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Abstract: Comorbidities are common in children with epilepsy, with nearly half of the patients having
at least one comorbidity. Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder
characterized by hyperactivity and inattentiveness level disproportional to the child’s developmental
stage. The burden of ADHD in children with epilepsy is high and can adversely affect the patients’
clinical outcomes, psychosocial aspects, and quality of life. Several hypotheses were proposed to
explain the high burden of ADHD in childhood epilepsy; the well-established bidirectional connection
and shared genetic/non-genetic factors between epilepsy and comorbid ADHD largely rule out the
possibility of a chance in this association. Stimulants are effective in children with comorbid ADHD,
and the current body of evidence supports their safety within the approved dose. Nonetheless,
safety data should be further studied in randomized, double-blinded, placebo-controlled trials.
Comorbid ADHD is still under-recognized in clinical practice. Early identification and management
of comorbid ADHD are crucial to optimize the prognosis and reduce the risk of adverse long-term
neurodevelopmental outcomes. The identification of the shared genetic background of epilepsy and
ADHD can open the gate for tailoring treatment options for these patients through precision medicine.

Keywords: ADHD; co-morbidity; epilepsy; neurodevelopment; genetics

1. Introduction

Epilepsy is a common neurological disorder affecting 70 million people worldwide [1].
Statistical data show a global lifetime prevalence of epilepsy was 7.6 per 1000 persons; the
point prevalence of active epilepsy was 6.38 per 1000 persons, and a peak incidence was
in patients aged 20–29 years [2]. Epilepsy/seizure was first described as early as the late
Paleolithic period [3] and was mistakenly ascribed to the spells of gods and demons [4].
These supernatural explanations have tortured people with epilepsy to be isolated and
feared so far.

With the advent of neuroscience, the definition of epilepsy evolved dramatically due
to our better understanding of the disease’s underlying mechanisms and natural history [5].
According to the 2014 International League Against Epilepsy (ILAE) task force, epilepsy
is defined as the occurrence of two or more unproved seizures at least one day apart,
one unproved seizure in patients with a high risk of recurrence in the next ten years, or
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presence of epilepsy syndrome [5]. Epilepsy is the most common neurological disorder in
the pediatric age group and affects approximately 0.5–1% during childhood [6].

The recent advance in antiseizure medications (ASMs) has expanded largely over
the past five decades, including at least 24 different ASMs [7], leading to substantial im-
provement in the proportion of patients who achieve seizure-free status for three to five
years and stop ASMs. However, nearly one-third of patients fail to achieve adequate seizure
control [8]. In these patients, childhood epilepsy imposes substantial physical, neurodevelop-
ment, psychological, behavioral, and social burdens; besides, the condition exerts a considerable
economic burden that affects the family and public health system [9,10].

Comorbidities are common in children with epilepsy (CWE). Recent reports demon-
strated that approximately 50% of people with epilepsy have at least one comorbidity and
that the risk of comorbidities may reach eight times higher in people with epilepsy than
in the normal population [11]. Broad spectrums of comorbidities can present in CWE,
including neurodevelopmental, psychiatric, bone, cardiac, and digestive disorders [11].
Attention deficit hyperactivity disorder (ADHD) is one of the most common psychiatric
disorders affecting children. Symptoms of ADHD include impaired attention, impulsivity,
and hyperactivity, leading to risk-taking behavior, learning difficulties, disorganization,
and difficulty completing tasks [12]. Large population-based studies showed a significantly
higher risk of ADHD in CWE than in the general population. The prevalence of ADHD was
found to be as high as 77% in CWE, compared to 3–5% in the general population [13]. The
presence of ADHD in CWE is challenging and can negatively affect the prognosis of the
patients. Previous studies showed that CWE and concurrent ADHD are at increased risk of
having an abnormal neurological examination and abnormal background rhythm on the
electroencephalogram (EEG) [14], lower ASMs adherence [15], and more negative outcomes
in social, behavioral, and learning development compared with CWE alone [16].

Despite the high burden, comorbid ADHD remains unrecognized in the clinical setting.
Besides, the current literature shows controversies regarding the magnitude and nature of
ADHD in CWE, the connection between ADHD and ASMs, the challenges in managing
epileptic children with ADHD, and the role of precision medicine in the management of
ADHD in CWE. Thus, the current literature review aims to summarize the current burden of
ADHD in childhood epilepsy, the possible mechanisms of association between epilepsy and
ADHD, and the challenges imposed by ADHD during the management of childhood epilepsy.

2. Evolving Concepts in Epilepsy Classification and Etiologies

Epilepsy is a leading cause of disability, morbidity, and economic burden worldwide.
Current data indicate a global age-standardized prevalence of epilepsy of 540.1–737 per
100,000 population [17]. Nevertheless, the burden of epilepsy shows notable demographic
and socioeconomic disparities, with a striking difference in its incidence between developed
(33–82/100,000) [18] and developing (up to 187/100,000) countries [18,19]. The prevalence
of epilepsy was reported to range from 1.5 to 40 per 1000 population [9]. In the pediatric
age group, the estimated prevalence was 6.8 per 1000 in the USA [20], 3.2–5.1 per 1000 in
Europe [21], 1.5 to 14 per 1000 in Asia [22], and 3.3 per 1000 in Taiwan [23]. The incidence
of epilepsy is highest in the first year of age and decreases to adult levels by the end of
10 years of age [24]. Prevalence and incidence of epilepsy are relatively higher in males
than in females [2].

CWE shows a substantial diversity in the seizure onset, type, duration, associated syn-
dromes, and underlying etiologies. Therefore, epilepsy classification acts as a framework
for definitive cost-effective diagnosis and optimal management of childhood epilepsy [25].
The subjective symptoms and objective characteristics (collectively termed semiology) play
a central role in diagnosing and managing epilepsy. Therefore, with the aid of video EEG,
the revised ILAE classification of epilepsy in 1989 put more emphasis on epilepsy semiol-
ogy, and the classification was based mainly on seizure characteristics and consciousness
level [26]. However, with the advances in our understanding of cellular mechanisms and
wide use of invasive monitoring, such as stereo EEG (SEEG), the ILAE classification under-
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went several revisions for a more comprehensive multi-level classification incorporating
ictal semiology, seizure types and localization, and degree of conscious impairment [27].
Nevertheless, these revisions were criticized for including unnecessary terminologies and
complexity, which limited their applications in routine practice and continued use of the
1989 classification [28].

Thus, with the evolving evidence of a strong correlation between the semiologic
features and SEEG-recorded activated cortical zones during seizure episodes [29], the ILAE
published a new classification in 2017 that not only heavily relies on the semiologic features
but also incorporates etiology and the risks of comorbidities (Figure 1) [30]. The 2017
multi-level classification begins with the clinical identification of seizure type, which is now
operationally classified into focal, generalized, or unknown onsets [31]. The proportion
of generalized and unknown seizures peaks in children less than one year and decreases
with age, while the proportion of focal seizures shows its highest peak in children aged
5–9 years [32]. In the second classification level, generalized seizures are categorized
according to the presence of motor onset, while focal seizures are classified according to
the associated awareness impairment and the presence of motor or non-motor symptoms.
In some instances, generalized and focal seizures co-exist in EEG and clinical presentation,
such as Dravet syndrome. The third level in the 2017 ILAE classification is to identify
epilepsy syndrome, referring to a distinct entity characterized by the presence of aggregate
clinical, EEG, and imaging features. Besides, some epilepsy syndromes incorporate age
at onset, prognosis, diurnal variations, and/or comorbidities [30]. Epilepsy syndromes
can play a significant role in predicting treatment response and prognosis of the patients;
certain syndromes—such as West syndrome and Dravet syndrome- have a well-established
association with drug resistance, cognitive impairment, and psychosocial outcomes [30].
Importantly, several clinical trials showed a syndrome-specific efficacy of traditional ASMs
and hormonal therapy [33,34].
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Nearly 75% of patients were historically classified as having epilepsy of unknown
etiology. However, with the advancement in gene-sequencing studies and neuroimaging,
there was a paradigm shift in identifying epilepsy etiologies, and several genetic mutations
were incorporated into the etiology of epilepsy [35]. A better understanding of the under-
lying etiology can open the gate for the clinical application of precision medicine in the
epilepsy setting and the development of targeted therapies that tackle the neurobiological
pathways for epilepsy [36]. Therefore, the 2017 ILAE classification emphasizes identifying
the underlying etiology of epilepsy, whenever possible, to guide clinical judgment and
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management algorithms. Etiologies for epilepsy are broadly classified into six categories
(see Figure 1), with overlapping causes in many patients.

