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Abstract: Eukaryotic elongation factor 1A (eEF1A) canonically delivers amino acyl tRNA to the
ribosomal A site during the elongation stage of protein biosynthesis. Yet paradoxically, the oncogenic
nature of this instrumental protein has long been recognized. Consistently, eEF1A has proven to be
targeted by a wide assortment of small molecules with excellent anticancer activity, among which
plitidepsin has been granted approval for the treatment of multiple myeloma. Meanwhile, metarrestin
is currently under clinical development for metastatic cancers. Bearing these exciting advances in
mind, it would be desirable to present a systematic up-to-date account of the title topic, which, to the
best of our knowledge, has thus far been unavailable in the literature. The present review summarizes
recent advances in eEF1A-targeting anticancer agents, both naturally occurring and synthetically
crafted, with regard to their discovery or design, target identification, structure–activity relationship,
and mode of action. Their structural diversity and differential eEF1A-targeting mechanisms warrant
continuing research in pursuit of curing eEF1A-driven malignancy.
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1. Introduction

The majority of cancers arise from accumulated somatic mutations, which over time,
transform the cell into a state of malignancy. This is characterized by uncontrolled prolifera-
tion, aggressive invasion into surrounding normal tissues, and ultimately lethal metastasis
at distant vital organs. Genomic instability and phenotypic heterogeneity inherent in each
malignant tissue [1] render the treatment of cancer extremely challenging [2]. Today, apart
from surgical operation, a variety of promising therapeutic strategies have been developed,
including but not limited to radiotherapy [3], chemotherapy [4], biological therapy [5],
immunotherapy [6], and microbial-based therapy [7,8]. From this ever-growing curative
armamentarium, targeted chemotherapy with small-molecule or biomacromolecular agents
is an indispensable measure [9–11].

Eukaryotic elongation factor 1A (eEF1A, formerly termed eEF-1α) is an essential GTPase
evolutionarily conserved across diverse eukaryotes [12]. As the second most abundant intra-
cellular protein after actin, it is localized extensively in the cytoplasm and nucleus [13–15].
The canonical function of eEF1A is to deliver amino acyl tRNAs to the ribosomal A site during
the elongation stage of protein synthesis [16]. Strikingly, beyond this housekeeping role
for the translational machinery and many other moonlighting functions [17–20], mounting
evidence has pointed to a causal link between eEF1A and malignancy [21–23], suggesting that
eEF1A may serve as not only an out-of-control translational cofactor [24–26] but also a signal
transducer woven into a network of protumorigenic pathways [27–32]. Consistent with this
revelation, structurally distinct small-molecule anticancer agents continue to emerge with a
proven eEF1A-targeting mechanism [33]. Early examples include didemnin B [34], plitidepsin
(dehydrodidemnin B) [35], tamandarin A [36], cytotrienin A [37], ansatrienin B [38], narcicla-
sine [39], and synthetic flavonoids [40]. Among them, plitidepsin was approved in Australia
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for combined treatment of relapsed/refractory multiple myeloma with dexamethasone [41],
thus providing initial proof of principle that eEF1A inhibitors can achieve the desired thera-
peutic efficacy with safety. In recent years, more intriguing compounds of this kind have been
discovered and actively investigated. As a notable case, metarrestin is currently in a phase I
clinical trial for the treatment of metastatic solid tumors [42]. Though a number of reviews
have been published on protein-synthesis inhibitors [43–46], to the best of our knowledge, no
systematic survey has ever been conducted on eEF1A-targeting agents. Hence, the present
review delineates the state of the art on eEF1A-targeting small-molecule anticancer agents
with a special focus on those actively studied over the recent years, covering their discovery
or design, target identification, structure–activity relationship (SAR), and mode of action.

2. Recent Advances in Anticancer eEF1A-Targeting Agents
2.1. Didemnins and Tamandarins

Didemnins are a family of marine cyclic depsipeptides with strong anticancer, an-
tiviral, and immunosuppressive activities [47]. Since their initial discovery in the early
1980s [48], these macrocycles have become the subject of intense research over the last
four decades. Among them, didemnin B (1, Figure 1) and plitidepsin (2) have entered
multiple clinical trials. Gratifyingly, plitidepsin was approved in Australia for treating
multiple myeloma [41]. With nearly identical architectures but subtly different macrocyclic
backbones (highlighted red), tamandarins such as tamandarin A (3) were discovered from
a different colony of marine ascidian [49]. As already reviewed in multiple comprehensive
monographs [36,50–56], these compounds will not be reiterated here. Instead, a brief
update is presented below on their anticancer mode of action.
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Figure 1. Structures of didemnin B (1), plitidepsin (2), and tamandarin A (3). 

