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Abstract: Human genomic analysis and genome-wide association studies (GWAS) have identified
genes that are risk factors for early and late-onset Alzheimer’s disease (AD genes). Although the
genetics of aging and longevity have been extensively studied, previous studies have focused on
a specific set of genes that have been shown to contribute to or are a risk factor for AD. Thus, the
connections among the genes involved in AD, aging, and longevity are not well understood. Here, we
identified the genetic interaction networks (referred to as pathways) of aging and longevity within the
context of AD by using a gene set enrichment analysis by Reactome that cross-references more than
100 bioinformatic databases to allow interpretation of the biological functions of gene sets through a
wide variety of gene networks. We validated the pathways with a threshold of p-value < 1.00 × 10−5

using the databases to extract lists of 356 AD genes, 307 aging-related (AR) genes, and 357 longevity
genes. There was a broad range of biological pathways involved in AR and longevity genes shared
with AD genes. AR genes identified 261 pathways within the threshold of p < 1.00 × 10−5, of which
26 pathways (10% of AR gene pathways) were further identified by overlapping genes among AD and
AR genes. The overlapped pathways included gene expression (p = 4.05 × 10−11) including ApoE,
SOD2, TP53, and TGFB1 (p = 2.84 × 10−10); protein metabolism and SUMOylation, including E3
ligases and target proteins (p = 1.08 × 10−7); ERBB4 signal transduction (p = 2.69 × 10−6); the immune
system, including IL-3 and IL-13 (p = 3.83 × 10−6); programmed cell death (p = 4.36 × 10−6); and
platelet degranulation (p = 8.16 × 10−6), among others. Longevity genes identified 49 pathways within
the threshold, of which 12 pathways (24% of longevity gene pathways) were further identified by
overlapping genes among AD and longevity genes. They include the immune system, including IL-3
and IL-13 (p = 7.64 × 10−8), plasma lipoprotein assembly, remodeling and clearance (p < 4.02 × 10−6),
and the metabolism of fat-soluble vitamins (p = 1.96 × 10−5). Thus, this study provides shared genetic
hallmarks of aging, longevity, and AD backed up by statistical significance. We discuss the significant
genes involved in these pathways, including TP53, FOXO, SUMOylation, IL4, IL6, APOE, and CEPT,
and suggest that mapping the gene network pathways provide a useful basis for further medical
research on AD and healthy aging.

Keywords: hallmark of aging; age-related comorbidity; centenarian; dementia; epigenetics; life
extension; longevity

1. Introduction

Alzheimer’s disease is the most frequent cause of dementia, in which about 5 mil-
lion people were living with AD in 2014, and the number is estimated to nearly triple by
2060 [1]. The Center for Disease Control and Prevention (CDC) states that the number of
people living with AD doubles every 5 years beyond age 65 (accessed in January 2023;
https://www.cdc.gov/aging/aginginfo/alzheimers.htm). Aging and genetic variations
are well-known risks for AD. The genetic basis of AD has been characterized in the early on-
set of AD (EOAD), including amyloid precursor protein (APP) [2], presenilin 1 (PSEN1) [3],

Int. J. Mol. Sci. 2023, 24, 5178. https://doi.org/10.3390/ijms24065178 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24065178
https://doi.org/10.3390/ijms24065178
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8806-0611
https://www.cdc.gov/aging/aginginfo/alzheimers.htm
https://doi.org/10.3390/ijms24065178
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24065178?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 5178 2 of 27

and presenilin 2 (PSEN2) [4], which account for less than 1% of AD cases [5]. The vast
majority of genetic risk factors fall into late-onset AD (LOAD). The predictive contribution
of each gene is little or modest for LOAD [6]. Thus, the gene–gene networks of AD risk
factor genes (AD genes) are expected to be more informative than a single gene effect to
understand the underlying mechanisms. AD genes identified lipoprotein metabolism as
a major hallmark of AD, which is tightly linked to a major mortality risk, cardiovascular
disease [7,8]. A component of lipoprotein metabolism includes ApoE isoforms, which
are well-known as a risk factor for LOAD [9], as well as associated with longevity [10].
However, although there are genetic variants associated with aging (i.e., pathophysiological
changes with increasing age) and longevity (i.e., length of lifespan), genetic interconnec-
tions with AD are not yet fully understood [7,8,11]. We reason that studying the gene sets or
profiles is an effective way to understand AD and its relationship with aging and longevity.
In this study, we chose a type of bioinformatic analysis using Reactome to elucidate the
underlying molecular pathways and mechanisms.

Reactome is an open-source bioinformatic database with two functions. Firstly, it
is a knowledge database of biological pathways manually curated and peer-reviewed,
including twenty-seven biological pathway groups: they are autophagy, cell cycle, cell–cell
communication, cellular responses to external stimuli, chromatin organization, circadian
clock, developmental biology, digestion and absorption, and disease, among others [12].
The pathway, reaction, and molecule pages are extensively cross-referenced to more than
100 bioinformatics resources, including ChEBI small molecule databases, Ensembl and
UniProt databases, NCBI Gene, the UCSC Genome Browser, and PubMed. Secondly, it
serves as a bioinformatic tool to perform gene set enrichment analysis (GSEA) [13,14].
GSEA is a computational method to identify and interpret biological functions of a gene set
from genome-wide profiles. It uses gene annotations (such as gene ontology (GO), disease
ontology (DO), and pathway annotations) and provides a ranked list of annotations with
statistical significance for validation of the ranked list [15].

Using the Reactome analysis, we investigated three types of human genes: AD genes,
aging-related (AR) genes, and Longevity genes. AD genes have been reported previously,
which are validated based on meta-analyses of human GWAS (genome-wide association)
studies [7,8,16]. Aging-related (AR) genes in humans are a list of genes identified based
on an extensive literature review, followed by manually curated annotation [17]. The
genes are from the meta-analysis study of human gene-expression analysis, as well as
predicted based on the studies in model systems, including the yeast, the nematode, the
fruit fly, and the mouse [17]. The proteomic and genomic map of the AR gene list has been
reported earlier [18]. Longevity genes are the genes identified as gene variants associated
with longevity [19]. Notable risk factors for Alzheimer’s include APOE, as well as genes
associated with inflammation and the insulin/IGF-1 signaling pathway [20]. However,
although AD, aging, and longevity may be associated with each other, there is a lack of
genetic interaction maps that overview each of them. Thus. We investigated the connections
among the genes involved in AD, aging, and longevity.

2. Results

Figure 1 summarizes the overall analysis of the gene sets. We identified five gene
sets as described in the method. They are (1) 356 positive AD genes, (2) 307 AR genes,
(3) 357 Longevity genes, (4) 41 AD–AR overlap genes, and (5) 43 AD–longevity overlap
genes (Figure 1). We then perform a Reactome analysis of each gene set that generated
biological pathways relevant to the gene set. The pathways were validated by using
the threshold of p < 10 × 10−5; in other words, we excluded the pathways with a false
discovery rate of more than 10 × 10−3. In each table, we included the top ten results
from each Reactome analysis to be included in our results. We further identified specific
Reactome groups from within the generalized groups.
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Figure 1. Schematic providing a breakdown of the methodology used in this study. We used the 
Reactome analysis for AD genes, AR genes, Longevity genes, overlapping AD and AR genes, and 
overlapping AD and Longevity genes. 

2.1. AD Genes 
The Reactome analysis of the AD genes identified 161 pathways (Supplementary Ta-

ble S1). Of them, 53 pathways showed p < 1.0 × 10−5, which is roughly equivalent to the 
false discovery rate < 1.0 × 10−3. The top ten results are shown in Table 1. The pathways 
can be summarized into the following three general Reactome pathway groups: metabo-
lism of RNA, transport of small molecules, and immune system. 