Congenital or acquired structural damages are common causes of childhood epilepsy,
and their identification is crucial in achieving seizure-free status through appropriate
interventions, such as respective surgery. On the other hand, metabolic conditions—such
as mitochondrial cytopathies- can lead to epilepsy and require specific metabolic therapy to
optimize patients’ outcomes. Autoimmune etiologies have also been implicated in epilepsy
secondary to the development of autoantibodies leading to inflammatory changes and
encephalitis; autoimmune epilepsy usually responds to immunomodulatory therapies.
Infectious etiology was also identified in patients with epilepsy, such as tuberculosis and
meningococcal meningitis. Epilepsy of unknown etiology implies no identified causes and
is usually associated with normal imaging findings and a lack of relevant history.

Several epilepsy syndromes are classified under genetic etiology—such as generalized
genetic epilepsy syndromes-; nonetheless, it should be noted that a genetic etiology is not
synonymous with generalized epilepsy; many focal epilepsies have known monogenic or
complex polygenic causes [35]. De novo mutagenesis is increasingly identified in cases
with epilepsy, donating a clear distinction between “genetic” and “inherited” epilepsy, as
well as explaining the limited familial liability of epilepsy [37]. Certain genetic mutations
were also linked to developmental delay and poor prognosis in CWE.

Lastly, the 2017 ILAE classification identified comorbidities as integral components
during the evaluation and management of epilepsy due to their profound impact on
the patient’s outcomes and quality of life. In the next section, we discuss the burden of
comorbidities in CWE.

3. The Burden of Psychiatric Comorbidities in Epilepsy

The burden of comorbidities is high in patients with epilepsy; compared to the general
population [11]. The burden of comorbidities in patients with epilepsy also demonstrates
distinct disparities between high and low-income countries and between the adult and
pediatric populations. For instance, the comorbidities in patients (including infants and
adults) with epilepsy were: depression (13%), psychosis (10.4%), alcohol abuse (8.7%), and
drug abuse (7.8%) in the United States [38]. Comparably, in a systematic review and meta-
analysis that covered 39 low and middle-income countries, the distribution of comorbidities
of patients (including children and adults) with epilepsy in the published reports was as
follows: infectious diseases—such as neurocysticercosis and meningitis–(44%), somatic co-
morbidities -such as cranial trauma, malnutrition, stroke, and diabetes- (37%), psychosocial
(11%), and psychiatric comorbidities (8%) [39]. In adults, approximately half of patients
with active epilepsy have at least one comorbidity [11,40]. Reported comorbidities include
mental and behavioral disorders and diseases related to the endocrine system, nervous
system, circulatory system, respiratory system, digestive system, genitourinary system,
musculoskeletal system, connective tissues, etc. [11]. In the pediatric population, nation-
wide reports indicated that up to 80% of CWE suffer from at least one comorbidity, with
a notably high burden even in cases with complicated epilepsies [41,42]. In a population-
based in the United Kingdom that included 12,720 patients with epilepsy, nearly 70% of
patients had one or more comorbidities, and 30.3% had three or more comorbidities [43].
Several comorbidities were reported in patients with epilepsy, including infectious diseases,
neurological disorders (such as stroke, cerebral palsy, and malformations), non-neurological
malformations, peptic ulcers, osteoporosis, neurodevelopmental, and psychiatric comor-
bidities [44]. Comorbidities can negatively impact the long-term developmental, learning,
and psychological outcomes of affected children, as well as the quality of life of the patients
and their families [44,45].

Psychiatric comorbidities are prevalent in CWE, and the association between epilepsy
and a higher risk of psychiatric disorders is well-established [46]. Data from the United
States (US) showed that 39.9% of CWEs had at least one psychiatric disorder [38]. Another
nationwide study from the US on six million children showed that the risk of neurodevel-
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opmental disorders was significantly higher in children with newly diagnosed epilepsy
(60% versus 23%) [47]. Data from the UK also show that the prevalence of psychiatric
comorbidities ranges from 20–30% [48]. In two reports from Norway, the prevalence of
psychiatric comorbidities in CWE ranged from 37.7% to 42.9%, compared to 6.6% in chil-
dren from the general population [42,49]. In India, nearly one-third of CWE were found
to have psychiatric comorbidities [50]. Notably, in the abovementioned registries, neu-
rodevelopmental and behavioral disorders were found to take a considerable pole in CWE
and psychiatric comorbidities. In the Norwegian registries, 21.3% of the children were
found to have neurodevelopmental disorders [42]. Jason et al. collected data from the
Swedish Registry of Epilepsy and found that 32% of children had neurodevelopmental
comorbidities at diagnosis, which increased to 35% after two years [51]. In 2012, Russ et al.
utilized the 2007 National Survey of Children’s Health data and found that CWE were
more likely to have neurodevelopmental disorders than the general population [52]. In
CWE, the most common neurodevelopmental disorders include neurodevelopmental delay,
behavioral and emotional disorders, autistic spectrum disorder, intellectual disability, and
ADHD [44].

4. Evolving Concepts in ADHD

ADHD is a neurodevelopmental spectrum disorder affecting mainly preschool and
younger children and is characterized by excessive activities and impaired attention and
concentration. In return, children with ADHD usually exhibit disorganization, difficulty in
completing tasks, learning disabilities, impaired decision-making, emotional dysregulation,
and risk-taking behavior [12]. It is the most common behavioral disorder in children, with
nearly 5–7% of the global pediatric population having ADHD. The distribution of ADHD
shows a notable geographical disparity. Recent reports showed an increase in the number
of children with clinically diagnosed ADHD in the past few decades [53]. A report from
Sweden showed a fivefold increase in the number of children with a clinical diagnosis of
ADHD from 2004 to 2014, which is mainly attributed to increased awareness of ADHD
among general pediatricians and the public rather than an actual increase in the number of
children with diagnostic-level of ADHD [54].

Although the precise pathogenic mechanisms underpinning the development of
ADHD are unclear, however, ADHD exhibits functional and structural abnormalities.
Previous reports suggested the involvement of dysregulated neurotransmitters, includ-
ing dopamine and norepinephrine [55], reduced cerebral blood flow in the prefrontal
region [56], reduced gray matter volume in the prefrontal, parietal, striatal, and cerebellar
areas [57] and in the basal ganglia [58], and dysfunction in the right inferior frontal cortex,
striatal-thalamic areas, anterior cingulate cortex, and supplementary motor area [59–61], in
the pathogenesis of ADHD.

The current literature describes several environmental and genetic risk factors for the
development of ADHD in children. Environmental factors related to maternal parts, such as
advanced age, socioeconomic factors, and psychosocial deprivation [62], smoking [63], alco-
hol [64], lead [65], polychlorinated biphenyls and dioxins [66] and anemia; neonatal parts,
such as September births, low birth weight, breech delivery, prematurity, hypoxic-ischemic
encephalopathy, small head circumference, cocaine and alcohol exposure, and iodine and
thyroid deficiency [67]; low levels of Mg, Fe, Zn, Cu and Se in the children with ADHD [68];
environmental factors: air pollution [69], and infection diseases, such as influenza, human
immunodeficiency virus, Enterovirus 71, Varicella Zoster, Borrelia burgdorferi, streptococcus,
acute otitis media [67], showed strong associations with ADHD. Genetic factors represent
the most significant predictors of ADHD, according to genome-wide association studies
(GWAS) and nationwide observational studies. According to a 2010 meta-analysis by
Nikolas et al., it was estimated that the heritability of ADHD is as high as 70–80% after con-
trolling for potential confounders, such as sex, age, and diagnostic approach [70]. Besides,
twin studies demonstrated a strong correlation between genetic factors and clinical traits of
ADHD, donating that genetic factors also influence symptom distribution of ADHD [71].
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ADHD is primarily a polygenic disorder; recent GWAS identified 304 genetic variants in 12
independent loci associated with the risk of ADHD [72]. Single-nucleotide polymorphisms
(SNPs)-based heritability can present in up to 34% of children with ADHD, with a signifi-
cant impact of these SNPs on symptoms score, suggesting both a polygenic architecture of
ADHD and genetically influenced phenotype [73].