Having developed functional signature ontology (FUSION) maps for drug discovery 
and mechanistic elucidation [57], White et al. revisited the mechanism of 1 and found that 
it induces rapid and extensive apoptosis in sensitive cancer cell lines through concomitant 
inhibition of palmitoyl-protein thioesterase 1 (PPT1) and eEF1A1 [58]. Independently, 
Galmarini et al. showed that eEF1A2 is the specific binding target of 2 with a measured 
dissociation constant (KD) of 80 nM [35]. Since translation inhibition cannot account per se 
for the observed antiproliferative effect of 2, it was suspected that this drug impacts non-
canonical functions of eEF1A2. Indeed, double-stranded RNA (dsRNA)-dependent pro-
tein kinase (PKR) was later identified as a novel binding partner of eEF1A2 [30]. In this 
case, eEF1A2 interacts directly with PKR to block its pro-apoptotic activity and boost tu-
mor survival. In the presence of 2, however, PKR was disengaged from eEF1A2, thereby 
regaining its kinase activity to initiate extrinsic apoptosis through activation of MAPK and 
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Having developed functional signature ontology (FUSION) maps for drug discovery
and mechanistic elucidation [57], White et al. revisited the mechanism of 1 and found that
it induces rapid and extensive apoptosis in sensitive cancer cell lines through concomitant
inhibition of palmitoyl-protein thioesterase 1 (PPT1) and eEF1A1 [58]. Independently,
Galmarini et al. showed that eEF1A2 is the specific binding target of 2 with a measured
dissociation constant (KD) of 80 nM [35]. Since translation inhibition cannot account per
se for the observed antiproliferative effect of 2, it was suspected that this drug impacts
non-canonical functions of eEF1A2. Indeed, double-stranded RNA (dsRNA)-dependent
protein kinase (PKR) was later identified as a novel binding partner of eEF1A2 [30]. In
this case, eEF1A2 interacts directly with PKR to block its pro-apoptotic activity and boost
tumor survival. In the presence of 2, however, PKR was disengaged from eEF1A2, thereby
regaining its kinase activity to initiate extrinsic apoptosis through activation of MAPK
and NF-κB signaling cascades [30]. More recently, Martinez-Leal et al. reported that 2
induces endoplasmic reticulum (ER) stress in HeLa cells by activating the multipronged
unfolded protein response (UPR) in a characteristic pattern [59]. Working simultaneously
as an ER stress inducer and an autophagy inhibitor, 2 was combined with bortezomib
to synergistically block proteasomal degradation and autophagy, thereby exacerbating
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accumulation of misfolded proteins that originate from plitidepsin-induced oxidative stress.
Such elevated proteotoxic stress led to apoptosis both in vitro (in MM1S multiple myeloma
cells) and in vivo (in SCID mice xenografted with RPMI-8226 multiple myeloma cells). This
study shows the promise of combined anticancer therapy using plitidepsin and proteasomal
inhibitors such as bortezomib in a clinical setting.

2.2. Cytotrienin A and Ansatrienin B

Cytotrienin A (4, Figure 2) was initially isolated from the culture broth of soil-dwelling
Streptomyces sp. RK95-74 [60]; this compound has strong cytotoxicity (IC50 = 7.7 nM)
against human leukemia cell line HL-60 [61]. Despite early mechanistic studies [62–64], its
target remained elusive until Pelletier et al. identified 4 as a translation inhibitor through
high-throughput screening [37]. Their finding is that akin to didemnin B, cytotrienin A
modulates eEF1A-dependent loading of aa-tRNA to the ribosome, most likely by stabilizing
the eEF1A/GTP/aa-tRNA assembly positioned at the ribosomal A site. Thus, without
release of eEF1A from the ribosome, translation elongation stops. Further insight into
this compound’s mode of action came from a 2015 study led by Taunton, who aimed to
seek out the target of a potent antiproliferative ternatin derivative 7 (ternatin-4, cross-refer
to the following section) [38]. With the help of photoaffinity labeling, they were able to
capture the binding partner with a ternatin-based probe. Interestingly, the photolabeled
protein is a ternary complex comprising eEF1A, GTP, and aa-tRNA rather than eEF1A
alone. Subsequent competitive-binding experiments noted that the photolabeling efficiency
is diminished dose-dependently with the addition of didemnin B or ansatrienin B (5, a
close side-chain analogue of cytotrienin A shown in Figure 2). Therefore, it was concluded
that ternatin, didemnin B, and cytotrienin A/ansatrienin B may share a binding hot spot
on the eEF1A surface, probably located near A399, as indicated by resistance-conferring
mutation experiments.
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2.3. Ternatin-4