The top hit for the enriched pathway analysis (of AD-positive genes) was “tRNA 
processing in the mitochondrion” (FDR = 1.01 × 10−13; p = 1.11 × 10−16), which was a sub-
pathway topic under “tRNA processing” (FDR = 1.09 × 10−6; p = 1.09 × 10−8), which was a 
sub-pathway topic under “metabolism of RNA” in the hierarchy panel. “tRNA processing 
in the mitochondrion” involves 42 proteins, and 19 of those proteins were found to be 
shared in our positively tested AD genes (FDR = 1.01 × 10−13; p = 1.11 × 10−16). The second 
top hit was “plasma lipoprotein assembly, remodeling, and clearance” (FDR = 1.34 × 10−1; 
p= 4.44 × 10−16) from the “transport of small molecules” general pathway. The third-quar-
ters top hit, “Interleukin-4 and Interleukin-13 signaling” (FDR = 5.80 × 10−10; p= 2.57 × 10−12) 
is a part of the “immune system” general pathway. 

Figure 1. Schematic providing a breakdown of the methodology used in this study. We used the
Reactome analysis for AD genes, AR genes, Longevity genes, overlapping AD and AR genes, and
overlapping AD and Longevity genes.

2.1. AD Genes

The Reactome analysis of the AD genes identified 161 pathways (Supplementary Table S1).
Of them, 53 pathways showed p < 1.0 × 10−5, which is roughly equivalent to the false
discovery rate < 1.0 × 10−3. The top ten results are shown in Table 1. The pathways can be
summarized into the following three general Reactome pathway groups: metabolism of
RNA, transport of small molecules, and immune system.

The top hit for the enriched pathway analysis (of AD-positive genes) was “tRNA
processing in the mitochondrion” (FDR = 1.01 × 10−13; p = 1.11 × 10−16), which was a sub-
pathway topic under “tRNA processing” (FDR = 1.09 × 10−6; p = 1.09 × 10−8), which was
a sub-pathway topic under “metabolism of RNA” in the hierarchy panel. “tRNA processing
in the mitochondrion” involves 42 proteins, and 19 of those proteins were found to be
shared in our positively tested AD genes (FDR = 1.01 × 10−13; p = 1.11 × 10−16). The second
top hit was “plasma lipoprotein assembly, remodeling, and clearance” (FDR = 1.34 × 10−1;
p = 4.44 × 10−16) from the “transport of small molecules” general pathway. The third-quarters
top hit, “Interleukin-4 and Interleukin-13 signaling” (FDR = 5.80 × 10−10; p = 2.57 × 10−12)
is a part of the “immune system” general pathway.

2.2. AR Genes

669 pathways were identified by the Reactome analysis of the 307 AR genes
(Supplementary Table S2). Using the threshold, we validated the pathways and selected
261 pathways using the threshold of p < 1.0 × 10−5. The top ten results are shown in
Table 2. The pathways identified by the AR genes fell into the following six general
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Reactome pathway groups: immune system, signal transduction, metabolism of proteins,
gene expression, cellular responses to external stimuli, and DNA repair.

Table 1. Reactome pathway enrichment analysis results—Positive AlzGene (AD) genes.

Reactome Pathway
No. of Total
Proteins in
Pathway

No. of Hits
in Pathway p-Value FDR Value Hit Gene

tRNA processing in the
mitochondrion 42 19 1.11 × 10−16 1.01 × 10−13

MT-ND6, MT-TQ, MT-ND4L,
MT-ND4, MT-CO1, MT-TT,
MT-TR, MT-ND2, MT-ND3,
MT-ND1, MT-TH, MT-CO2,
MT-TG, MT-CO3, MT-TS2,
MT-ATP6, MT-ATP8, MT-RNR1,
MT-CYB

Plasma lipoprotein
assembly, remodeling,
and clearance

71 21 4.44 × 10−16 1.34 × 10−13

LIPA, LIPC, SOAT1, CETP, APOE,
A2M, ABCA1, VLDLR, LDLR,
NR1H2, ABCG1, LPL, ALB,
APOA1, APOA4, APOA5, NPC1,
NPC2, APOC4, APOC2, APOC1

rRNA processing in the
mitochondrion 38 17 4.44 × 10−16 1.34 × 10−13

MT-ND4L, MT-ND4, MT-CO1,
MT-TT, MT-TR, MT-ND2,
MT-ND3, MT-ND1, MT-TH,
MT-CO2, MT-TG, MT-CO3,
MT-TS2, MT-ATP6, MT-ATP8,
MT-RNR1, MT-CYB

Interleukin-4 and
Interleukin-13 signaling 112 21 2.57 × 10−12 5.80 × 10−10

ICAM1, TP53, MAOA, PIK3R1,
HMOX1, CD36, IL10, IL18, IL1A,
IL1B, PTGS2, ALOX5, F13A1, TNF,
TGFB1, POU2F1, IL6, IL8, MMP1,
MMP3, CCL2

Plasma lipoprotein
clearance 33 12 9.58 × 10−11 1.73 × 10−8

LIPA, LIPC, SOAT1, APOE,
VLDLR, LDLR, NR1H2, APOA1,
NPC1, NPC2, APOC4, APOC1

Interleukin-10 signaling 47 13 4.28 × 10−10 6.46 × 10−8
IL1RN, ICAM1, CCR2, IL10, IL18,
IL1A, IL1B, PTGS2, TNF, IL6, IL8,
CCL3, CCL2

Retinoid metabolism
and transport 44 12 2.36 × 10−9 3.05 × 10−7

LRAT, HSPG2, APOE, LDLR, LPL,
APOA1, APOA4, LRP1, LRP2,
LRP8, TTR, APOC2

Metabolism of
fat-soluble vitamins 48 12 6.14 × 10−9 6.93 × 10−7

LRAT, HSPG2, APOE, LDLR, LPL,
APOA1, APOA4, LRP1, LRP2,
LRP8, TTR, APOC2

tRNA processing 146 19 1.09 × 10−8 1.09 × 10−6

MT-ND6, MT-TQ, MT-ND4L,
MT-ND4, MT-CO1, MT-TT,
MT-TR, MT-ND2, MT-ND3,
MT-ND1, MT-TH, MT-CO2,
MT-TG, MT-CO3, MT-TS2,
MT-ATP6, MT-ATP8, MT-RNR1,
MT-CYB

Plasma lipoprotein
remodeling 32 10 1.47 × 10−8 1.32 × 10−6

LIPC, CETP, APOE, ABCG1, LPL,
ALB, APOA1, APOA4, APOA5,
APOC2
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Table 2. Reactome pathway enrichment analysis results—GenAge (AR) genes.

Reactome Pathway
No. of Total
Proteins in
Pathway

No. of Hits
in Pathway p-Value FDR Value Hit Gene

Signaling by Interleukins 452 59 1.11 × 10−16 8.66 × 10−15

APP, ATF2, MYC, AKT1, MIF, TP53, PIK3R1, HIF1A, STAT5A, STAT5B, JUN, GRB2,
CDKN1A, IKBKB, JAK2, FOS, CTF1, PTGS2, RELA, STAT3, VEGFA, IRS1, IRS2, TNF,
SQSTM1, SHC1, FOXO3, FOXO1, SOCS2, UBB, HSPA9, HSPA8, TGFB1, IL2, NFKB1,
NFKB2, NFKBIA, IL6, IL7, BCL2, IL7R, HMGB1, PIK3CB, LMNB1, HSP90AA1, YWHAZ,
CREB1, PIK3CA, IL2RG, CDC42, MAPK9, MAPK8, PTK2B, MAPK3, PTPN11, MAPK14,
S100B, SOD2, SOD1

DNA Double-Strand Break
Repair 149 30 1.11 × 10−16 8.66 × 10−15

CHEK2, TP53, PRKDC, TP53BP1, XRCC6, XRCC5, ATM, ATR, FEN1, BRCA1, BRCA2,
PARP1, SIRT6, PCNA, WRN, RPA1, NBN, BLM, UBB, ABL1, UBE2I, SUMO1, H2AFX,
CCNA2, MAPK8, POLD1, RAD52, RAD51, ERCC4, ERCC1