Clinically, the diagnosis of ADHD is challenging because the diagnosis of this disease
only can rely on the established diagnostic criteria, which include observing specific be-
haviors in multiple settings. However, errors may not be avoided because of substantial
variations in presenting symptoms and extent of impairment, and the subjectivity of the ob-
servers. Moreover, the definition and diagnosis of ADHD have evolved since its recognition
as a functional disturbance rather than so-called “minimal brain dysfunction” [74]. Initially,
the condition was called “hyperkinetic reaction of childhood disorder” in the second edition
of the Diagnostic and Statistical Manual of Mental Disorders (DSM-II), implying symptoms
of excessive motor activity. Later, the disease was termed “attention-deficit disorder” in the
DSM-III. However, with the progress in understanding the potential causes and various
presentations, the condition was then termed ADHD in the subsequent DSM editions [75].
According to the DSM-V, children up to 16 years old should have at least six symptoms
in the two domains of ADHD (hyperactivity/impulsivity and intention) in at least two
separate settings. Adults and adolescents should have at least five symptoms in each of
both domains (Table 1). In both age groups, the symptoms should be disproportional to the
developmental stage of the patients and persist for six months [76].

Several changes were made in the DSM-V regarding the diagnosis of ADHD compared
to previous editions. The age at onset increased from seven to 12 years old to account for
the fact that significant ADHD-related impairments can persist in adolescents and younger
adults [77]. Besides, ADHD no longer belongs to disruptive behavior disorders, allowing
for a separate diagnosis of ADHD and autism. The DSM-V also changed the term “subtype”
to “presentation” to reflect that ADHD manifestations are dynamic and can change in
adulthood. According to the predominant symptomatology, the DSM-V classifies ADHD
into three presentations: primarily inattentive, primarily hyperactive, and a combined
type [76].

Table 1. Key symptoms of ADHD.

Inattentive Symptoms Hyperactivity/Impulsivity Symptoms

Pays no attention to details and makes reckless actions
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Pays no attention to details and makes reckless actions ❖ Excessive fidgets. 
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Excessive fidgets.

Inability to maintain attention in school, exercise, and work Failure to remain in the seat when required.

When addressed, he does not appear to listen. Frequently runs around or climbs in inappropriate settings.

Inability to follow directions, failure to complete work Often unable to quietly participate in play when needed.

Demonstrate a significant level of disorganization during the
execution of tasks and activities Always “on the move” and appears “powered by a motor.”

Tendency to avoid tasks that require attention, such as reading
long papers. Talks excessively.

Items required for tasks and activities are misplaced. Answers impatiently before the inquiry is finished.

Extraneous stimuli such as irrelevant ideas cause distraction. Frequently unable to await their turn.

Inattention to regular tasks such as paying bills and making
appointments Frequently interrupts or interferes with others

5. The Burden of ADHD in CWE

The association between ADHD and CWE is under-recognized in clinical practice [42,43,78].
Statistical data shows that the reported prevalence of ADHD in CWE ranges from 12–70%,
which is primarily attributed to disparity in screening tools, diagnostic criteria, and studied
age groups [13,16,42,49,52,79–84] (Table 2). However, the prevalence of ADHD in healthy
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children without epilepsy is approximately 5–15% [42]. Obviously, CWE has a higher risk
of ADHD than the general population.

Primarily inattentive presentation of ADHD appears to be more common than other
presentations in CWE, which contradicts the distribution of ADHD presentations in the
general population [85]. Previous reports showed that problems with attention were more
common in ADHD patients with epilepsy than in children with ADHD alone [86]. However,
other reports showed a similar distribution of ADHD presentations in children with ADHD
and epilepsy and the general ADHD population [87].

Table 2. Prevalence of ADHD in CWE.

Country Published Year ADHD/CWE% References

Brazil 2010 29.1 [82]
China 2012, 2018 24.7–42 [81,84]
Israel 2011 70 [79]
Iran 2016 60.4 [83]
Norway 2011, 2016 12.1–31.7 [42,49]
UK 2014, 2003 12–33 [78,80]
USA 2012 23 [52]
USA 2003 37.3 [13]

Several risk factors were implicated in the co-presence of ADHD in CWE. Although
ADHD is more common in boys than girls, reports on CWE showed equal sex distribution of
ADHD [85]. Besides, case-control studies showed that the male gender was not predictive
of ADHD in CWE [49,88]. The literature also indicates conflicting results regarding the
association between age at the onset of epilepsy and ADHD. Further evidence is required to
establish the association between younger age at seizure onset and ADHD [89,90]. Besides,
environmental factors, such as prenatal exposure to ASMs, increased the risks of ADHD
symptoms in CWE [91].

On the other hand, previous reports demonstrated a trend toward an association
between seizure characteristics and the risk of ADHD in CWE. For example, two reports
showed a positive correlation between impaired level of attention and temporal lobe
epilepsy or childhood absence epilepsy (CAE) [92,93]; however, it should be noted that
the other reports showed no correlation between seizure type and ADHD, reflecting that
the current evidence is controversial regarding the association between seizure type and
ADHD [85,88]. Single-center experience also reported a significant association between
increased spike index or interictal spikes and impaired attention [89,94,95]. However, the
ILAE consensus on ADHD in CWE concluded that the current evidence is still limited
to support the association between EEG variables and the risk of ADHD [91]. Seizure
frequency has also been linked with the risk of ADHD in CWE; prospective studies showed
that, in children with drug-resistant epilepsy, higher seizure frequency was a significant
predictor of the presence of ADHD symptoms [96,97]. Limited evidence is available
regarding the association between ASMs and the development of ADHD. ASMs, such as
phenobarbital, phenytoin, and valproic acid, were found to increase the risk of cognitive
impairments, including inattention and hyperactivity [98]. However, it is still unclear
whether there is an association between polypharmacy and the risk of ADHD, which
requires future studies to investigate whether the adverse effects of polypharmacy increase
the risk of ADHD comorbidity in CWE syndromes. Family history can play a role in the
development of ADHD in CWE. A Previous single-center report showed that CWE and
comorbid ADHD had a significantly higher rate of maternal history of ADHD than CWE
only [99]. Nevertheless, there is a strong link between ADHD and epilepsy. Moreover, the
impact of comorbid ADHD in epileptic patients is heavily, often associated with academic
and occupational underachievement, anxiety, and depression [100].
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6. ADHD and Epilepsy: Mechanisms of Association

Although a myriad of evidence indicates the high burden of ADHD in CWE, the
precise mechanisms underpinning the association between ADHD and epilepsy are un-
clear. Several models were proposed to explain the reasons for the association between
epilepsy and comorbidities, which are usually interchangeable and can co-exist in the same
individuals. In 2009, Kaufmann et al. [101] proposed three hypotheses for the possible
mechanisms of association between epilepsy and comorbidities. In 2016, Keezer et al. [11]
extended these hypotheses and incorporated several aspects of other theories to classify
the potential mechanisms of associations into five main categories. In this review, we
adopted this framework to highlight the possible association mechanisms between ADHD
and epilepsy.

6.1. ADHD and Epilepsy: A Chance?

ADHD and epilepsy are common in children; thus, it is expected to observe the co-
existence of both disorders in some children. However, mounting evidence as suggested by
Chou et al. [102] that ADHD may significantly increase the risk of epilepsy developing and
vice versa. The magnitude of the association between epilepsy and ADHD largely rules
out the possibility of a chance in this association.

6.2. Causative Mechanisms

The relationship between epilepsy and ADHD can be divided into direct and indirect
based on the causative mechanisms. For example, ADHD may directly be attributed to the
temporal effects of epileptic discharges [103] or may indirectly be due to the side effects of
ASMs [104].