The highly cytotoxic natural product A3, together with several other congeners, was
isolated from an Aspergillus fungus [65]. Although its structure was determined to be
a partially N-methylated cyclic heptapeptide, the chirality of 7 out of 11 stereo-centers
(marked in the structure of A3, Figure 3) remained unknown. The strong structural similar-
ity between A3 and ternatin (6, CAS registry number: 148619-41-4) [66], another natural
product with anti-obesity activity [67], inspired Taunton et al. to design ternatin-4 (7) by
incorporating the dehydromethyl leucine and pipecolic acid residues of A3 (highlighted
red in the structure of 7, Figure 3) into 6 [38]. The resulting hybrid molecule 7 attained
more than 10-fold enhancement of potency over the parent compound 6 (IC50 4.6 nM vs.
71 nM against HCT-116 cancer cell line), thus solving all but one stereo-configuration of A3.
Wondering the molecular target of ternatins, they developed a bifunctional photoaffinity
probe 10. Under UV irradiation, its photolabile diazirine subunit at residue 4 (highlighted
red) decomposes into a highly reactive carbene that instantaneously crosslinks to the nearby
binding protein. The alkyne at residue 6 (highlighted blue) will then connect to a fluorescent
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reporter via click cycloaddition, thus tagging the photolabeled target for characterization.
In this way, eEF1A was captured and confirmed as the target of ternatins.
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Based on the verified structure of ternatin-4 (7), a β-hydroxyl group was introduced at
its residue 3 to obtain two epimers of A3, namely SR-A3 (8) and SS-A3 (9). An improved
second-generation total synthesis allowed quick access to both compounds [68]. Hence, the
identity of natural product A3 was established as SR-A3 (8). Of special note, despite a minor
difference in the side chain of residue 3, 8 was found to display a more prolonged duration
of growth inhibition action than 7 and 9. Single-molecule fluorescence resonance energy
transfer (smFRET) imaging corroborated this observation, while further quantification
through in vitro chase experiments confirmed enhanced drug–target residence time (table
inset in Figure 3) and rebinding kinetics of 8. Finally, preclinical evaluation of 8 vis-a-
vis 7 was carried out in an aggressive Myc-driven mouse lymphoma model. Compared
with its des-hydroxyl variant ternatin-4 (7), SR-A3 (8) significantly reduced tumor burden
while extending the survival of the treated Eµ-Myc mice [68]. This work highlights the
importance of side-chain modification in macrocyclic drug discovery and also makes a
good case that the drug–target interaction can be more precisely characterized using the
drug–target residence time model [69]. More recently, with the help of smFRET imaging
and cryogenic electron microscopy (cryo-EM), Taunton and collaborators demonstrated
that in spite of sharing a common eEF1A-binding site, ternatin-4 (7) and didemnin B exhibit
differential inhibition dynamics in that the former traps the eEF1A/GDP/aa-tRNA ternary
complex on the ribosome in a more reversible fashion than does the latter [70]. Their
in-depth mechanistic investigation also revealed that by trapping eEF1A at the ribosomal
A site, ternatin-4 induces ubiquitination and degradation of eEF1A on stalled ribosomes
through a previously unknown surveillance pathway for translation quality control [71].

2.4. Nannocystin A

Nannocystin A (11, Figure 4) is a 21-membered cyclic depsipeptide isolated inde-
pendently by Brönstrup et al. [72] and Hoepfner et al. [73] from the myxobacteria of the
Nannocystis genus. Brönstrup et al. found that 11 is a strong inducer of apoptosis, as such
inhibiting the growth of multiple cancer cell lines with low nanomolar IC50 values [72].
Meanwhile, another team led by Hoepfner pinned down its target through a combination
of genetic and chemoproteomic approaches [73]. In brief, initial haploinsufficiency profiling
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and mutagenesis experiments implied eEF1A as the most likely target. To verify direct
binding, they set up affinity chromatography with the semisynthetic probe 12 (Figure 4).
During elution, this immobilized nannocystin sequestered eEF1A1 and eEF1A2 out of the
3644 proteins comprising the HCT-116 cell lysates. Moreover, it competed with unbound
nannocystin A (11) and didemnin B for binding to eEF1A. Hence, eEF1A was determined
to be the target of nannocystin A [73].
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tagged fluorescent probe 15. The SAR illustrated in the structure of 11 consists of inhibitive (red) and
permissive (blue) sites: the former must be reserved for high activity, whereas the latter can tolerate
moderate change.

The firsthand structure–activity relationship of nannocystins was derived from isolated
and semisynthetic nannocystins [72,73], which indicates that modification at the tyrosine
phenol moiety (subdomain I in the structure of 11, Figure 4) or the side chain of N-Me-L-
isoleucine (subdomain II) is tolerated. To obtain comprehensive SAR, nevertheless, total
synthesis is a must. Thus far, seven routes have been reported for the total syntheses
of nannocystin A (11) or its 2E-alkene surrogate nannocystin Ax (16, structure shown in
Table 1) [74–81], each involving a distinct macrocyclization reaction as the key strategic
step [82]. With the dual purpose of (1) total synthesis and (2) SAR validation concerning
the binding role of the polyketide C5-C7 region, Fürstner et al. devised a motif-oriented
strategy so that the macrocyclic propargylic alcohol 13 (shown in Figure 4) underwent post-
macrocyclization elaboration [83] into an array of novel analogues besides nannocystin
Ax (16) [80]. It was found that the 5R-methoxy ether (subdomain VI), instead of the
neighboring C6-C7 (E)-alkene (subdomain VII), must be reserved for high activity. As an
illustration, Table 1 compares the anticancer activity of four pairs of nannocystin derivatives
with or without methylation at the C5-OH group (R = Me or H). Clearly, removal of this
moiety causes a drastic reduction in potency (16 vs. 17, 18 vs. 19, 20 vs. 21, 22 vs. 23); on
the other hand, changing the C6-methyl (16) to a fluorine (18) or hydrogen (20) atom, or
even curtailing the (Z) alkene to an alkyne (22), has insignificant impact on activity.