PIP3 activates AKT signaling 286 46 1.11 × 10−16 8.66 × 10−15

ATF2, AKT1, TP53, PDGFB, PIK3R1, EGR1, JUN, INSR, GRB2, CDKN1A, BMI1, PPARG,
EGFR, RICTOR, IRS1, IRS2, PDGFRB, PDGFRA, FOXO4, FOXO3, FOXO1, UBB, FGF23,
KL, ESR1, MDM2, FGFR1, GSK3B, GSK3A, PTEN, PIK3CB, PDPK1, NRG1, CREB1,
PIK3CA, HDAC2, HDAC3, HDAC1, INS, ERBB2, MAPK3, EGF, PTPN11, MTOR,
PML, STUB1

Intracellular signaling by
second messengers 326 49 1.11 × 10−16 8.66 × 10−15

ATF2, AKT1, PRKCD, PRKCA, TP53, PDGFB, PIK3R1, EGR1, JUN, INSR, GRB2,
CDKN1A, BMI1, PPARG, EGFR, ADCY5, RICTOR, IRS1, IRS2, PDGFRB, PDGFRA,
FOXO4, FOXO3, FOXO1, UBB, FGF23, KL, ESR1, MDM2, FGFR1, GSK3B, GSK3A,
PTEN, PIK3CB, PDPK1, NRG1, CREB1, PIK3CA, HDAC2, HDAC3, HDAC1, INS, ERBB2,
MAPK3, EGF, PTPN11, MTOR, PML, STUB1

Signaling by Receptor
Tyrosine Kinases 493 60 1.11 × 10−16 8.66 × 10−15

ATF2, AKT1, PRKCD, PRKCA, PDGFB, PIK3R1, APOE, STAT5A, EGR1, STAT5B, JUND,
INSR, IGF2, IGF1, PTK2, GRB2, JAK2, HRAS, FOS, NCOR1, EGFR, RICTOR, STAT3,
VEGFA, CTNNB1, IRS1, IRS2, IGF1R, EP300, PDGFRB, PDGFRA, SHC1, PSEN1, UBB,
FGF23, KL, BDNF, ESR1, FGFR1, FLT1, PIK3CB, HSP90AA1, PDPK1, NRG1, NGF,
CREB1, PIK3CA, INS, CDC42, ERBB2, PTK2B, MAPK3, PTPN1, EGF, PTPN11, MAPK14,
S100B, MTOR, BAX, STUB1

FOXO-mediated
transcription 66 22 1.11 × 10−16 8.66 × 10−15

AKT1, DDIT3, TXN, PCK1, PPARGC1A, CREBBP, CDKN1A, SIRT1, SIRT3, NR3C1,
STK11, EP300, FOXO4, FOXO3, FOXO1, SIN3A, YWHAZ, CAT, HDAC2, HDAC1,
INS, SOD2
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Table 2. Cont.

Reactome Pathway
No. of Total
Proteins in
Pathway

No. of Hits
in Pathway p-Value FDR Value Hit Gene

RNA Polymerase II
Transcription 1363 110 1.11 × 10−16 8.66 × 10−15

RB1, ATF2, MT-CO1, SERPINE1, CHEK2, MYC, AKT1, TP63, MED1, AR, DDIT3, TP53,
TXN, PRDX1, APOE, PCK1, PPARGC1A, CREBBP, JUN, ATM, ATR, TP73, CDKN1A,
BRCA1, BMI1, PARP1, FOS, SIRT1, SIRT3, NCOR2, NCOR1, PPARG, PPARA, PCNA,
HTT, EGFR, RELA, WRN, RICTOR, CDKN2B, CDKN2A, GSR, RPA1, GTF2H2, MLH1,
VEGFA, CTNNB1, FAS, NR3C1, CTGF, STK11, EP300, NBN, IGFBP3, BLM, MAX,
FOXO4, FOXO3, FOXO1, UBB, ABL1, TFAP2A, TGFB1, UBE2I, BDNF, ESR1, IL2,
NFKB1, CDK7, IL6, SP1, CDK1, MDM2, PIN1, TCF3, GSK3B, PTEN, SUMO1, SIN3A,
TBP, PDPK1, H2AFX, YWHAZ, CCNA2, CREB1, TFDP1, CAT, CEBPB, HDAC2, HDAC3,
HDAC1, PPM1D, HSPD1, INS, ERBB2, E2F1, MAPK3, PTPN1, PTPN11, MAPK14,
SOD2, MTOR, PML, RAD51, ERCC3, SST, ERCC2, BAX, STUB1, TAF1

Generic Transcription
Pathway 1234 110 1.11 × 10−16 8.66 × 10−15

RB1, ATF2, MT-CO1, SERPINE1, CHEK2, MYC, AKT1, TP63, MED1, AR, DDIT3, TP53,
TXN, PRDX1, APOE, PCK1, PPARGC1A, CREBBP, JUN, ATM, ATR, TP73, CDKN1A,
BRCA1, BMI1, PARP1, FOS, SIRT1, SIRT3, NCOR2, NCOR1, PPARG, PPARA, PCNA,
HTT, EGFR, RELA, WRN, RICTOR, CDKN2B, CDKN2A, GSR, RPA1, GTF2H2, MLH1,
VEGFA, CTNNB1, FAS, NR3C1, CTGF, STK11, EP300, NBN, IGFBP3, BLM, MAX,
FOXO4, FOXO3, FOXO1, UBB, ABL1, TFAP2A, TGFB1, UBE2I, BDNF, ESR1, IL2,
NFKB1, CDK7, IL6, SP1, CDK1, MDM2, PIN1, TCF3, GSK3B, PTEN, SUMO1, SIN3A,
TBP, PDPK1, H2AFX, YWHAZ, CCNA2, CREB1, TFDP1, CAT, CEBPB, HDAC2, HDAC3,
HDAC1, PPM1D, HSPD1, INS, ERBB2, E2F1, MAPK3, PTPN1, PTPN11, MAPK14,
SOD2, MTOR, PML, RAD51, ERCC3, SST, ERCC2, BAX, STUB1, TAF1

Cellular responses to stress 554 61 1.11 × 10−16 8.66 × 10−15

RB1, ATF2, AR, DDIT3, TP53, TXN, HIF1A, PRDX1, CREBBP, JUN, ATM, ATR,
CDKN1A, BMI1, FOS, TERF1, SIRT1, TERF2, GSTP1, RELA, HSF1, RAE1, CDKN2B,
CDKN2A, IFNB1, GSR, STAT3, RPA1, VEGFA, HSPA1B, HSPA1A, NR3C1, EP300, NBN,
MAP3K5, EEF1A1, VCP, UBB, HSPA9, HSPA8, NFKB1, IL6, SP1, MDM2, GSK3B,
LMNB1, HSP90AA1, GPX1, H2AFX, CCNA2, TFDP1, CAT, CEBPB, MAPK9, MAPK8,
E2F1, MAPK3, MAPK14, SOD2, MTOR, SOD1

SUMO E3 ligases SUMOylate
target proteins 169 36 1.11 × 10−16 8.66 × 10−15

AR, TP53, TP53BP1, PPARGC1A, CREBBP, TOP2A, TOP2B, BRCA1, BMI1, PARP1,
NCOR2, PPARG, PPARA, PCNA, RELA, WRN, RAE1, CDKN2A, RPA1, NR3C1, EP300,
HIC1, BLM, TFAP2A, UBE2I, ESR1, NFKB2, NFKBIA, MDM2, SUMO1, SIN3A, TOP1,
HDAC2, HDAC1, PML, RAD52
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The top hits for the enriched pathway analysis and their general pathways were
the following: signaling by interleukins (immune system), DNA double-stranded break
repair (DNA repair), PIP3 activates AKT signaling (signal transduction), FOXO-mediated
transcription (gene expression), cellular responses to stress (cellular responses to external
stimuli), SUMO E3 ligases SUMOylate target proteins (metabolism of proteins), cellular
senescence (cellular responses to external stimuli), transcriptional regulation by TP53 (gene
expression), and SUMOylation (protein metabolism). All results had an FDR = 8.66 × 10−15;
p = 1.11 × 10−16. Importantly, AR genes identified SIRT1 and its homologs in five pathways,
including “DNA double-stranded break repair”, “FOXO-mediated transcription”, “RNA
polymerase II transcription”, “the generic transcription pathway”, and “cellular responses
to stress” (Table 2).