6.3. Resultants Mechanisms

CWE and ADHD patients exhibited significant adrenergic system dysfunction, which
can explain the association between both disorders [105]. Previous experiments demon-
strated that rats with induced epilepsy and interictal spikes showed significant levels of
ADHD-related symptoms, such as inattention and impulsivity, which were attributed to
reduced noradrenergic transmission [106,107]. Thus, it can be hypothesized that adrenergic
system dysfunction in CWE acts as a resultant mechanism for comorbid ADHD.

On the other hand, the current body of evidence showed an association between
comorbid ADHD and complicated epilepsy [92,93], increased spike index [89,94,95], and
higher seizure frequency [96,97]. Thus, researchers have also suggested that neuronal
damage in children with complex or uncontrolled seizures may contribute to the increased
risk of ADHD in these patients.

6.4. Shared Genetics

The past few decades have witnessed dramatic advances in our understanding of
genetics’ role in the development of both epilepsy and ADHD, even though these are seem-
ingly two distinct diseases but are with a common genetic background. For instance, some
chromosomal abnormalities, such as 5q14.3 and 7p22.3, were found in both ADHD and
epilepsy [108,109]. Likewise, several single nucleotide polymorphisms (SNPs), including
myocyte enhancer factor 2 (MEF2C)-related disorders and methyl-CpG binding protein 2
(MECP2), were also found to have a high rate in children with ADHD and CWE [110]. A
growing body of genetic studies suggested a significant familial liability for epilepsy and
comorbid ADHD in children with a history of maternal ADHD [99] and epilepsy [111], sug-
gesting familial clusters of that ADHD and epilepsy. Relatedly, Brikell et al. demonstrated
that the risk of comorbid ADHD increased significantly in children with a family history of
epilepsy; genetic correlation explained 40% of the phenotypic correlation between epilepsy
and ADHD. Notably, the risk was higher among full siblings than half-siblings, further
confirming the familial genetic liability [112], suggesting that the two diseases may have
overlapped genetic pathogenesis.
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In return, biological models were developed to explain the genetic overlap between
epilepsy and ADHD. ADHD is a neurobiological disorder that encompasses several bio-
logical dimensions with multifactorial interactions. Thus, ADHD and epilepsy may share
certain aspects of biological dimensions, despite the distinct clinical phenotypes [110].
Therefore, comprehensive omics data analysis is needed to investigate the biological over-
lap between ADHD and epilepsy. Another proposed explanation for the genetic overlap
between epilepsy and ADHD is the fact that ADHD is a spectrum disorder, and epileptic
seizures can be defined along a single spectrum.

6.5. Shared Risk Factors

As elaborated by Brikell et al., the genetic correlation explained only 40% of the
phenotypic correlation between epilepsy and ADHD [112], which is lower than the findings
of the correlation between ADHD and other neurodevelopment disorders [113]. Such
results suggest that the genetic correlation between ADHD and epilepsy does not fully
explain the high burden of comorbid ADHD in epilepsy and that environmental or other
factors play a significant role in this association [114]. Environmental factors, such as
toxins, low birth weight, advanced maternal age, socioeconomic factors, and psychosocial
deprivation, showed strong associations with ADHD risk in well-controlled studies [62].
Recently, a study merging the daily air pollution data from the Environmental Protection
Administration and the population data including children with ADHD from the Taiwan
National Health Insurance Research Database concluded that exposure to higher levels
of air pollutants in early life, the risk of developing ADHD was higher [69]. Consistently,
these factors were also implicated in the development of epilepsy [115–119].

6.6. Bidirectional Connection

Bidirectional effects imply that co-existing conditions can cause each other. Bidirec-
tionality can be assumed when a reciprocal temporal sequence is established. Previous
reports showed that autism spectrum disorder, another neurodevelopmental disorder, had
a bidirectional connection with epilepsy and that children with autism have a higher risk of
developing epilepsy than the general population [120]. As previously stated, the prevalence
of ADHD is higher in CWE than in the general population. CWE has two-to-seven times
higher risk of ADHD than the general population [42,44,78]. Notably, Liu et al. found
that ADHD symptoms were more prevalent in new-onset epilepsy than in healthy con-
trols (31% versus 6%), reflecting that ADHD occurred in these patients before epilepsy
onset [121]. The bidirectional connection between epilepsy and ADHD was established
by a population-based study that included children with new-onset epilepsy and new-
onset ADHD from the Taiwan National Health Insurance Research Database. The results
revealed a 2.54-fold increased risk of subsequent ADHD in CWE compared to controls. At
the same time, children with new-onset ADHD had a 3.94-fold increased risk of subsequent
epilepsy [102]. These findings suggest that clinical or subclinical epileptiform discharges
are likely to involve the onset of ADHD, especially attention problems. Therefore, these
two conditions substantially have a bidirectional connection, and even mutually overlap to
some extent the bidirectionality between epilepsy and ADHD can be viewed in the light of
the shared genetic factors, pathological changes, and environmental risk factors rather than
as evidence that ADHD can lead to epilepsy or vice versa.

7. ADHD in Different Types of Epilepsy

The prevalence of ADHD is significantly higher in CWE than in normal controls
(Table 2). Because it is not clear whether the cause for the connection between ADHD
and CWE is due to a global attention deficit or a specific network deficit, therefore, the
connection between ADHD and CWE has been presumed to be attributed to interactions
between ongoing seizures, underlying causes of symptomatic epilepsy or innate properties
of epilepsy [122–125]. There are several types of epilepsy associated with ADHD discussed
in the following.
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7.1. Generalized Epilepsy

Generalized seizures start when all brain areas are affected by an abnormal, widespread,
excessive electrical impulse. Symptoms include losing muscle tone, clonic, jerking, or stiff-
ening limbs, staring and blinking, and rhythmic, full-body jerking, typically provoked
by sleep deprivation, fatigue, and alcohol drinking [126]. Antecedent and birth history,
neurological examination, intelligence, and head size are typically normal. Most children
with seizures were found to be in a generalized manner [127]. Attentional difficulties
are more common among patients with generalized epilepsies than those with partial
seizures [85,128]. Some of them also show memory impairment, learning problems, and
psychomotor impairments [129]. The neurological basis for such cognitive impairments
in patients with generalized epilepsy is unclear. Impaired brain development in children
with epilepsy has been linked to a range of cognitive and behavioral issues, including the
development of ADHD.

7.2. Frontal Lobe Epilepsy (FLE)

The frontal lobes, which constitute almost one-third of the human brain, are the
largest parts of the brain. Frontal lobes can incorporate with other parts of the brain and
contribute to overall brain function. FLE is the second most common partial epilepsies
in childhood [130]. Any epileptic discharges within the frontal regions may potentially
affect frontal lobe-associated functions, such as motor functions, control of continence, and
olfaction, voluntary eye movements, speech and language abilities, executive functions,
motivational behaviors, and social competency. Impairments of those functions may lead
to variable symptoms in patients with FLE [131]. The manifestations of FLE include
nausea, vomiting, vertigo, motor and cognitive abnormalities, abnormal body posturing,
tics, disinhibition, excessive excitement/irritability, inattention, and impulsivity [132]. The
psychiatric manifestations of FLE may be difficult to differentiate from those with ADHD
without epilepsy, and ADHD may mimic FLE with or without ADHD and vice versa [133].
As the underlying mechanisms for FLE are that frontal cortex abnormalities dysregulate the
frontal lobe networks, leading to attention and hyperactivity at a crucial early stage of brain
maturation [134], it may be easily confused with ADHD [132]. Nocturnal FLE, is defined
by seizures that attack in sleep and originate in the orbitofrontal or mesial frontal areas,
and has been reported to be associated with ADHD [135]. Patients with tuberous sclerosis
involving frontal lobes were reported to present seizures with concomitant ADHD [136].