Following a total synthesis of nannocystin A [76] via Heck macrocyclization [84,85],
we prepared a diversity of non-natural nannocystins modified at different sites. Our
findings demonstrated that (1) the (2R, 3S)-epoxide (subdomain V) may be substituted
for a 2E-alkene without compromising activity [86], (2) the side chain of β-OH-L-valine
(subdomain III) is tolerant of minor change [86], and (3) the polyketide C9-C10 segment
including its entire (10R, 11S) stereo-chemistry (subdomain VIII) is a key determinant of
potency [87,88]. In parallel, He et al. synthesized more variants via Heck macrocyclization
too and observed that removal of the N-methyl moiety (subdomain IV) incurred a dramatic
loss of activity [89]. Taken together, the SAR of nannocystins is illustrated in the structure
of 11 (Figure 4).
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Table 1. Antiproliferative activity of nannocystin derivatives 16–23 against human colorectal carci-
noma HCT-116 cells [80].
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Aside from target elucidation and SAR profiling, the exact mechanism of nannocystins
is a subject of enduring interest [90–92] given the poorly understood role of eEF1A in
tumorigenesis. Chen et al. showed that the antimetastatic effect of nannocystin Ax in lung
cancer cells is attributable to its interference with the TGF-β/Smad signaling pathway [90].
Their result is in step with another study uncovering the promigratory ability of eEF1A2 to
promote lung adenocarcinoma metastasis [32]. The additional finding that the regulation
of TGFβI (TGF β receptor I) by nannocystin Ax occurs at the transcriptional rather than the
(post-)translational level implied the presence of an alternative mechanism independent
of eEF1A inhibition [90]. Therefore, similar to the case of plitidepsin [30], the possibility
that nannocystins impact certain protumorigenic pathway(s) mediated by eEF1A cannot be
ruled out. Recently, we designed a serine-incorporating nannocystin 14 (Figure 4) to lever-
age a post-macrocyclization diversification strategy for efficient side-chain variation [92].
Thus obtained SAR concurred with the general trend depicted in Figure 4 and further
informed the development of a coumarin-conjugated fluorescent probe 15. With good per-
meability into the cancer cells, this probe was localized to the ER, as visualized by confocal
fluorescence microscopy, which implies that nannocystins act on eEF1A predominantly at
the ER-bound ribosome. Our result is in good agreement with the latest work by Förster
et al. capturing eEF1A associated with the ribosome at the ER membrane by the use of
cryo-electron tomography [93], thereby shedding light on the intracellular mode of action
of nannocystins.

2.5. Metarrestin

Perinucleolar compartment (PNC) is a heritable multicomponent dynamic subnuclear
organelle located at the periphery of the nucleolus of eukaryotic cells and uniquely associ-
ated with metastatic cancer cells [94]. Huang et al. found that PNC prevalence, defined
as the percentage of non-apoptotic and non-mitotic cells harboring at least one PNC, is a
pan-cancer prognostic marker positively correlated with metastatic capacity [95,96]. Subse-
quent screening of clinically approved anticancer drugs led to the observation that some
of these drugs are capable of reducing PNC prevalence via specific on-target inhibition in
lieu of promiscuous toxicity [97]. Having confirmed the existence of mechanism-specific
PNC disassemblers with clinical efficacy, this proof-of-concept study supported taking
PNC prevalence reduction as a phenotypic screening marker to discover antimetastatic
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drugs. To this end, a metastatic prostate cancer cell line PC3M with a PNC prevalence
of 75% to 85% was engineered to stably express green fluorescent protein (GFP)-fused
polypyrimidine-tract-binding protein (PTB) [98]. PTB is an essential PNC marker routinely
measured by immunohistochemistry, which is unfortunately inconvenient for automated
screening. But now with the self-reporting fluorescent PC3M-GFP-PTB cell line at hand,
they were able to establish an image-based high-throughput, high-content assay (HCA)
primed for spotting compounds able to reduce PNC prevalence by 50% [99]. Aiming at
antimetastasis, the initial hits underwent secondary assays to select for invasion inhibi-
tion while excluding those acting via apoptosis induction, DNA intercalation, general
cytotoxicity, or cell-cycle arrest [100]. By means of this multistage screening protocol, two
leads were eventually identified out of 140,800 structurally diverse compounds from the
NIH Molecular Libraries Small Molecule Repository (MLSMR) due to their outstanding
PNC-disassembling efficiency and low cytotoxicity, thus setting the stage for the ensuing
medicinal chemistry campaign [101].

After a preliminary exploration, pyrrolopyrimidine 24 (Figure 5) was favored over the
other lead (structure not shown) for systematic optimization. Robust synthetic methods
were next developed to access a broad variety of analogues evaluated for PNC disassembly
and drug-like properties as well. The SAR trends are summarized in the structure of 24
(Figure 5). Specifically, (1) the N-3 substitution at the subdomain I prefers a linear alkyl
chain bearing a hydroxy, ether, or amine, and conformational constraint with a cyclohexyl
ring gives rise to the highest potency; (2) the N-7 position at the subdomain II tolerates a
benzyl, phenethyl, or 4-methoxylphenyl group, but the presence of an alkyl substituent
diminishes the potency significantly; (3) the unsubstituted C5 and C6 phenyl rings at
the subdomain III are indispensable for high potency. While deducing the above trends,
multi-round optimization finally yielded metarrestin (25), which possesses a superior
selectivity window between PNC reduction and cell viability compared with the classic
anticancer drugs doxorubicin and camptothecin (table inset in Figure 5) [101]. The in vitro
performance of 25 was smoothly translated into in vivo efficacy in three mouse models
of human cancer, where it suppressed metastatic invasion with concomitant reduction
in PNC prevalence in the cancer cells of primary and metastasized tumors, offering a
remarkable survival advantage to the treated animals [100]. After an in-depth evaluation of
its pharmacokinetics [102,103] and safety [104], this drug has been advanced into a phase I
clinical trial for the treatment of metastatic solid tumors [42].