2.3. Longevity Genes

137 pathways were identified in the Reactome analysis of 357 longevity genes
(Supplementary Table S3). Of them, we validated and selected 49 pathways that satisfied
the threshold of p < 1.0 × 10−5. The top ten results are shown in Table 3. The pathways re-
sulted in two general pathways: Signal Transduction and Gene Expression. The top results
in the enrichment pathway analysis were part of the “Signal Transduction” general pathway.
The Reactome pathway “MTOR signaling”, (FDR = 5.15 × 10−14; p = 1.11 × 10−16) is a sub-
pathway topic under “intracellular signaling by second messengers” (FDR = 5.39 × 10−12,
p = 1.74 × 10−14). The “MTOR signaling pathway” involves 41 proteins, and 19 of those
proteins were found to be shared in our longevity genes. “PIP3 activates AKT signaling”
(FDR = 2.39 × 10−11, p = 1.03 × 10−13) is also a sub-pathway topic under the same pathway.
In the “gene expression” general pathway, the significant pathways were “RNA polymerase
II transcription” (FDR = 1.29 × 10−9, p = 1.04 × 10−11) and two sub-pathways—“TP53 reg-
ulates metabolic genes” (FDR = 1.29 × 10−9, p = 1.11 × 10−11) and “FOXO-mediated tran-
scription” (FDR = 1.78 × 10−9, p = 1.73 × 10−11). Longevity genes identified SIRT1 and its
homologs in three of the pathways, including “generic transcription pathway”, “RNA poly-
merase II transcription”, and “FOXO-mediated transcription” (Table 3). The AMPK path-
way was identified as “energy-dependent regulation of mTOR by LKB1-AMPK” (Table 3).
Both SIRT1/SIRT1 homologs and the AMPK pathway were not found within the categories
identified by AD and AD-overlapped genes (i.e., AD–AR and AD–longevity genes).

2.4. AD–AR Overlap Genes

41 AR genes (13% of the genes) overlapped with AD genes (AD–AR overlap genes)
(Table 4). The Reactome analysis of the AD–AR overlap genes showed 261 pathways
(Supplementary Table S4). Of them, we validated and selected 24 pathways that satisfied the
threshold of p < 1.0 × 10−5. The top ten results are shown in Table 5. The pathways resulted
in five general Reactome groups: gene expression, metabolism of proteins, programmed
cell death, signal transduction, and immune system.
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Table 3. Reactome pathway enrichment analysis results—longevity genes.

Reactome Pathway No. of Total Proteins in
Pathway No. of Hits in Pathway p-Value FDR HitGenes

mTOR signalling 41 19 1.11 × 10−16 5.15 × 10−14
AKT1, RRAGA, RRAGC, RRAGB, RRAGD, RPTOR,
LAMTOR2, LAMTOR3, RPS6, TSC2, TSC1, EIF4EBP1, RHEB,
MLST8, AKT1S1, EIF4E, EIF4B, MTOR, RPS6KB1

mTORC1-mediated
signalling 24 16 1.11 × 10−16 5.15 × 10−14

RRAGA, RRAGC, RRAGB, RRAGD, RPTOR, LAMTOR2,
LAMTOR3, RPS6, EIF4EBP1, RHEB, MLST8, AKT1S1, EIF4E,
EIF4B, MTOR, RPS6KB1

Intracellular signaling by
second messengers 326 34 1.74 × 10−14 5.39 × 10−12

AKT1, PRKCA, RRAGA, RRAGC, RRAGB, RRAGD, TP53,
MAPKAP1, TGFA, INSR, CDKN1A, RPTOR, PPARG, EGFR,
RICTOR, CAMK4, LAMTOR2, LAMTOR3, IRS2, TSC2,
FOXO4, FOXO3, FOXO1, KL, ESR1, NBEA, RHEB, FGFR1,
PRR5, MLST8, PIK3CA, AKT1S1, INS, MTOR

PIP3 activates AKT signaling 286 31 1.03 × 10−13 2.39 × 10−11

AKT1, RRAGA, RRAGC, RRAGB, RRAGD, TP53, MAPKAP1,
TGFA, INSR, CDKN1A, RPTOR, PPARG, EGFR, RICTOR,
LAMTOR2, LAMTOR3, IRS2, TSC2, FOXO4, FOXO3, FOXO1,
KL, ESR1, RHEB, FGFR1, PRR5, MLST8, PIK3CA, AKT1S1,
INS, MTOR

Generic Transcription
Pathway 1234 66 3.56 × 10−13 6.59 × 10−11

SERPINE1, AKT1, RUNX3, RRAGA, RRAGC, RRAGB,
RRAGD, TP53, MAPKAP1, TGFA, GATA4, APOE, ATRIP,
PPARGC1A, ATM, CDKN1A, MSTN, RPTOR, SREBF1, SIRT1,
SIRT3, RAD51D, RARB, PPARG, SGK1, EGFR, WRN, RICTOR,
WWOX, CDKN2B, GSR, MLH1, VEGFA, CAMK4, FAS,
LAMTOR2, LAMTOR3, NR3C1, YY1, KCTD1, TSC2, TSC1,
TBL1XR1, CSF1R, FOXO4, FOXO3, FOXO1, PLXNA4, TGFB1,
ESRRG, ESR1, NFKB1, IL6, CDK6, RHEB, PRR5, EXO1,
MLST8, YWHAG, H2AFX, IFNG, INS, TXNRD1, SOD2,
MTOR, ERCC2

Energy dependent regulation
of mTOR by LKB1-AMPK 29 12 2.20 × 10−12 3.39 × 10−10 RRAGA, RRAGC, RRAGB, RRAGD, RPTOR, LAMTOR2,

LAMTOR3, TSC2, TSC1, RHEB, MLST8, MTOR
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Table 3. Cont.

Reactome Pathway No. of Total Proteins in
Pathway No. of Hits in Pathway p-Value FDR HitGenes

RNA Polymerase II
Transcription 1363 67 1.04 × 10−11 1.29 × 10−9

SERPINE1, AKT1, RUNX3, RRAGA, RRAGC, RRAGB,
RRAGD, TP53, MAPKAP1, TGFA, GATA4, APOE, ATRIP,
PPARGC1A, ATM, CDKN1A, MSTN, RPTOR, SREBF1, SIRT1,
SIRT3, RAD51D, RARB, PPARG, SGK1, EGFR, WRN, RICTOR,
WWOX, CDKN2B, GSR, MLH1, VEGFA, CAMK4, FAS,
LAMTOR2, LAMTOR3, NR3C1, YY1, KCTD1, TSC2, TSC1,
TBL1XR1, CSF1R, FOXO4, FOXO3, FOXO1, PLXNA4, TGFB1,
ESRRG, ESR1, NFKB1, IL6, CDK6, RHEB, PRR5, EXO1,
MLST8, YWHAG, H2AFX, IFNG, POLDIP3, INS, TXNRD1,
SOD2, MTOR, ERCC2

TP53 Regulates Metabolic
Genes 89 17 1.11 × 10−11 1.29 × 10−9

AKT1, RRAGA, RRAGC, RRAGB, RRAGD, TP53, RPTOR,
GSR, LAMTOR2, LAMTOR3, TSC2, TSC1, RHEB, MLST8,
YWHAG, TXNRD1, MTOR

FOXO-mediated
transcription 66 15 1.73 × 10−11 1.78 × 10−9

AKT1, PPARGC1A, CDKN1A, MSTN, SREBF1, SIRT1, SIRT3,
NR3C1, FOXO4, FOXO3, FOXO1, PLXNA4, YWHAG,
INS, SOD2

Transcriptional Regulation by
TP53 368 30 2.68 × 10−10 2.25 × 10−8

AKT1, RRAGA, RRAGC, RRAGB, RRAGD, TP53, MAPKAP1,
ATRIP, ATM, CDKN1A, RPTOR, RAD51D, SGK1, WRN,
RICTOR, GSR, MLH1, FAS, LAMTOR2, LAMTOR3, TSC2,
TSC1, RHEB, PRR5, EXO1, MLST8, YWHAG, TXNRD1,
MTOR, ERCC2
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Table 4. Comparison of AR and positive AD genes.