7.3. Childhood Absence Epilepsy (CAE)

CAE is one of the common forms of pediatric epilepsy. Approximately 10–17% of all
childhood-onset seizures are determined to be typical CAE [137], which presents with a
short duration (4 to 30 s), transient disturbance of consciousness, blinking, staring, and/or
subtle or motionless activity without post-ictal symptoms, and less commonly, various
types of automatisms, occurring numerous times per day and happen without being
noticed for long. CAE is typically provoked by hyperventilation and sleep deprivation.
EEG shows generalized 2.5 to 5 Herz spike wave activity [138]. A study reports that 25%
of CAE children have subtle cognitive deficits and ADHD is significantly associated with
CAE (26% of children with CAE vs. 6% of normal children) [139], suggesting cognitive or
psychiatric comorbidities, especially ADHD are associated with CAE.

7.4. Benign Rolandic Epilepsy (BRE)

BRE, or benign epilepsy with centrotemporal spikes (BECTS), is a common idiopathic
focal epilepsy in childhood. Approximately 9.6–10.3% of all epilepsy cases in children
are determined to be BRE and typically onsets between 2–13 years of age without any
neurological or intellectual deficit before onset. Seizure types of BRE are characterized by
brief hemitonic or hemiclonic movements localized in the orofacial region, often preceded
by unilateral parasthesia, and anarthria or speech arrest and drooling of saliva due to sialor-
rhoea and saliva pooling [140]. Seizures occur mainly during sleep or upon awakening with
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or without a secondary generalization and remit during adolescence. Seizure frequency
is usually low. EEG shows a high voltage spike (greater than 100 mV) focus located in
the centro-temporal (Rolandic) area with normal background activity and epileptiform
discharges actively occurring during sleep, which are diagnostic. Postictal weakness in the
involved areas may occur [141].

8. Do stimulants Increase the Risk of Epilepsy?
8.1. Stimulants Are Highly Efficacious in CWE with Comorbid ADHD

A cumulative body of evidence indicates a high response rate of ADHD patients to
stimulants, either alone or in combination, with well-tolerable safety profiles [142]. There-
fore, the current guidelines recommend first-line methylphenidate (MPH) or amphetamine
(AMP) as the stimulants of choice for children with ADHD [143]. The efficacy of stim-
ulants was consistent in CWE and comorbid ADHD [144,145]. Actions of MPH contain
inhibition of the dopamine and norepinephrine transporter, activation of the serotonin
type 1A receptor, and redistribution of the vesicular monoamine transporter 2(VMAT2).
Actions of AMP contain the block of the dopamine and noradrenaline transporter, VMAT2,
and monoamine oxidase activity [146]. Approximately 10–30% of ADHD may not have a
proper response to stimulants or may not be capable of tolerating side effects, including
appetite suppression, mood difficulties, sleep disturbance, and tic exacerbation. Alternative
stimulants or non-stimulants can be used in such cases [147].

8.2. MPH in Pediatric Subjects and AMP in Adults Are the First-Line ADHD Therapy

Two double-blind trials show that MPH achieved a response rate of 60–70% in CWE
and comorbid ADHD [148,149] (Table 3); MPH was found to improve attention and memory,
executive function, cognition, and the overall health-related quality of life [150]. The effect
of MPH on cognition and memory was found to be dose-dependent [151]. The efficacy
of stimulants was also evident in patients with refractory epilepsy. In two controlled
trials, MPH had a response rate of 63–73% in children with severe epilepsy three months
after treatment, regardless of the degree of learning disability [152,153]. Although AMP
achieved a response rate of 48–58% in adults with ADHD [154,155], however, the evidence
for AMP in CWE is less established, with a single-center retrospective study showing that
the response to AMP was only 24% [156]. Cortese et al. compared the effectiveness and
side effects of medications for the treatment of ADHD, including AMP and MPH through
conducting a network meta-analysis and systematic review, and concluded that MPH in
children and adolescents and AMP in adults are preferred first choice for short-term ADHD
treatment [142].

8.3. Evaluating the Risk of Increasing Seizures in CWE and Comorbid ADHD Receiving
Stimulants Is Crucial

Based on the findings of case reports [157–159] and a study pointing out possible
seizure attacks in MPH overdose [160], stimulants were hypothesized to reduce the seizure
threshold and, hence, increase the seizure frequency or even induce new seizures in patients
with a long-standing seizure-free status [158,161]. An open-label trial studied 30 ADHD
children with epilepsy receiving a single or two ASMs for an 8-week observation, and
a single dose of MPH was given to all patients for the following 8 weeks. Although
none of the 25 children with seizure-free status, however, there was a trend of increased
seizure numbers in children with an active seizure at enrolment [162]. The same findings
were reported by controlled trials and retrospective chart reviews [149,163]. The risk of
seizure was also reported to be dose-dependent [156]. A population-based study retrieved
the data of 29,604 ADHD children on MPH from the Hong Kong Clinical Data Analysis
and Reporting System. Although the incidence of new-onset seizures in this report was
only 0.2% (4.4 per 10,000 patient-years), seizure risk increased during the first month
after treatment but not after three months when compared to pre-MPH [164]. Therefore,
regulatory agencies indeed issued a caution for the use of stimulants in CWE and comorbid
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ADHD (i.e., www.fda.gov (https://www.accessdata.fda.gov/drugsatfda_docs/label/2013
/010187s077lbl.pdf, accessed on 2 March 2023), “Prescriber’s Digital Reference”, www.pdr.
net (https://www.pdr.net/drug-summary/Ritalin-LA-methylphenidate-hydrochloride-
1003, accessed on 2 March 2023)). Despite the high efficacy of stimulants in ADHD, even
in CWE, and in refractory epilepsy, many treating clinicians are reluctant to prescribe
stimulants in CWE with comorbid ADHD due to the concern of the increased risk of
seizure. Therefore, evaluating the risk of increasing seizure attacks in children with ADHD
receiving stimulants, especially in CWE with refractory seizures, is crucial, because these
patients have the highest risk of comorbid ADHD.

8.4. The False Myth of Increased Risk of Seizures with Stimulants

Subsequent evidence with larger samples and a more controlled design showed no
increase in the risk of seizure in CWE and comorbid ADHD (Table 3). In a retrospective
study, the comparisons between the seizure frequencies in the 3 months before, during,
and after MPH treatment in 30 children and adults with active post-traumatic seizures
showed a trend toward lesser seizure attacks during MPH treatment [165]. Addition-
ally, several published literature consistently showed no increase in the risk of seizures
in patients with or without poorly-controlled epilepsy [144,148,150,153,156,164,166–170].
In a previous report, only two children reported an increased seizure frequency out of
the included 22 patients with poorly controlled epilepsy [153]. Liu et al. conducted a
retrospective chart review on 18,166 stimulant users and 54,197 non-users in CWE. The
results indicated no difference in the risk of seizure-related hospitalization between users
and non-users [171]. As these results were consistent in patients with complex epilepsy,
concerns regarding increased seizure frequency in children with complex or uncontrolled
seizures and combined ADHD [149,162] can be relieved based on these data. In addition,
a review of seven prospective studies concluded that MPH does not increase the seizure
frequency or incidence of new-onset seizures [172]. Although the review was limited by
the small number of pooled patients, short follow-up duration, and lack of a control group,
studies with a larger sample size and longer duration follow-up were deemed necessary.
While the evidence supports the safety of stimulants in CWE, it is still limited by the
small sample size and uncontrolled design. Thus, safety data should be further studied in
randomized, double-blinded, placebo-controlled trials.

www.fda.gov
www.accessdata.fda.gov/drugsatfda_docs/label/2013/010187s077lbl.pdf
www.accessdata.fda.gov/drugsatfda_docs/label/2013/010187s077lbl.pdf
www.pdr.net
www.pdr.net
www.pdr.net/drug-summary/Ritalin-LA-methylphenidate-hydrochloride-1003
www.pdr.net/drug-summary/Ritalin-LA-methylphenidate-hydrochloride-1003
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Table 3. Main Findings of Studies Reporting the Risk of Seizure in Patients on Stimulants.