The excellent antimetastatic capability of 25 prompted Huang et al. to investigate its
mechanism, with the primary conclusion that the drug disrupts PNC assembly by blocking
RNA polymerase I transcription [100]. Further seeking the binding target of 25, they
designed a biotin-conjugated probe 26 (Figure 5) that is likewise efficacious in disassembling
PNC. Affinity purification with 26 combined with competition experiments using untagged
metarrestin identified eEF1A2 as the binding target. The metarrestin–eEF1A2 interaction
was confirmed by cellular thermal shift assay. Subsequent experiments along this line of
research showed that (1) eEF1A2 enhances PNC assembly and metastatic progression; and
(2) eEF1A2, at least in part, mediates the PNC-elimination function of metarrestin [100].
Whereas further details await elucidation, it was believed that metarrestin interferes with
certain non-translational functions of eEF1A2. Recently, Jin et al. developed a proteolysis-
targeting chimera (PROTAC) [105–107] strategy by tethering metarrestin with various
ligands for the von Hippel–Lindau (VHL) E3 ligase [108]. Thus obtained heterobifunctional
molecules were designed to recruit eEF1A2, the binding target of metarrestin, to the
ubiquitin/proteasome system (UPS) for selective degradation. As one of these first-in-
class eEF1A2 degraders, 27 (Figure 5) was shown to degrade eEF1A2 in three cancer
cells in a dose-dependent manner, thus holding promise for the treatment of eEF1A2-
mediated carcinogenesis.
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probe 26, and metarrestin-based PROTAC 27. The inset table compares the selectivity window
between PNC reduction and cytotoxicity of 24, 25, doxorubicin, and camptothecin.

2.6. 2-Phenyl-3-Hydroxy-4(1H)-Quinolinones

2-Phenyl-3-hydroxy-4(1H)-quinolinones (abbreviated as 3-HQs) such as 28 (Figure 6)
are aza-analogues of previously reported eEF1A-targeting anticancer flavonoids [40]. Based
on a homology model of human eEF1A1, Hlavac et al. carried out docking calculations
to identify the binding site for gamendazole, a known eEF1A1 inhibitor for male contra-
ception [109]. Encouragingly, they found that these 3-HQs fit into the same gamendazole-
binding site on the surface of eEF1A1. Such direct interaction between eEF1A1 and 3-HQs
was verified through pull-down assay using biotinylated 3-HQ derivatives [110]. Having
validated the constructed eEF1A1 model, the authors performed virtual screening of in
silico designed 3-HQs with varying substituents R1, R2, and R3 (illustrated in the structure
of 28). The six highest-scored and synthetically accessible compounds were chosen for wet-
lab preparation. Their binding to eEF1A1 was quantitatively characterized with isothermal
titration calorimetry (ITC), which provided thermodynamic information consistent with
docking calculation results. Biological evaluation discovered 29, one of these rationally
designed eEF1A1 inhibitors, with optimal inhibitory activity against several cancer cell
lines but low toxicity toward a normal cell line [110].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 6. Structures of eEF1A1-targeting anticancer 3-HQ derivative 29 and its prototype 28. 

2.7. Cordyheptapeptide A 
Cordyheptapeptide A (30), a partially N-methylated cyclic heptapeptide with anti-

cancer activity, was originally isolated from the insect pathogenic fungus Cordyceps 
[111,112]. Although a solution-phase total synthesis of 30 was reported before [113], its 
SAR and mechanism of action were unclear. Lokey et al. developed a high-throughput 
solid-phase peptide synthesis (SPPS) to access a library of side-chain- and backbone-mod-
ified analogues [114]. They observed the following SAR trends: (1) all side chains are crit-
ical to its antiproliferative activity [115]; (2) halogenation at the aromatic side chain of 
residue 2 or 5 deteriorates activity at varying degrees; (3) whereas removal of the N-me-
thyl moiety at residue 2 or 6 impairs activity, this is not the case for residue 4, for which 
changing sarcosine to glycine tends to improve activity, and when coupled with ortho-
fluorination at residue 5, such N-demethylation brings about equipotent variant 31 with 
a 39-fold improvement in aqueous solubility (table inset in Figure 7). According to molec-
ular dynamics simulations, the enhancement in activity stems from more conformational 
flexibility of its glycine-carrying scaffold, which is accordingly more accessible to target-
binding conformations than the parent natural product 30. 

 
Figure 7. Structures of natural cordyheptapeptide A (30) and synthetic analogue 31, with the inset 
table comparing their IC50 values against HCT-116 cancer cell line and aqueous solubility. 

To find out the mechanism of action of 30, the authors determined its cytotoxicity 
profile via the NCI60 human tumor cell line assay [114]. Analyzed by the COMPARE al-
gorithm, this profile was best correlated with that of phyllanthoside, a known eukaryotic 
protein-synthesis inhibitor [116]. Consistently, cytological profiling (CP) [117] indicated 
that 30 clustered most closely with protein-synthesis inhibitors such as didemnin B and 
ternatin but deviated significantly from microtubule inhibitors and poly (ADP-ribose) 
polymerase (PARP) inhibitors. Combining the results from both phenotypic experiments, 
30 is quite likely a protein-synthesis inhibitor. This inference was confirmed by bioorthog-
onal noncanonical amino acid tagging (BONCAT) [118], which proved that the agent pri-
marily blocks protein synthesis and has a secondary influence on DNA synthesis. Sus-
pecting its target to be eEF1A, 30 was evaluated in the HCT-116 cancer cells with a point 
mutation of eEF1A (A399V). Previously, the same mutation was reported to confer re-
sistance to eEF1A-targeting didemnin B [119], ternatin [38], and nannocystin A [73]. In-
deed, the activity dropped remarkably in the mutant cells, thus providing genetic evi-
dence that supports eEF1A as the target of 30. 