GenAge (AR) Genes AlzGene (AD)
Genes Overlap Genes Overlapped in AR

Genes (%)

307 356 41 13%

Table 5. Reactome pathway enrichment analysis results—AD–AR overlap genes.

Reactome
Pathway

No. of Total
Proteins in
Pathway

No. of Hits
in Pathway p-Value FDR Value Hit Gene

Generic
Transcription
Pathway

1234 22 4.05 × 10−11 1.85 × 10−8

GSK3B, MT-CO1, SERPINE1, APOE,
PCK1, TP63, TGFB1, UBE2I, PARP1,
BDNF, CDKN2A, SOD2, ESR1, AR, IL6,
SST, FAS, PIN1, PPARG, PPARA,
TP53, TP73

RNA Polymerase
II Transcription 1363 22 2.84 × 10−10 6.47 × 10−8

GSK3B, MT-CO1, SERPINE1, APOE,
PCK1, TP63, TGFB1, UBE2I, PARP1,
BDNF, CDKN2A, SOD2, ESR1, AR, IL6,
SST, FAS, PIN1, PPARG, PPARA,
TP53, TP73

SUMOylation of
intracellular
receptors

30 5 1.08 × 10−7 1.62 × 10−5 UBE2I, ESR1, AR, PPARG, PPARA

TP53 Regulates
Transcription of
Death Receptors
and Ligands

12 4 1.42 × 10−7 1.62 × 10−5 TP63, FAS, TP53, TP73

SUMO E3 ligases
SUMOylate target
proteins

169 8 1.98 × 10−7 1.80 × 10−5 UBE2I, PARP1, CDKN2A, ESR1, AR,
PPARG, PPARA, TP53

Signaling by
ERBB4 58 5 2.69 × 10−6 1.75 × 10−4 PIK3R1, PSEN1, APOE, S100B, ESR1

Interleukin-4 and
Interleukin-13
signaling

112 6 3.83 × 10−6 2.18 × 10−4 PIK3R1, PTGS2, TNF, TGFB1, IL6, TP53

Apoptosis 179 7 4.36 × 10−6 2.18 × 10−4 LMNA, TP63, CDKN2A, FAS, MAPT,
TP53, TP73

Nuclear signaling
by ERBB4 32 4 6.83 × 10−6 2.80 × 10−4 PSEN1, APOE, S100B, ESR1

Platelet
degranulation 128 6 8.16 × 10−6 3.10 × 10−4 APP, SERPINE1, CLU, A2M, TGFB1, IGF1

The top result for the enriched pathway analysis was “Generic Transcription Path-
way” (FDR = 1.85 × 10−8; p = 4.05 × 10−11), which was a sub-pathway topic under
“RNA polymerase II transcription” (FDR 1.85 × 10−8; p = 2.84 × 10−10), which was a
sub-pathway topic under the “Gene Expression” general pathway. Within “Generic Tran-
scription Pathway”, the analysis highlighted “nuclear receptor transcription pathway”
(FDR = 9.705 × 10−4; p = 4.85 × 10−5) and “TP53 regulates transcription of cell death
genes” (FDR = 5.90 × 10−4; p = 2.36 × 10−5). “Generic transcription pathway” involves
1234 proteins and 22 of those proteins were found to be shared in AD–AR overlap genes
(FDR = 1.85 × 10−8; p = 4.05 × 10−11).

Pathways within the AD–AR overlap genes (Figures 2 and 3) for the “generic tran-
scription pathway” included the following sub-pathways: “nuclear receptor transcription
pathway” and “transcriptional regulation by TP53”. Under “SUMOylation” hit genes
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included the following sub-pathways: “SUMO E3 ligases SUMOylate target proteins”,
“SUMOylation of intracellular receptors”, “SUMOylation of transcription factors”, and
“SUMOylation of DNA damage response and repair proteins”.
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2.5. AD–Longevity Overlap Genes

43 genes of longevity genes (12% of the genes) overlapped with AD genes (Table 6).
The Reactome analysis of the AD–longevity overlap genes identified 34 pathways
(Supplementary Table S5), of which 12 pathways were validated within the threshold
of p < 1.0 × 10−5. The top ten results are shown in Table 7. The pathways were in the
following 4 Reactome general pathways: Immune System, Plasma lipoprotein assembly,
remodeling, and clearance, Metabolism of vitamins and co-factors, and Signal Transduction.

Table 6. Comparison of Longevity and AD Genes.

Longevity Genes Positive AlzGene
(AD) Genes Overlap Genes Overlapped in

Longevity Genes %

357 356 43 12%

Table 7. Reactome pathway enrichment analysis results—longevity and AD overlap genes.

Reactome
Pathway

No. of Total
Proteins in
Pathway

No. of Hits
in Pathway p-Value FDR Value Hit Gene

Interleukin-4 and
Interleukin-13
signaling

112 7 7.64 × 10−8 2.32 × 10−5 TNF, HMOX1, IL10, TGFB1,
IL18, IL6, TP53

Plasma lipoprotein
assembly 19 4 5.15 × 10−7 7.82 × 10−5 APOE, APOA1, APOA4, APOC1

Plasma lipoprotein
assembly,
remodeling, and
clearance

71 5 3.69 × 10−6 2.30 × 10−4 CETP, APOE, APOA1, APOA4,
APOC1

Plasma lipoprotein
remodeling 32 4 4.02 × 10−6 2.30 × 10−4 CETP, APOE, APOA1, APOA4

Chylomicron
remodeling 10 3 5.35 × 10−6 2.30 × 10−4 APOE, APOA1, APOA4

Chylomicron
assembly 10 3 5.35 × 10−6 2.30 × 10−4 APOE, APOA1, APOA4

HDL remodeling 10 3 5.35 × 10−6 2.30 × 10−4 CETP, APOE, APOA1

Signaling by
Interleukins 452 9 1.20 × 10−5 4.57 × 10−4 AGER, TNF, HMOX1, IL10,

TGFB1, IL18, SOD2, IL6, TP53

Retinoid
metabolism and
transport

44 4 1.40 × 10−5 4.61 × 10−4 TTR, APOE, APOA1, APOA4

Interleukin-10
signaling 47 4 1.80 × 10−5 5.29 × 10−4 TNF, IL10, IL18, IL6

The top result from the enriched pathway analysis is “Interleukin-4 and Interleukin-13
signaling” (FDR = 2.32 × 10−5; p = 7.64 × 10−8), which is a sub-pathway of “signaling
by Interleukins” (FDR 4.57 × 10−4; p = 1.20 × 10−5) and part of the “Immune System”
general pathway. Out of the 112 proteins found to be involved in the “Interleukin-4 and
Interleukin-13 signaling” pathways, 7 were shared by AD–longevity overlap genes. Key
hit genes involved with these pathways include TNF, IL10, IL18, and IL6. These genes are
also shown to be involved in Interleukin 10 signaling. Interleukin pathways are shown in
Figures 4A and 5A.
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The second major Reactome group is “Plasma lipoprotein assembly, remodeling, and clear-
ance” (FDR = 2.30 × 10−4; p = 3.69 × 10−6). Genes in this pathway (Figures 4B and 5B) incorpo-
rate the following significant sub-pathways: “plasma lipoprotein assembly” (FDR = 7.82 × 10−5,
p = 5.15 × 10−7), which is a sub-pathway of “plasma lipoprotein remodeling“, “chylomi-
cron remodeling”, “chylomicron assembly”, and “HDL remodeling”. The hit genes CEPT
and APOE are present in all of these subcategories, highlighting their importance in this
AD and longevity overlap dataset. Other top results included “Retinoid metabolism and
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transport”, which is a subset of “Metabolism of fat-soluble vitamins” and “NR1H2 and
NR1H3-mediated signaling”, a subset of the “signal transduction” pathway. APOE is also
a hit gene in these pathways.