Author Year Design Patients
Stimulants/ADHD
Improved the
Rate

No. Follow-Up Main Findings

Liu [171] 2018 Retrospective CWE MPH or
AMP/NA 72,363 1 year No risk increase

Wiggs [169] 2017 Retrospective ADHD with and
without epilepsy

ASC, d-MPH,
DAS, LDX,
MAH, MP, and
MPHH/NA

801,838 10 years Reduced risk

Rheims [150] 2016 Prospective

Active or
controlled CWE
and comorbid
ADHD

MPH/75% 167 12–16 weeks No risk increase

Radziuk [164] 2015 Open-label trial Active CWE and
comorbid ADHD MPH/NA 30 6 months No risk increase

Gonzalez-
Heydrich [156] 2014 Retrospective

Controlled CWE
and comorbid
ADHD

MPH/63% or
AMP/24% 36 49 months No risk

increased

Santos [153] 2013 Open-label trial
Active epilepsy
and comorbid
ADHD

MPH/73% 22 4 weeks No risk
increased

Koneski [144] 2011 Open-label trial
Active epilepsy
and comorbid
ADHD

MPH/70.8% 24 6 months No risk
increased

Gonzalez-
Heydrich [149] 2010 Double-blind,

controlled, trial

Active epilepsy
and comorbid
ADHD

OROS
MPH/60–70% 33 1–3 weeks Increased risk

Yoo [170] 2009 Open-label trial
Controlled CWE
and comorbid
ADHD

OROS
MPH/64% 25 8 weeks

No risk increase
in 92% of
patients

Van der
Feltz-Cornelis
[168]

2006 Open-label trial
Active epilepsy
and comorbid
ADHD

MPH/100% 6 6 weeks No risk increase

Gucuyener [166] 2003 Open-label trial Active CWE and
comorbid ADHD MPH/77% 119 12 months No risk increase

Hemmer [167] 2001 Retrospective ADHD MPH, DAS, or
ASC/NA 234 6 years No risk increase

Gross-Tsur [162] 1997 Open-label trial
Controlled CWE
and comorbid
ADHD

MPH/70% 30 8 weeks Increased risk in
active patients

Wroblewski
[165] 1992 Retrospective

children and
adults with
active
post-traumatic
seizures

MPH/NA 30 3 months Risk reduction

Feldman [148] 1989 Double-blind,
controlled, trial

Controlled CWE
and comorbid
ADHD

MPH/70% 10 8 weeks No risk increase

MPH: Methylphenidate; AMP: Amphetamine; CWE: Children with epilepsy; ADHD: Attention-
deficit/hyperactivity disorder; NA: Not available. ASC: amphetamine salt combination; D-MPH:
dexmethylphenidate hydrochloride; DAS: dextroamphetamine sulfate; LDX: lisdexamfetamine dimesylate; MAH:
methamphetamine hydrochloride; MPH: methylphenidate; MPHH: methylphenidate hydrochloride.

9. ADHD and Epilepsy: Challenges and Opportunities
9.1. ADHD Is A Spectrum Disorder

ADHD is a neurobiological spectrum disorder with underlying multiple, complex,
pathophysiological mechanisms. As previously mentioned, several genetic, environmental,
and anatomic factors contribute to the liability of ADHD; children with ADHD also show
smaller cerebellum, cortical, and other brain structures than healthy children, which is
involved in reduced white matter tract connectivity. Emerging evidence also suggested
the involvement of several neurotransmitters in the pathogenesis of ADHD, with an
established dysregulation in the dopaminergic and adrenergic pathways [173]. In return,
CWE and comorbid ADHD can show substantial variations in their phenotypes, and there
is a need to view ADHD not as a unitary disorder but rather as a “dimensional marker
that points to a spectrum of related disorders” [151]. This concept is supported by the
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growing evidence that ADHD presentations are qualitatively different to the extent that
they should be considered distinct disorders due to the overlap in both executive and
non-executive function deficits that can hardly distinguish ADHD traits [174,175]. The
“dimensional” nature of ADHD can be challenging during the diagnosis and management;
the difficulties in identifying the specific disorder of the ADHD spectrum can result in
under or over-prescribing the pharmacological options. The challenge is expected to be
even higher in patients with other disorders, such as CWE [151].

9.2. Challenges in the Early Diagnosis of ADHD in CWE

Early identification and interventions are crucial to optimize the developmental out-
comes of children with ADHD. Previous reports showed that early treatment is associated
with better ADHD-related symptoms, developmental outcomes, and quality of life. Addi-
tionally, early treatment demonstrated cost-effectiveness and reduced direct and indirect
healthcare resource utilization [176]. Despite ADHD being a common comorbidity in CWE,
however, there is lacking a guideline regarding screening, specific diagnostic methods,
and proper treatment. The current guidelines state that a multidisciplinary team should
diagnose ADHD after excluding other causes; the ADHD symptoms should be assessed
through a validated rating scale filled by the parents and teachers [177,178]. Several rating
scales are currently available that evaluate various aspects of the child’s activities; nonethe-
less, many of them still lack standardization in clinical practice. In the 2017 ILAE consensus,
the authors concluded that limited evidence is available regarding the diagnostic yield of
the ADHD rating scale in the setting of CWE. The currently available scales suffer from
low sensitivity in identifying inattentive presentation of ADHD—a common presentation
in CWE- and low specificity, which donates that these tools can be used for screening
purposes only and should be complemented by a detailed psychiatric assessment [91].
The scales also exhibited limited utility and were not validated in some racial groups and
patients with intellectual disabilities [179,180]. To provide a practical and evidence-based
guide in the managing of CWE, a working team under the ILAE Pediatric Commission
targeting screening, diagnosis, and management of ADHD in CWE through a multi-trait,
computerized, multi-method approach yielded a high positive predictive value in children
with ADHD. Still, these approaches have neither been validated in larger multicenter
studies nor in CWE [91].

The diagnosis of ADHD can be challenged in some seizure types, such as CAE. Up to
two-thirds of CAE patients can have comorbid ADHD [139]. Patients with controlled CAE
can develop cognitive defects and variable levels of inattentiveness secondarily to impaired
consciousness, resembling ADHD; patients with CAE were found to have difficulties in
visual attention, visuospatial skills, learning, memory, and language [181]. ASMs can
further burden visual attention, psychomotor, processing, and other cognitive functions
in children with CAE [182]. Therefore, ADHD may be missed in children with CAE. The
ILAE consensus provided a set of recommendations to differentiate between ADHD and
CAE based on symptoms and EEG with hyperventilation [91]. Learning disabilities and
sleep disorders are common in CWE, which can present with inattentiveness. Thus, ADHD
may be misdiagnosed in these populations [183,184].

9.3. Treatment Strategy for ADHD in Epilepsy

The treatment strategy for ADHD in epilepsy involves pharmacological management
and behavioral therapy.

9.3.1. Pharmacological management
Choosing Proper ASMs

There are several ASMs showing effective both in epilepsy and ADHD. For exam-
ple, carbamazepine or oxcarbazepine is reported to improve ADHD-related behavioral
and mood problems [129,185,186] and inattention [187] in patients with partial epilepsy;
levetiraacetm is reported to successfully treat ADHD with nocturnal focal epileptic dis-
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charges [188]; topiramate is reported to positively improve behavioral changes in pediatric
epilepsy with ADHD [163]. Although those medications may be beneficial to CWE with
ADHD, clinicians should perform periodic reassessments to adjust the dosages of ASMs
and/or ADHD medications according to patients’ condition or to titrate the ASMs poly-
therapy or replace a new ASM with less psychological and cognitive effect.

Pharmacological Management for ADHD in Epilepsy

Pharmacological management includes stimulants and non-stimulants.

Stimulants

Stimulants, including MPH and amphetamines, are more efficacious, and act faster,
whereas non-stimulants are less efficacious and take much time for their onset of action. The
action mechanisms for MPH are through reuptake inhibition of dopamine, norepinephrine,
and amphetamines, which act primarily through modulating the release of dopamine and
norepinephrine [189,190]. However, only a few case studies reported new-onset seizures
in the treatment of ADHD (Table 3). In fact, occurrences of seizures were not significantly
different between stimulants and placebo [191]. MPH is the optical choice for treating CWE
with comorbid ADHD [192]. If patients with epilepsy are poorly controlled, and stimulants
cannot control comorbid ADHD with proper doses, non-stimulants should be considered.

