 

 



 

Figure S79. Predicted binding mode of buformin in SLC38A9. 

 

 

Figure S80. Predicted binding mode of phenformin in SLC38A9. 



 

Figure S81. Predicted binding mode of spermidine in SPMS. 

 

Figure S82. Predicted binding mode of spermine in SPMS. 



 

Figure S83. Predicted binding mode of metformin in SPMS. 

 

Figure S84. Predicted binding mode of buformin in SPMS. 



 

Figure S85. Predicted binding mode of phenformin in SPMS. 

 

Figure S86. Predicted binding mode of carbamoyl phosphate in OTC. 

 



Figure S87. Predicted binding mode of L-citrulline in OTC. 

 

Figure S88. Predicted binding mode of L-ornithine in OTC. 

 

Figure S89. Predicted binding mode of metformin in OTC. 



 

Figure S90. Predicted binding mode of buformin in OTC. 

 

Figure S91. Predicted binding mode of phenformin in OTC. 



 

Figure S92. Predicted binding mode of L-arginine in AGAT. 

 

Figure S93. Predicted binding mode of guanidinoacetate in AGAT. 



 

Figure S94. Predicted binding mode of metformin in AGAT. 

 

Figure S95. Predicted binding mode of buformin in AGAT. 



 

Figure S96. Predicted binding mode of phenformin in AGAT. 

 

Figure S97. Predicted binding mode of agmatine in DAO. 



 

Figure S98. Predicted binding mode of metformin in DAO. 

 

Figure S99. Predicted binding mode of buformin in DAO. 



 

Figure S100. Predicted binding mode of phenformin in DAO. 

 

Figure S101. Predicted binding mode of L-ornithine in ODC. 



 

Figure S102. Predicted binding mode of putrescine in ODC. 

 

Figure S103. Predicted binding mode of metformin in ODC. 



 

Figure S104. Predicted binding mode of buformin in ODC. 

 

Figure S105. Predicted binding mode of phenformin in ODC. 



 

Figure S106. Predicted binding mode of ADMA in DDAH1. 

 

Figure S107. Predicted binding mode of metformin in DDAH1. 



 

Figure S108. Predicted binding mode of buformin in DDAH1. 

 

Figure S109. Predicted binding mode of phenformin in DDAH1. 



 

Figure S110. Predicted binding mode of guanidinoacetate in GAMT. 

 

Figure S111. Predicted binding mode of creatine in GAMT. 



 

Figure S112. Predicted binding mode of metformin in GAMT. 

 

Figure S113. Predicted binding mode of buformin in GAMT. 



 

Figure S114. Predicted binding mode of phenformin in GAMT. 

 