3. Discussion

This study identified a diverse range of biochemical pathways, using the Reactome
analysis of each individual set of AD, AR, and longevity genes. We compiled and removed
redundancies of the pathways into comparable groups by highlighting the hallmarks of each
subset and comparing each individual gene set to the pathways involved in the overlapping
(AD–AR and AD–longevity) gene sets. Figure 6 summarizes pathways involved in each
subset, which are further discussed in the subsequent sections.
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3.1. AD Genes

The AD genes are associated with the health risk of AD, which were identified previ-
ously [7,8]. The top pathways (Table 1) were grouped into three categories: mitochondrial
RNA metabolism (processing of RNA), lipoprotein metabolism (lipid metabolism), and
interleukin signaling (immune system) (Figure 7). The pathway of “Mitochondrial RNA
metabolism” was unique to the pathways identified by AD genes, while the other two
categories, lipoprotein metabolism (lipid metabolism) and interleukin signaling (immune
system), also overlapped with the pathways identified by Longevity genes. We discuss
mitochondrial RNA here, and the others are discussed below in Section 3.4.
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Mitochondrial RNA metabolism aligns with the mitochondrial cascade that controls
mitochondrial function and change rates influence AD chronology. Reactome analysis has
made mitochondrial genes the top hit when associated with AD genes alone, signaling
its importance and the need for more data on possible interventions. Mitochondrial RNA
metabolism falls into diverse functions of mitochondrial complexes, tRNA, and rRNA. Al-
though the roles of mitochondrial RNA in AD remain unclear, mitochondrial dysfunctions
and cascades have been involved in AD pathogenesis, thus providing potential markers for
neurodegeneration [21–24]. The mitochondrial coding and non-coding RNA are increased
in the circulating extracellular vesicles in AD and mild cognitive impairment (MCI) [25,26];
the AD genes in the category of this study include MT-ND1-4,6, MT-ND4L, MT-ATP6,
MT-ATP8, MT-CYB (or MT-CYBT), MT-CO1, and MT-RNR1 (Table 1). Alterations in the
mitochondrial RNA generally impact energy-demanding tissues, including the brain and
the muscle [27,28], and the mitochondrial instability in the neurons, releasing mitochondrial
RNAs in the circulating vesicles in the blood [25,26]. Deficiencies of the RNA genes are
also related to AD; Parkinson’s disease; and a variety of neurological and mitochondrial
diseases, including mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like
episodes (MELAS), Leber hereditary optic neuropathy, myoclonic epilepsy associated with
ragged-red fibers (MERRF), and Leigh syndrome [29–32].

3.2. AR Genes

The AR genes are associated with aging. The top pathways (Table 2) can be grouped
into six general pathways (Figure 8). Of them, the genes unique to the AR subset are com-
ponents of two pathways, DNA double-stranded break (DSB) repair (30 genes) and cellular
senescence (61 genes) (Table 2, Figure 6). DSB can precipitate genomic rearrangements
affecting multiple genes thus leading to much broader consequences when compared to
other types of DNA mutations. This suggests that as humans age, DSB, and other DNA
repair mechanisms become less efficient and more error-prone [33]. Deficiencies in the DSB
pathway are known to be involved in breast and colorectal cancer [34]; xeroderma pig-
mentosum [35,36]; Werner syndrome [37]; and various DSB syndromes, including Fanconi
anemia, Nijmegen breakage syndrome, and ataxia–telangiectasia [38,39], among others.
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Cellular senescence, or cellular aging, is a cellular response characterized by stable
growth arrest, altered proinflammatory secretome, and other phenotypic alterations. The
alterations are known to play a role in normal development, tissue homeostasis, and
preventing tumor progression [40]. It has been implicated as a major cause of age-related
disease. This suggests that the further study of cellular senescence can lead to novel
therapies for age-related diseases. The genes in cellular senescence are involved in a
wide variety of cancers (hepatocellular carcinoma and colorectal, breast, prostate, ovarian,
and lung cancers) [41,42]. Notably, cellular senescence may be involved in the defense
against cancer.

3.3. Longevity Genes

The longevity genes are associated with increased lifespan, which is an indicator of
delayed aging. The top pathways (Table 3) can be grouped into two pathways: the signal
transduction category (PIP3-AKT and mTOR pathways) and the gene expression category
(TP53 and FOXO pathways) (Figure 9). The TP53 and FOXO pathways are discussed
elsewhere (Section 3.5). PIP3-AKT is a part of the insulin/IGF-1 signaling (IIS) pathway,
which regulates FOXO (forkhead box O), a subset of a large family of transcription factors.
The insulin/IGF-1 pathway is known to control lifespans and stress resistance to protect
against multiple forms of stress damage in model systems [43–49]; the other life-extending
pathways include the Sirtuin/SIRT1 pathway, the mTOR pathway, and the AMPK pathway,
among others in model systems [50]. Consistently, SIRT1 and its homologs were involved
in five of the top AR pathways (Table 2) and three of the top Longevity pathways (Table 3),
while the AMPK pathway was also involved in Longevity genes (Table 3).
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The IIS pathway is also involved in cellular processes such as cell growth and survival,
including FOXO3 and FOXO1 genes [51]. The mechanistic target of rapamycin (mTOR),
which is also a downstream target of the insulin/PIP3/AKT pathway, is a protein kinase
in a highly conserved pathway that senses nutrients and other environmental signals and
coordinates several fundamental cellular responses, such as cell growth and proliferation,
and has been linked to the physiological process of aging. [52]. Previous studies have shown
that inhibition of mTOR enhances longevity and decreases aging and age-related disease in
model organisms [53]. The transcription factor TP53, which encodes tumor suppressor p53,
is involved in several aging-related pathways such as apoptosis and senescence and has also
been shown to influence insulin/mTOR signaling, which can contribute to longevity [54].

3.4. Comparing AR Pathways with Longevity Pathways

Based on our Reactome analysis, there are shared biological pathways among AR and
longevity genes, including the immune system and cytokine signaling, signal transduction,
and gene expression, involved in the balance between aging and longevity. Aging also
has components of impaired DNA repair and metabolism of proteins, as well as cellular
senescence. We have compared the pathways involved in AR and longevity genes, which
represent the balance of shared pathways (Figure 10).

3.5. AD–AR Overlap Genes

Although the gene ontology for the AD–AR overlap genes demonstrated involvement
in a broad range of biological pathways, concurrent with previous studies, some of our most
significant associations involve TP53, FOXO, and SUMOylation (Table 4 and Figure 11). The
AD and AR genes have a positive trajectory to aging, which may be involved in creating
the ground of both aging and AD.