Non-Stimulants

Non-stimulants currently approved for ADHD by the FDA are broadly classified as
(1) monoamine reuptake (transporter) inhibitors (Atomoxetine); (2) receptor modulators
(guanfacine, clonidine); and (3) multimodal agents.

Atomoxetine is a selective noradrenergic reuptake inhibitor with a high affinity for
presynaptic norepinephrine transporters (NETs) [193,194]. Atomoxetine was approved
for the treatment of ADHD based on a series of double- blind, randomized controlled
trials in children ≥6 years of age, adolescents, and adults [195–198]. Adverse effects
include, abdominal pain, anorexia, nausea, decreased appetite, diarrhea, severe liver injury,
vomiting, dizziness, drowsiness, fatigue, headache, insomnia, sedation, suicidal ideation,
mild increases in blood pressure and heart rate, decreased libido, and dysuria [142,193]. If
MPH and atomoxetine fail, guanfacine or clonidine may deserve a trial [199]. Guanfacine,
which is not a stimulant, is a selective alpha-2A agonist that is currently FDA-approved
as a supplementary therapy to stimulants for the treatment of ADHD in children and
adolescents ages 6–17 [200]. Guanfacine is orally administered once daily, usually in
the morning, but it should not be taken with high-fat meals. The action mechanism for
Guanfacine in ADHD is unknown, but it may work on certain receptors in the prefrontal
cortex, a part of the brain where behaviors related to ADHD, such as inattention and
impulsiveness, are thought to be controlled [201]. Clonidine, an α 2 –agonist, is approved
for hypertension in adults and is relatively safe and well-tolerated [202]. It can modulate
sympathetic tone by increasing noradrenergic outflow from the locus coeruleus to the
prefrontal cortex and by directly stimulating of presynaptic alpha-2A receptors in the cortex,
leading to increased attention regulation and behavior, suggesting a positive therapeutic
effect on ADHD [203]. Although several studies support the role of clonidine in the
potential treatment of children with ADHD [204–206], this medication is not as effective as
MPH in improving ADHD symptoms [199]. Clonidine is often prescribed and dosed after
dinner or at bedtime for its sedating effects. Adverse effects include somnolence, fatigue,
bradycardia, and hypotension [203].

Non-Pharmacological Management: Behavioral Therapies

Few research assessed behavioral therapies for ADHD in children with comorbid
epilepsy. Although behavioral therapies may not show substantial differences in therapeu-
tic efficacy in children with ADHD with and without epilepsy, however, in CWE, compared
to otherwise healthy children with ADHD, there may be a higher likelihood for medical
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contraindications or parental expectation to decrease the number of medications [207]. It
should be noted that behavior therapy with parent training is the only non-pharmacological
method that showed statistically significant results in clinical trials, and a combination of
behavior therapy with stimulants was more effective than stimulants alone [208], suggest-
ing that parental participation is a key factor in determining behavior therapies will be
successful or not.

9.3.2. Drug Interactions

Atomoxetine has been shown to have no interactions with any AEDs [209], while
MPH can increase serum phenytoin concentrations [210]. Additionally, concurrent admin-
istration of carbamazepine may reduce MPH serum concentrations, resulting in reduced
efficacy [192].

9.4. Novel ASMs against Both Epilepsy and ADHD

Lamotrigine (6-(2,3-dichlorophenyl)-1,2,4-triazine-3,5-diamine; molecular formula:
C9H7N5Cl2; molecular weight: 256.09), developed by the GlaxoSmithKline, is a new
generation broad-spectrum ASM for epilepsy and bipolar disorder. Lamotrigine was
first approved by the US Food and Drug Administration (FDA) in 1994. Over the years,
lamotrigine has been approved for the treatment of epilepsy and bipolar disorder [211].
Guidelines have recommended this medication as first-line monotherapy or polytherapy
for focal and generalized seizures in children and adults [212–216]. Mechanisms of the
antiepileptic effect of lamotrigine include blocking voltage-gated sodium channels and
voltage-gated calcium channels, regulating the release of the inhibitory and excitatory
neurotransmitters, stabilizing membrane potential of neurons, abolishing the repetitive
firing of neurons [217–219].

Several studies show that lamotrigine can improve epilepsy without worsening ADHD
symptoms [220–223]. It is not clear how lamotrigine can exert favorable effects on ADHD
symptoms in CWE. The anti-epileptic effect of this medication may mainly contribute to
this positive effect in improving ADHD in CWE.

9.5. ASMs in CWE and Comorbid ADHD

Comorbid ADHD is usually present in children with complex epilepsy who tend
to be on long-term treatment. Few studies have examined the impact of ASMs on be-
havioral and cognitive outcomes in CWE and comorbid ADHD. Phenobarbital, valproic
acid, and ethosuximide increased ADHD symptoms, particularly attention deficit. On the
other hand, published reports showed inconsistent results regarding the impact of other
ASMs on cognitive functions and ADHD symptoms, with some small studies showing a
beneficial role of lacosamide and carbamazepine on behavior [104]. It is still also unclear
how polypharmacy, with multiple pharmacokinetic interactions, can affect the behavioral
outcomes in CWE and comorbid ADHD. In the ILAE consensus, it was concluded that
valproate and polypharmacy are associated with worsening inattentive symptoms in CWE.
However, these findings should be cautiously interpreted as polytherapy may indicate
complicated epilepsy rather than a cause of deteriorating ADHD symptoms [91].

9.6. Recent Medications Development for ADHD

Stimulants are the first-line treatment for ADHD. However, numerous clinicians, care
providers, patients’ families, and teachers notice that some patients may have a good
initial response to stimulants, but the effects are lessened [224]. Due to the development of
tolerance, variability in patient response to specific pharmaceutics agents, and unwanted
side effects related to stimulants, the need for relief of ADHD drives research for new
treatments targeting the core symptoms of ADHD and fewer side effects. New medications
such as lisdexamfetamine, viloxazine, serdexmethylphenidate/d-MPH, and mazindol
have been approved for ADHD. Centanafadine, dasotraline, vortioxetine, droxidopa, and
baicalin have not been approved by FDA and are under investigation.
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9.6.1. Lisdexamfetamine (LDX)

LDX is a long-acting amfetamine prodrug [225]. Catabolic products of LDX are
d-amphetamine and L-lysine. LDX is safe and well-tolerated. LDX is approved for chil-
dren, adolescences, and adults with ADHD because the efficacy of LDX in ADHD has
been successfully investigated in several large-scale, double-blind, randomized clinical
trials [226–231]. Adverse effects include decreased appetite, headache, insomnia, irritability,
and weight reduction [232].

9.6.2. Viloxazine

Viloxazine is a selective norepinephrine reuptake inhibitor with activity in the no-
radrenergic and serotonergic pathways [233], is approved to be used in the treatment of
ADHD children and adolescents and is administered orally in once-daily oral doses [234].
One possible action mechanism for viloxazine against ADHD is through increased efflux
of norepinephrine and dopamine in the prefrontal cortex [235]. Viloxazine has no drug
interactions with LDX or MPH [233,236]. Adverse effects include somnolence, sedation,
headache, fatigue, decreased appetite, abdominal pain, upper respiratory infection, nausea
and vomiting, cardiovascular effects and suicidal ideation.

9.6.3. Serdexmethylphenidate (SDX)

Serdexmethylphenidate (SDX) structurally consists of d-methylphenidate connected
to a nicotinoyl-L-serine molecule via a carboxymethylene linker. SDX has no affinity for
DATs, NETs or serotonin transporters (SERTs). Although SDX is a novel prodrug of d-
methylphenidate (d-MPH) and is pharmacologically inactive until gradually converted
to active d-MPH in the lower intestinal tract, FDA has not approved it as a single entity
for any indication [237]. As the immediate-release d-MPH component accounts for the
rapid increase in plasma MPH concentrations, while the SDX component increases the
MPH concentration through the evening hours, a multicenter, randomized, double-blind,
placebo-controlled laboratory classroom study, SDX/d-MPH was shown to be efficacious
and well tolerated in children aged 6–12 years with ADHD [238]. Therefore, SDX/d-MPH
has been approved by FDA. Adverse effects include decreased appetite, nausea, vomiting,
dyspepsia, abdominal pain, decreased weight, anxiety, dizziness, irritability, tachycardia,
and increased blood pressure.