Figure 6. Structures of eEF1A1-targeting anticancer 3-HQ derivative 29 and its prototype 28.

2.7. Cordyheptapeptide A

Cordyheptapeptide A (30), a partially N-methylated cyclic heptapeptide with anticancer
activity, was originally isolated from the insect pathogenic fungus Cordyceps [111,112]. Al-
though a solution-phase total synthesis of 30 was reported before [113], its SAR and mecha-
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nism of action were unclear. Lokey et al. developed a high-throughput solid-phase peptide
synthesis (SPPS) to access a library of side-chain- and backbone-modified analogues [114].
They observed the following SAR trends: (1) all side chains are critical to its antiproliferative
activity [115]; (2) halogenation at the aromatic side chain of residue 2 or 5 deteriorates activity
at varying degrees; (3) whereas removal of the N-methyl moiety at residue 2 or 6 impairs activ-
ity, this is not the case for residue 4, for which changing sarcosine to glycine tends to improve
activity, and when coupled with ortho-fluorination at residue 5, such N-demethylation brings
about equipotent variant 31 with a 39-fold improvement in aqueous solubility (table inset in
Figure 7). According to molecular dynamics simulations, the enhancement in activity stems
from more conformational flexibility of its glycine-carrying scaffold, which is accordingly
more accessible to target-binding conformations than the parent natural product 30.
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To find out the mechanism of action of 30, the authors determined its cytotoxicity
profile via the NCI60 human tumor cell line assay [114]. Analyzed by the COMPARE
algorithm, this profile was best correlated with that of phyllanthoside, a known eukaryotic
protein-synthesis inhibitor [116]. Consistently, cytological profiling (CP) [117] indicated
that 30 clustered most closely with protein-synthesis inhibitors such as didemnin B and
ternatin but deviated significantly from microtubule inhibitors and poly (ADP-ribose)
polymerase (PARP) inhibitors. Combining the results from both phenotypic experiments, 30
is quite likely a protein-synthesis inhibitor. This inference was confirmed by bioorthogonal
noncanonical amino acid tagging (BONCAT) [118], which proved that the agent primarily
blocks protein synthesis and has a secondary influence on DNA synthesis. Suspecting its
target to be eEF1A, 30 was evaluated in the HCT-116 cancer cells with a point mutation of
eEF1A (A399V). Previously, the same mutation was reported to confer resistance to eEF1A-
targeting didemnin B [119], ternatin [38], and nannocystin A [73]. Indeed, the activity
dropped remarkably in the mutant cells, thus providing genetic evidence that supports
eEF1A as the target of 30.

2.8. BE-43547A2

Isolated from Streptomyces sp. in 1998, BE-43547A1 (32, Figure 8), BE-43547A2 (33), and
other congeners are a series of macrocyclic depsipeptides differing in the C21 side chain [120].
These compounds belong to the amidopentadienoate-containing cyclolipodepsipeptide (APD-
CLD) natural products that feature an electrophilic 4-amido-2,4-pentadienoate (APD, high-
lighted red) functionality as well as a lipophilic side chain [121]. Poulsen et al. developed the
first total synthesis of ent-32 and re-isolated the authentic 32 from the fermentation broth of a
BE-43547-producing microorganism, thereby establishing the absolute stereo-configuration
of the BE-43547 family [122]. Importantly, 32 and 33 exhibited superior hypoxia-selective
cytotoxicity in PANC-1 pancreatic cancer cells than rakicidin A, another APD-CLD natural
product they investigated earlier [123–126]. Shortly after this work, Chen et al. developed a
total synthesis of 33 and reported that this agent selectively targets pancreatic cancer stem
cells (PCSCs) [127,128]. Preparation of more analogues [129,130] led to the following SAR
results (illustrated in Figure 8): (1) the exocyclic alkene at C8 within the APD unit must be
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reserved; (2) the macrolide cannot be changed to the corresponding macrolactam, or in other
words, the O35 cannot be replaced with a nitrogen atom; (3) the (S)-hydroxyl group at C15 is
critical to activity; (4) a lipophilic side chain at C21 is necessary but variable.
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The excellent hypoxia-selective toxicity of APD-CLD natural products such as raki-
cidin A and the BE-43547A members intrigued Poulsen et al. to elucidate their mechanism
of action, which is distinguished from conventional hypoxia-activated compounds. They
showed that these APD-CLDs induced rapid and hypoxia-selective impairment of mito-
chondrial structure and function, thereby driving a peculiar form of non-apoptotic cancer
cell death in a hypoxic milieu [131]. To discover the molecular target of 33, Chen et al.
synthesized a clickable probe 34 [130]. Biotinylation of 34 via in situ click cycloaddition
followed by pull-down assay indicated eEF1A as a binding target, and the isoform was
determined to be eEF1A1 via immunoblotting. Having located the cysteine234 residue of
eEF1A1 as the most probable binding site of 33 according to LC-MS/MS analysis, they engi-
neered three types of pancreatic cancer cells with (1) eEF1A1 knockdown (KD), (2) eEF1A1
recovered from KD (RE-KD), and (3) C234-mutant eEF1A1 constructed from KD (RE-C234S).
As shown in Table 2, the in vitro cytotoxicity of 33 against these three and the wild-type
(WT) pancreatic cancer cells, as well as its in vivo anticancer efficacy in the four correspond-
ing mouse xenograft models, provided concrete evidence favoring the Cys234 residue of
eEF1A1 as the binding site for 33 [130]. Furthermore, it was shown that eEF1A1 plays a
significant role in regulating pancreatic cancer cell stemness, its levels positively correlated
with pancreatic cancer progression and negatively affecting patient survival.