The TP53 gene, or the gene product p53, is well known for its guardian function as
a prominent tumor suppressor protein that protects genome integrity through cell cycle
control and the DNA damage response, among others. In neurons, p53 has pleiotropic
functions. AD brain pathology shows abnormal cell cycle and apoptosis and increased
DNA damage, all of which are dependent on p53 [55]. In addition, misfolded p53 has been
observed in MCI and AD [56]. p53 interacts with beta-amyloid and tau [57,58] and forms
aggregates to form oligomers and fibrils and interacts with tau oligomers [55]. The p53
protein is degraded and inactivated to a ubiquitin-dependent pathway [59]. In AD, protein
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degradation pathways, the ubiquitin–proteosome system, and autophagy are reduced,
leading to defective proteostasis [60]. Thus, trajectories of the p53 functions are both
positive and negative for AD and aging. It has been proposed that p53 is a potential
peripheral biomarker that could detect AD at its earliest stages [56].
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FOXO proteins are a subgroup of the Forkhead family of transcription factors in-
volved in the regulation of aging and stress resistance, metabolism, regulation of reactive
species, and regulation of cell cycle arrest and apoptosis. The FOXO family includes
DAF-16 in Caenorhabditis elegans and dFOXO in Drosophila melanogaster, as well as mam-
malian FoxO1, FoxO3, FoxO4, and FoxO4. FOXO has diverse functions, including Lipid
metabolism, DNA damage repair, stress resistance, autophagy, and glucose metabolism,
among others [43,47,61,62]. Consistently, in mice with FOXO3 deficiency, there is an in-



Int. J. Mol. Sci. 2023, 24, 5178 19 of 27

creased plaque load and core plaque size, commonly found in AD progression, in the
cortex [63]. Importantly, p53 and FOXO are both transcription factors, which can function
through interlocking pathways involving SIRT1 and microRNA [64].

3.6. AD–longevity Overlap Genes

Significant pathways generated from the AD–longevity overlap set include three
pathways, cytokine signaling in the immune system, lipoprotein metabolism, and the
metabolism of fat-soluble vitamins and NR1H2- and NR1H3-mediated signaling (Figure 12).
The latter two pathways are closely related to each other, since lipoproteins are a carrier
of fat-soluble vitamins and metabolism, and thus, we combined them as a lipoprotein
metabolism. As discussed above, AD genes identified mitochondrial RNA metabolism,
lipoprotein metabolism, and cytokine signaling. Mitochondrial RNA metabolism was
identified by AD genes but not longevity genes, suggesting that it is unique to AD genes,
while lipoprotein metabolism and cytokine signaling were also identified by longevity
genes, which are likely involved in a more general basis in longevity (i.e., delayed aging).
Although it remains unclear, the AD–longevity overlap genes are candidates that may be
involved in the gene–gene network protective to healthy aging.
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In the first category immune system, cytokines play an integral role in regulating
inflammatory pathways, including neuroinflammation in Alzheimer’s disease. Aß plaques
have been shown to increase levels of proinflammatory cytokines IL6 and TNF alpha,
among others, leading to a vicious cycle of cytokine-derived inflammation and plaque
accumulation [65]. Proinflammatory cytokines, including TNF alpha and IL6, generally
become more prevalent with age [66–68]. Genetic differences in the cytokine genes could
serve as a potential connection to either longevity or aging and inflammatory age-related
diseases [69]. It has been theorized that in longer-lived individuals, the polymorphisms
that express lower IL6 levels would be negatively correlated, but studies have had mixed
results [70–72]. IL4 is an anti-inflammatory in the brain and has been shown to potentially
counter the inflammatory processes in age-related diseases in mice, although detailed
mechanisms are not yet known [73]. Our present study reveals the importance of the
interplay and balance of cytokines, especially IL4 and IL6, which would be a potential
area for further research. Importantly, low-grade increase in age-related inflammation has
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led to two hypotheses: the molecular changes cause age-related inflammation (molecular
inflammation hypothesis) [68], and age-related progressive increase in proinflammatory
status cause age-related inflammation (inflammaging hypothesis) [67,74]. However, the
two hypotheses are not sufficient to explain age-related chronic inflammation [68] caused
by, for example, a stress response and senescent-associated inflammatory response through
secretome cytokines (discussed below).

The lipoprotein metabolism was the second category in the AD–longevity overlap
genes. A lipoprotein metabolism associated with AD has been discussed previously [7,8].
Briefly, the human brain is a lipid-rich tissue that contains 35–80% of lipids [75,76]. Lipopro-
teins transport lipids and lipid-soluble compounds (e.g., lipid-soluble vitamins A, D, E,
and K), controlling lipid homeostasis in the body. Thus, it is reasonable to assume the role of
lipoprotein in the brain. Essential fatty acids (EFAs) are required for brain development and
maintenance. EFAs are also precursors of inflammatory mediators, eicosanoids, which are
known to be involved in the pathology of beta-amyloid [77,78]. In this study, the Reactome
analysis identified 21 genes (Table 1) in the pathway of lipoprotein metabolism. In this
study, the Reactome analysis identified 21 genes, including Apolipoprotein E (APOE) and
cholesteryl ester transfer protein (CEPT) (Table 1), that fell into the Reactome pathway
of plasma lipoprotein assembly, remodeling, and clearance. Polymorphisms of APOE
are an established risk factor for developing AD by enhancing Aß-led inflammation and
deterioration [79]. Polymorphisms of CEPT are potential candidates for risk factors for
developing AD, but results have been discordant [80]. Despite being shown to increase the
risk of developing AD, these genes are difficult to target or change, since they are needed
for normal lipid homeostasis. Further, variants could be evolutionarily beneficial earlier in
life, an example of antagonistic pleiotropy [81]. Thus, future studies should emphasize the
interplay between genes and lifestyle throughout a person’s lifetime.

Interestingly, stress damage and response interlock the immune system and lipopro-
tein metabolism in multiple ways. Some examples are (1) oxidative damage to low-density
lipoproteins (LDL) is a well-known initial step of atherosclerosis, inducing inflammatory
responses by releasing cytokines and chemokines [82–84]. (2) Metabolically linked proin-
flammatory stress, such as endoplasmic reticulum (ER) stress, modulates lipid metabolism
and mediates the release of cytokines (IL-1α, IL-6, and IL-8), which are known to par-
ticipate in age-related chronic inflammation [68]. ER stress triggers an unfolded protein
response (UPR) and transcriptionally regulates lipogenesis [85], thus playing an essential
role in lipid metabolism [85–88]. (3) Stress damage such as DNA damage and response
play a major role in cellular senescence in vitro [89]. Cellular senescence triggers a potent
senescent-associated inflammatory response through secretome cytokines, IL-1β, IL-6,
and IL-8 [90,91]. Recent studies suggest a relationship between the lipid metabolism and
senescence [92,93]. Oxidative stress and cellular senescence are involved in age-related
comorbidities, including cardiovascular disease, chronic kidney disease, diabetes, neurode-
generative diseases, and macular degeneration, among others [94]. Cardiovascular (CV)
risk factors (i.e., obesity, diabetes, hypertension, and atherosclerosis) are associated with
the inflammatory pathway mediated by IL-1α, IL-6, and IL-8 [95].

3.7. Technical Advantages and Limitations

Gene set enrichment analysis (GSEA) is a computational method that is useful to
interpret the biological functions of a gene set with statistical confidence. Reactome incor-
porates GSEA embedded with the knowledge database that covers more than 100 bioin-
formatics resources. The Reactome outputs include statistical confidence levels with
p-values and false discovery rate, which raises the confidence level of evidence. The
gene enrichment algorithms use a score-ranked list and compare it with random rankings
(Subramanian et al., 2005), which provides a reasonable level of statistics with a p-value
and false discovery rate. Thus, we suggest that the results from this study represent the
most current genetic hallmarks involved in AD, aging, and longevity. This study provides
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a comprehensive update of the genomic map of the AR genes reported nearly two decades
ago [18].