9.6.4. Mazindol

Mazindol, originally designed as an appetite suppressant, displays unique phar-
macologic activities that include NET, DAT, and SERT inhibition [239], and modulation
of serotonin (5-HT1A, 5-HT7), muscarinic, histamine H1, µ-opioid, and orexin-2 recep-
tors [240]. Since mazindol’s potency as a NET inhibitor is similar to atomoxetine, mazindol
is presumed to be effective in the treatment of ADHD. A study concluded that the ef-
fect of mazindol was similar to d-amphetamine and nicotine by PET imaging in human
subjects [241]. Mazindol has been shown to be effective in ADHD with good safety in chil-
dren [242] and adults [240]. Adverse effects include fatigue, decreased appetite, weight loss,
drowsiness, dry mouth, nausea, constipation, intestinal distension and upper abdominal
pain, and increases in blood pressure and heart rate.

9.6.5. Centanafadine

Centanafadine (EB-1020), a norepinephrine and dopamine reuptake inhibitor, is not a
stimulant like MPH. Centanafadine can increase striatal dopaminergic neurotransmission,
differentiating it from the noradrenergic ADHD drugs, atomoxetine and viloxazine [194].
Since this medication was found to increase dopamine and norepinephrine in the prefrontal
cortex and striatum of animals [194], and it was also effective in preventing hyperactivity
in the neonatal 6-hydroxydopamine brain lesion model of ADHD [194], centanafadine was
therefore presumed to be a potential medication for the treatment of ADHD. Two Phase II
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clinical trials of centanafadine treatment significantly improve adults with ADHD [243].
Adverse effects include decreased appetite, nausea, insomnia, fatigue and dry mouth.

9.6.6. Dasotraline

Dasotraline [(1R, 4S)-4-(3, 4-Dichlorophenyl)-1, 2, 3, 4-tetrahydronaphthalen-1-amine]
is a dual dopamine and norepinephrine reuptake inhibitor (DNRI). However, human PET
studies demonstrated its preferential inhibition of dopamine transporters (DAT) and NET
and weaker inhibition of serotonin transporters [244,245]. Several studies have shown a
good effect of dasotraline in improving ADHD symptoms and the safety of this medication
in the general population [246–248]. Adverse effects include insomnia, irritability, appetite
suppression, decreased weight, dry mouth, anxiety, panic attack, hallucinations, and
delusions were reported [246].

9.6.7. Vortioxetine (VTX)

VTX (1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine) is approved as an antide-
pressive medication with multiple mechanisms of action: serotonin reuptake inhibitor,
5-HT7, 5-HT3 and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist, and 5-
HT1A receptor agonist, leading to modulation of histamine, norepinephrine, acetylcholine,
glutamate, and γ-aminobutyric acid (GABA) [249,250]. An animal study shows that VTX
significantly increased the extracellular concentration of 5-HT in the prefrontal cortex with
mild increases in norepinephrine and dopamine [250]. VTX can reverse phencyclidine-
induced deficits in attentional set-shifting [251]. There are two cases with ADHD comorbid
learning difficulties in major academic domains, and wider symptoms of sickness behavior
reported to be responsive to MPH in combination with Vortioxetine [252]. However, a
phase II random control trial did not detect a better effect of VTX than placebo in improving
ADHD symptoms [253]

9.6.8. Droxidopa

Droxidopa (L-threo-dihydroxyphenylserine), is chemically analogous to levodopa.
Droxidopa is a CNS-penetrant norepinephrine prodrug that is metabolized by DOPA decar-
boxylase to increase extracellular concentrations of norepinephrine in the brain [254]. The
efficacy of droxidopa is predicted to be similar to the α2A-adrenoceptor agonists. Droxidopa
is approved for adults with neurogenic orthostatic hypotension associated with primary
autonomic failure (such as Parkinson’s disease, multiple system atrophy or pure autonomic
failure), dopamine β-hydroxylase deficiency or nondiabetic autonomic neuropathy) and is
administered orally [255]. Droxidopa is reported to significantly decrease the ADHD-RS-
Total score [256]. Adverse events include abnormal dreams, depressed mood, headache,
insomnia, somnolence, sedation, suicidal ideation, musculoskeletal stiffness and myalgia,
hyperhidrosis, nausea, and cough [256].

9.6.9. Baicalin

Scutellaria baicalensis Georgi (SBG), a Chinese traditional medicine is used to treat
fever, hepatitis, hypertension, inflammation, and jaundice [257]. Baicalin (or baicalein),
a flavonoid purified from SBG, can protect against several neurotoxins, which employ
DAT [258,259]. Baicalin is found to decrease hyperactivity in the spontaneously hyperten-
sive rat model and increase markers of striatal dopamine function. Therefore, it is proposed
to be a potential medication for the treatment of ADHD [260].

9.7. Impact of Comorbid ADHD on Developmental Outcomes

Previous reports showed that CWE, particularly complex types, suffer from impaired
sustained attention, working memory, processing speed, and neuroanatomical derange-
ments [78]. Imaging studies demonstrated that children with focal epilepsy had signifi-
cantly thinner cortical thickness beyond the focal seizure area and slower white matter
expansion; both abnormalities were significantly correlated with lower performance and
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verbal intelligence quotient (IQ), alongside lower executive functions than normal con-
trol [261,262]. On the other hand, ADHD patients showed relative cortical thinning com-
pared to normal control, which correlated with worse outcomes in the global assessment
scales and remission [263]. Thus, it can be hypothesized that CWE and comorbid ADHD may
exhibit neuroanatomical abnormalities, leading to worse cognitive and intellectual outcomes.

9.8. Potential Role of Precision Medicine

Precision medicine is an emerging field that aims to tailor the treatment of disorders
with genetic backgrounds according to the detected genetic mutation and functional al-
teration. The concept of precision medicine stems from the fact that genetic mutations
affect the eligibility and response to treatment, as well as the safety outcomes [264]. In the
setting of epilepsy, some genetic epilepsies were found to be associated with an increased
risk of recurrence and sudden death [265]. As the growing body of evidence shows a
shared genetic background between epilepsy and ADHD, precision medicine can play
a role in tailoring more effective treatments that optimize long-term developmental and
behavioral outcomes.

10. Conclusions

The association between CWE and comorbid ADHD is still under-recognized in clinical
practice, even though the well-established bidirectional connection and shared genetic/non-
genetic factors between epilepsy and comorbid ADHD largely rule out the possibility of
a chance in this association. Stimulants are effective in children with comorbid ADHD,
and the current body of evidence supports their safety in CWE within the approved dose.
Early identification and proper management of comorbid ADHD are crucial to optimize
the prognosis and reduce the risk of adverse long-term neurodevelopmental outcomes.
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Abbreviations

ADHD attention deficit hyperactivity disorder
AMP amphetamine
ASC amphetamine salt combination
ASMs antiseizure medications
BECTS benign epilepsy with centrotemporal spikes
BRE benign rolandic epilepsy
CAE childhood absence epilepsy
CWE children with epilepsy
DAS dextroamphetamine sulfate
DAT dopamine transporters
D-MPH dexmethylphenidate hydrochloride
DNRI dopamine and norepinephrine reuptake inhibitor
DSM Diagnostic and Statistical Manual of Mental Disorders
EEG electroencephalogram
FDA Food and Drug Administration
FLE frontal lobe epilepsy
GABA γ-aminobutyric acid
GWAS genome-wide association studies
ILAE International League Against Epilepsy
IQ intelligence quotient
LDX lisdexamfetamine dimesylate
MAH methamphetamine hydrochloride
MECP2 methyl-CpG binding protein 2
MEF2C myocyte enhancer factor 2
MPH methylphenidate
MPHH methylphenidate hydrochloride
NET norepineph- rine transporter
SBG Scutellaria baicalensis Georgi
SDX Serdexmethylphenidate
SEEG stereo electroencephalogram
SERT serotonin transporter
SNP single nucleotide polymorphism
VMAT2 vesicular monoamine transporter 2
VTX Vortioxetine
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