Table 2. In vitro cytotoxicity of 33 against different types of pancreatic cancer cells (WT, KD, RE-KD,
RE-C234S) and its in vivo anticancer efficacy in the corresponding mouse xenograft models [130].

Pancreatic Cancer Cells In Vitro Cytotoxicity
IC50 (µM)

In Vivo Tumor
Inhibition Rate (%)

WT 1.33 98.8
KD 11.62 20.7

RE-KD 0.80 93.2
RE-C234S 11.61 18.3

3. Conclusions and Future Perspectives

Translational control with small-molecule agents represents an emerging direction for
anticancer drug discovery [132–134]. As proofs of principle, hitherto two such drugs have
gained approval for clinical use, namely homoharringtonine and plitidepsin. The former
is the first protein translation inhibitor for the treatment of chronic myeloid leukemia,
which works by fitting into the ribosomal A site so as to block access by the charged
tRNA [135]. Pertaining to the present subject, the latter is a specific inhibitor of eEF1A
that, at least in part, disrupts its canonical function of assisting translation elongation to
combat multiple myeloma [35]. The whole ensemble of known eEF1A-targeting small-
molecule agents is compiled in Table 3, alongside a brief summary of their anticancer
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effectiveness and selectivity. Intriguingly, though sharing the same molecular target, these
compounds manifested differential antiproliferative profiles. For example, narciclasine [39],
synthetic flavonoids [40], and ternatin-4 [68] within this category displayed preferential
anticancer potency against human melanoma, breast carcinoma, and colorectal carcinoma
cells, respectively. Presumably, such contrasting selectivity may partially stem from their
distinct chemotypes that influence the drug–target interaction as well as the consequent
therapeutic outcome in a subtle but profound way, as revealed very recently by Taunton
et al. on the inhibitory mode of action of didemnin B and ternatin-4 at the single-molecule
level [70]. Overall, the current review outlines the remarkable progress achieved over
the recent years in eEF1A-targeting anticancer agents, which are structurally distinct
macrocycles and heterocycles, either naturally occurring, developed based on the hit
from high-throughput screening, or rationally designed. Their development status is
summarized in Figure 9. For the time being, metarrestin is under clinical development as
an unprecedented modality for controlling cancer metastasis [42], whereas metarrestin-
based PROTACs have also been disclosed for selective degradation of eEF1A2 [108]. Albeit
beyond the scope of this review, it is also worth noting that plitidepsin has now entered a
clinical trial as a potential anti-SARS-CoV-2 drug [136] since its target eEF1A turned out to
be a crucial host protein co-opted by virus to infect human cells [137,138].

In spite of the aforementioned advances, however, there remains much to learn about
the exact mechanisms of action of these targeted agents. A more fundamental question lies
in the oncogenic mechanism of eEF1A, a multitalented protein capable of both translation
elongation and a myriad of moonlighting duties. As evidenced by an illuminating study on
plitidepsin [30], it seems indeed viable for malignant cells to exploit certain non-canonical
functions of eEF1A for survival. Moreover, the involvement of eEF1A1 in aggressive
castration-resistant prostate cancer (CRPC) [139] and non-small cell lung cancer (NSCLC)
metastasis [140] has been demonstrated through its complexation with actin and the
eEF1A1/MDM2/MTBP signaling axis, respectively. These latest results showcase the
potential opportunities of designing next-generation magic bullets [141] that act upon the
manifold oncogenic functions of eEF1A, selectively extinguishing the malignant while
sparing the normal. It is foreseeable that ongoing investigation of these mechanistic aspects,
along with the expanding repertoire of eEF1A-targeting agents, will position us at a better
forefront against cancer and other eEF1A-driven diseases as well.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 12 of 18 
 

 

Table 3. Summary of eEF1A-targeting small-molecule agents on their anticancer efficacy and selec-
tivity. 

Compound Anticancer Efficacy and Selectivity Reference 

Didemnins 

• potent against human cancer cell lines from different tissues  
• in vivo validated in several preclinical models 
• didemnin B (1) and plitidepsin (2) have been studied in multiple clinical trials 
• plitidepsin (2, aplidin®) has been approved in Australia for combined treatment of 

relapsed/refractory multiple myeloma with dexamethasone 

[36,41,50–56] 

Tamandarins • potent against human cancer cell lines from different tissues [36,49] 

Cytotrienin A (4) 
• potent against human leukemia HL-60 cells (IC50 = 7.7 nM) and lung carcinoma 

A549 cells (IC50 = 0.1 μM) 
[61,64] 

Ansatrienin B (5) • potent against three human pancreatic cancer cell lines (IC50 range, 0.17–1.69 μM) [142] 

Narciclasine 
• potent against five human melanoma cell lines (IC50 ~ 40 nM) 
• in vivo validated in a mice xenograft model of brain metastatic melanoma [39] 

Synthetic flavonoids 
• potent against human breast cancer cell lines (IC50 range, 1–50 μM for MDA-

MB231) [40] 

Ternatin-4 (7) 
• potent against human colorectal carcinoma HCT-116 cells (IC50 = 4.6 nM) 
• in vivo validated in an aggressive Myc-driven mouse lymphoma model [68] 