However, the results from GSEA should be viewed as living knowledge, which
requires updates until the knowledge is saturated and complete. A potential limitation
is that connections among genes and annotations may be influenced by outliers among
previous studies, which should be minimized by peer review, systematic review, and
meta-analysis. Although poor study design and controls in a GWAS study may influence
overall annotations, it is likely that GSEA and the review systems reduce the impact of such
a study. We also used a stringent condition (p < 1.00 × 10−5), which is backed up by the
false discovery rate < 1.00 × 10−3. Additionally, knowledge databases, such as Reactome
(https://reactome.org/) and KEGG (https://www.genome.jp/kegg/), process the data
rigorously with continued updates, which should reduce the incorporating experimental
errors. Another limitation is manually curated annotation nomenclatures, some of which
may not be easy to understand. For example, stress resistance to a variety of stresses
(i.e., multiplex stress resistance) is a component of longevity [43,44,96], which cannot be
identified using the current annotation and thus remains to be investigated.

Another limitation comes from the gene set enrichment analysis (GSEA) that identifies
gene hits within a group of genes in a particular pathway supported by statistical confi-
dence (p-value and FDR). GSGA is a powerful method to identify and overview pathways
that come with statistical confidence and minimum bias since a single-gene effect is not nec-
essarily predictable to define phenotypes and trajectories. For example, the TP53 gene also
shows both positive and negative trajectories: p53 as guardian of the genome is positive for
longevity, while misfolded p53 observed in the background of MCI and AD has negative
trajectories against longevity (discussed in Section 3.5). There are traits, such as IP6K3 and
IPMK, that show controversial phenotypes compared to the overall gene–gene effects, sug-
gesting that gene–gene interactions may be more important than single polymorphisms [97].
Lastly, the insulin/IGF-1 pathway, including PIP3-AKT, is positive for longevity when the
function is reduced, while it is lethal when the function is knocked out (Section 3.3). For
these reasons, it is important to assess interactions among genes and variants to define dif-
ferent phenotypes. This study using GSGA provides a general overview of major pathways
as a blueprint of hallmarks relevant to phenotypic and disease ontology (e.g., AD, aging,
and longevity in this study), while a personalized genetic overview, or direct-to-consumer
genetic application for the assessment of health risks, would require a multidimensional
analysis with genetic contributions of variants, epistatic effects, phenotypic and disease
ontology, and other nongenetic effects in an individual [8,97–101].

4. Materials and Methods
4.1. Datasets

We used three sets of genes for our study: human Alzheimer’s disease (AD) genes,
aging-related (AR) genes, and longevity genes. With these three gene sets, two additional
gene sets were created by: (1) identifying the genes shared both by the AD genes and
by the AR genes (AD–AR Overlap) and (2) identifying the genes shared both by AD
genes and longevity genes (AD–longevity overlap). Firstly, we utilized the AlzGene
database (www.alzgene.org; last accessed 10 May 2021) to extract a list of 680 identified
human AD genes from GWAS and previous linkage studies [16,102]. Each gene from the
database was linked to a number of positive or negative test results from each GWAS
study, which were then used to validate the reliability of the data. Out of the 680 genes,
356 genes had positive results (AD genes), and 324 genes had negative results. Since
the definite negative and positive results were not included in the database, we used the
p-value from previous studies for each gene. If p < 0.05, we assumed the data was reliable
and counted them as a positive result; studies with p > 0.05 were regarded as negative
and were not included in our study. Note that we used a more stringent threshold of
p < 1.0 × 10−5 to validate the Reactome pathways (see text). Research outcomes listed
as trends or inconclusive were also not included in our study. Secondly, we utilized the
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GenAge database (www.genomics.senescence.info; last accessed 10 May 2021), a benchmark
database of 307 genes possibly related to human aging (AR). The genes were extensively
reviewed for inclusion based on findings in the model organisms put in the context of
human biology, plus genes directly related to aging in humans [103]. Thirdly, we utilized
the LongevityMap database (www.genomics.senescence.info/longevity/; last accessed
12 December 2021), a database of 751 genes associated with human longevity [20]. In the
database, 394 genes were labeled “non-significant” and thus excluded from this study for
analysis. The remaining 357 genes were labeled as “significant” (Longevity genes) and
used in this study. Finally, the list of AD Genes was used to cross-reference the presence
of any genes shared by the combinations of each gene set (AD–AR overlap genes and
AD–longevity overlap genes). When comparing AD genes with AR genes, 41 overlapping
(AD–AR overlap) genes were found. When comparing AD genes and Longevity genes,
43 overlapping (AD–longevity overlap) genes were found.

4.2. Gene Ontology: Reactome Analysis

We used Reactome (www.reactome.org) to analyze the pathways involved in each
gene set. The pathways with a threshold of p < 10 × 10−5 were selected and used for this
study. Reactome analysis was performed as described previously [7,8]. Reactome FIViz
was used to determine enrichment in the Functional Interaction (FI) network, the pathway
enrichment of the genes of interest, followed by converting the results to interactomes.
Statistics and false discovery rate (FDR) were calculated by the Reactome FIViz. We used
Cytoscape ver. 3.8.2 (Java version: 11.0.6) to run the Reactome software plugin, Reactome
FIViz app [104]. The version of the pathway database was Reactome v76 (released on
21 March 2021; last accessed on 26 May 2021).

5. Conclusions and Future Direction

Although a large number of genetic studies on aging have made major findings in
aging and longevity, how the findings may apply to AD was unclear. In this study, using
human gene sets, we have successfully identified and overviewed the gene–gene networks
of aging and longevity and their association with Alzheimer’s disease genes. The Reactome
analysis used in this study provides the genetic pathways with gene set enrichment and
statistical confidence levels. Our results suggest overlapping pathways that involve TP53,
FOXO, protein metabolism (SUMO), mitochondrial RNA metabolism, cytokine balance,
and lipoprotein metabolism, among others. The genetic hallmarks identified in this study
provide unexpectedly broad mechanisms, suggesting a wide variety of implications in the
field of aging. Importantly, AD genes are associated with a variety of pathways that link to
age-related comorbidities, thus providing a view in which AD genes create the ground of
age-related comorbidities [8], particularly mitochondrial RNA metabolism, cytokine signal-
ing, and lipid metabolism with the highest significance. Gene profiling-based treatment
would distinguish age-related comorbidities specific to AD and nonspecific to AD. Further
studies on environmental and lifestyle factors may provide a genetic and epigenetic under-
standing of the development of Alzheimer’s disease and age-related comorbidities [101,105].
Moreover, AD genes are also associated with common age-related comorbidities, including
diabetes, myocardial infarction, heart disease, hypertension, cardiovascular system disease,
and vascular disease [8]. Importantly, there is an inverse relation between AD and can-
cers [8,106]. More details have been discussed previously [7,8]. The genetic network in this
study should contribute as a blueprint for a personalized genetic risk assessment for AD
and other age-related comorbidities (Section 3.7). We also note the technical limitation that
manually curated annotations in Reactome may need to be optimized to understand AD,
aging, and longevity more accurately. Research such as this study on the genetic network
is expected to link aging, mid-life common diseases, and Alzheimer’s disease [107,108].
We suggest that the overviews of the gene sets, including those in this study, continue to
be essential for the understanding of AD, aging, and longevity for the following reasons:
(1) The predictive contribution of each genetic variant remains modest for LOAD [6]. Pre-
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vious findings on single-gene effects of human genes have limitations that may miss the
complexity of human genetics. Thus, gene–gene networks should be considered. (2) There
are genes with controversial phenotypic effects [97]. The prediction has been supported by
the observation that the genetic network and epistasis analysis estimates genetic effects
better than single-gene effects [8,97,101].

Previously, we have proposed to include feedback from patients in research when
studying health [109] and provided an example [110]. We incorporated their feedback that
there might be a more meaningful approach to AD patients than simply identifying the AD
genes. The discussion prompted us to explore related genes and extracted the biological
hallmarks shared among aging, longevity, and AD through outreach and education within
the local, national, and scientific communities [109]. The genetic interaction networks
among aging, longevity, and AD provide the extraction and translation of the gene informa-
tion into the hallmarks as well, as are the key to developing effective treatments for AD. We
hope to stimulate basic science research open to patients, the community, and education.
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