Nannocystin A (11) 
• potent against 472 cancer cell lines (IC50 range, 5–500 nM)  
• nannocystin Ax in vivo validated in an HCT-116-derived xenograft zebrafish model [73,91] 

Metarrestin (25) 

• excellent antimetastatic selectivity over cytotoxicity  
(cytotoxicity IC50/PNC reduction IC50 = 38.3)  

• in vivo validated in several preclinical models 
• currently in a phase I clinical trial for the treatment of metastatic solid tumors 

[42,100–104] 

Synthetic quinolinones 
• potent against human cancer cell lines from different tissues (IC50 range, 0.56–50 

μM) [110] 

Cordyheptapeptide A (30) • potent against human colorectal carcinoma HCT-116 cells (IC50 = 0.2 μM) [114] 

BE-43547A2 (33) 

• potent against human pancreatic carcinoma PANC-1 cells (IC50 = 0.87 μM)  
• remarkable hypoxia-selective toxicity against human leukemia K562 cells and 

breast carcinoma MCF-7 cells (selective index = 28 and 79, respectively) 
• selectively targets pancreatic cancer stem cells (PCSCs) 
• in vivo validated in a pancreatic cancer xenograft mouse model 

[127,130] 

 
Figure 9. Development status of eEF1A-targeting small-molecule anticancer agents, among which 
narciclasine, ternatin-4, nannocystin Ax, and BE-43547A2 have been validated in at least one in vivo 
preclinical model, didemnin B and metarrestin have been or currently are being studied in clinical 
trials, and plitidepsin has gained approval for clinical use. These three groups of compounds are at 
more advanced development stages than the leftmost group, making up over half of the whole col-
lection of anticancer eEF1A inhibitors discernible from the accompanying pie chart. Their validated 
efficacy in preclinical models or clinical cohorts lends concrete support to the principle of targeting 
eEF1A with viable anticancer selectivity. 

Author Contributions: Conceptualization and funding acquisition, W.Z.; data curation, H.Z. and 
J.C.; resources, S.Y.; visualization, B.S.; writing—original draft preparation, W.Z.; writing—review 
and editing, W.Z., H.Z., J.C., S.Y., and B.S. All authors have read and agreed to the published version 
of the manuscript. 

Figure 9. Development status of eEF1A-targeting small-molecule anticancer agents, among which
narciclasine, ternatin-4, nannocystin Ax, and BE-43547A2 have been validated in at least one in vivo
preclinical model, didemnin B and metarrestin have been or currently are being studied in clinical
trials, and plitidepsin has gained approval for clinical use. These three groups of compounds are
at more advanced development stages than the leftmost group, making up over half of the whole
collection of anticancer eEF1A inhibitors discernible from the accompanying pie chart. Their validated
efficacy in preclinical models or clinical cohorts lends concrete support to the principle of targeting
eEF1A with viable anticancer selectivity.
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Table 3. Summary of eEF1A-targeting small-molecule agents on their anticancer efficacy and selectivity.

Compound Anticancer Efficacy and Selectivity Reference

Didemnins

• potent against human cancer cell lines from different tissues
• in vivo validated in several preclinical models
• didemnin B (1) and plitidepsin (2) have been studied in multiple clinical trials
• plitidepsin (2, aplidin®) has been approved in Australia for combined treatment of

relapsed/refractory multiple myeloma with dexamethasone

[36,41,50–56]

Tamandarins • potent against human cancer cell lines from different tissues [36,49]

Cytotrienin A (4) • potent against human leukemia HL-60 cells (IC50 = 7.7 nM) and lung carcinoma
A549 cells (IC50 = 0.1 µM)

[61,64]

Ansatrienin B (5) • potent against three human pancreatic cancer cell lines (IC50 range, 0.17–1.69 µM) [142]

Narciclasine • potent against five human melanoma cell lines (IC50~40 nM)
• in vivo validated in a mice xenograft model of brain metastatic melanoma

[39]

Synthetic flavonoids • potent against human breast cancer cell lines (IC50 range, 1–50 µM for MDA-MB231) [40]

Ternatin-4 (7) • potent against human colorectal carcinoma HCT-116 cells (IC50 = 4.6 nM)
• in vivo validated in an aggressive Myc-driven mouse lymphoma model

[68]

Nannocystin A (11) • potent against 472 cancer cell lines (IC50 range, 5–500 nM)
• nannocystin Ax in vivo validated in an HCT-116-derived xenograft zebrafish model

[73,91]

Metarrestin (25)

• excellent antimetastatic selectivity over cytotoxicity (cytotoxicity IC50/PNC
reduction IC50 = 38.3)

• in vivo validated in several preclinical models
• currently in a phase I clinical trial for the treatment of metastatic solid tumors

[42,100–104]

Synthetic quinolinones • potent against human cancer cell lines from different tissues (IC50 range, 0.56–50 µM) [110]
Cordyheptapeptide A (30) • potent against human colorectal carcinoma HCT-116 cells (IC50 = 0.2 µM) [114]

BE-43547A2 (33)

• potent against human pancreatic carcinoma PANC-1 cells (IC50 = 0.87 µM)
• remarkable hypoxia-selective toxicity against human leukemia K562 cells and breast

carcinoma MCF-7 cells (selective index = 28 and 79, respectively)
• selectively targets pancreatic cancer stem cells (PCSCs)
• in vivo validated in a pancreatic cancer xenograft mouse model

[127,130]
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