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Abstract: The cell stress response is an essential system present in every cell for responding and
adapting to environmental stimulations. A major program for stress response is the heat shock factor
(HSF)–heat shock protein (HSP) system that maintains proteostasis in cells and promotes cancer
progression. However, less is known about how the cell stress response is regulated by alternative
transcription factors. Here, we show that the SCAN domain (SCAND)-containing transcription
factors (SCAN-TFs) are involved in repressing the stress response in cancer. SCAND1 and SCAND2
are SCAND-only proteins that can hetero-oligomerize with SCAN-zinc finger transcription factors,
such as MZF1(ZSCAN6), for accessing DNA and transcriptionally co-repressing target genes. We
found that heat stress induced the expression of SCAND1, SCAND2, and MZF1 bound to HSP90
gene promoter regions in prostate cancer cells. Moreover, heat stress switched the transcript variants’
expression from long noncoding RNA (lncRNA-SCAND2P) to protein-coding mRNA of SCAND2,
potentially by regulating alternative splicing. High expression of HSP90AA1 correlated with poorer
prognoses in several cancer types, although SCAND1 and MZF1 blocked the heat shock respon-
siveness of HSP90AA1 in prostate cancer cells. Consistent with this, gene expression of SCAND2,
SCAND1, and MZF1 was negatively correlated with HSP90 gene expression in prostate adenocarci-
noma. By searching databases of patient-derived tumor samples, we found that MZF1 and SCAND2
RNA were more highly expressed in normal tissues than in tumor tissues in several cancer types. Of
note, high RNA expression of SCAND2, SCAND1, and MZF1 correlated with enhanced prognoses of
pancreatic cancer and head and neck cancers. Additionally, high expression of SCAND2 RNA was
correlated with better prognoses of lung adenocarcinoma and sarcoma. These data suggest that the
stress-inducible SCAN-TFs can function as a feedback system, suppressing excessive stress response
and inhibiting cancers.

Keywords: cell stress response; heat shock protein 90 (HSP90); SCAN domain (SCAND)-containing
proteins; MZF1/ZSCAN6; heat shock factor (HSF); long noncoding RNA (lncRNA); co-expression
correlation; Kaplan–Meier plot; cancer patient prognosis

1. Introduction

The cell stress response is an intrinsic system in all cells responding and adapting to
environmental stimulations. One of the representative stress response systems is the heat
shock factor (HSF)–heat shock protein (HSP) program that maintains proteostasis in cells [1–4]
and promotes cancer progression [5–7]. The HSF–HSP system was originally found to be
activated in response to heat shock stress (HSS) but was subsequently shown to also be
induced by oxidative stress, heavy metals, toxins, bacterial infections, and other stresses [1].
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Such proteotoxic stresses cause protein misfolding and thus activate the HSF–HSP system.
Of note, the HSF–HSP system is often activated in cancer [8–10].

Heat shock protein 90 (HSP90) members are stress-inducible protein chaperones that
assist protein folding and re-folding to give their clients functionality in the intracellular
space. As HSP90 has several hundred protein substrates (called ‘clients’), it is involved in
many cellular processes beyond protein folding, which include DNA repair, development,
the immune response, and neurodegeneration [11–15]. Elevated expression of HSP90
has been observed in many cancer types and correlates with poor prognosis, increased
metastatic potential, and resistance to therapy [16–19]. Moreover, the HSP90 alpha and
beta isoforms are often released with extracellular vesicles (EV), including exosomes, by
cancer cells and trigger cancer initiation and progression, as well as the polarization of
tumor-associated macrophages (TAM) to an immunosuppressive M2 subtype [6,17,20–22].
In addition, HSP90 is produced and released by immunocytes, such as macrophages, and
plays a key role in antigen cross-presentation [14,15,23,24]. HSF1 is the master regulator of
the protein quality control machinery in response to proteotoxic stress conditions [2,3,25] and
enhances cancer progression [5,7]. Upon proteotoxic stress, HSF1 binds to heat shock elements
(HSE) in the promoter regions of HSP genes and other stress-inducible genes [2,3,25]. HSF1 drives
oncogenesis in many ways beyond inducing the gene expression of chaperones [7,26–28],
co-chaperones [6], and non-chaperone target genes [9]. However, less is known about how
HSP90 genes are attenuated by alternative transcription factors.

The SCAN domain-containing transcription factors (SCAN-TF) contain the SREZBP-
CTfin51-AW1-Number 18 cDNA domain (SCAND), a leucine-rich oligomerization domain
highly conserved among the SCAN-TF family (Figure S1). This family contains more than
50 members, most of which contain a zinc finger (ZF) domain to scan DNA sequences for
binding; hence, they are called SCAN-ZF factors [29–33]. Myeloid zinc finger 1 (MZF1),
also known as ZSCAN6 or ZNF42, is a prototypical SCAN-ZF that contains an N-terminal
SCAN domain, a linker region, and a C-terminal DNA binding domain [34–36]. Many
studies have identified MZF1 as an oncogenic transcription factor [34,37–40] and cancer
stemness factor [41,42]. However, depending on the context, MZF1 can also function as a
tumor suppressor [43–45]. While there are more than 50 types of SCAN-TFs, only 6 zinc-
fingerless SCAND-only proteins exist [30,31]. SCAND1 is a SCAN domain-only protein
that can hetero-oligomerize with other SCAN-ZFs, including MZF1, through inter-SCAN
domain interactions to repress transcription [32,33,37,43,46]. Thus, hetero-oligomerization
between SCAND molecules and SCAN-ZF molecules can transform their roles, forming
a transcriptional repressor complex [32,33,37,43,46]. Indeed, SCAND1 represses the co-
chaperone CDC37 gene (encoding cell division control 37) by interacting with MZF1 and
suppressing prostate cancer [37]. Moreover, SCAND1 and MZF1 are mutually inducible
and form oligomers that can reverse epithelial-to-mesenchymal transition (EMT), tumor
growth, and migration by repressing EMT driver genes and mitogenic protein kinase
(MAPK) genes [43]. High expression of MZF1 correlated with poor prognoses in prostate
cancer and kidney cancer, whereas SCAND1 and MZF1 expression correlate with better
prognoses in pancreatic cancer and stage III head and neck cancers [43]. These suggest
that MZF1 alone is oncogenic, whereas repressing complexes of SCAND1 and MZF1
is tumor suppressor, depending on their gene expression in cancer cases. SCAND2 is
another member of SCAND factors with high homologies. Of note, SCAND2 RNA has
been registered as SCAND2P, a pseudogene for long noncoding RNA (lncRNA), and
protein-coding SCAND2 mRNA in the NCBI database, although it has not been biologically
investigated.

It has been unclear whether the SCAND factors and MZF1 are involved in proteotoxic
stress response in cancer. Here, we show that the SCANDs and MZF1 are stress-inducible
factors and can attenuate HSP90 gene expression in prostate cancer cells. We also show
that cell stress alters the transcript variants of protein-coding and noncoding RNA of
SCAND2. Moreover, we show that high expression levels of these SCAN-TF RNA can
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be predictive biomarkers of better prognoses in several cancer types, indicating potential
tumor suppressor roles.

2. Results
2.1. Heat Shock Elements (HSE) in the Promoter Regions of MZF1(ZSCAN6), SCAND1, and
SCAND2P Genes in the Human Genome

We first grasp the loci and structures of MZF1(ZSCAN6), SCAND1, and SCAND2P
genes in the human genome. The MZF1 gene is located at the terminal end of chromosome
19 (Figures 1A, S1 and S2). SCAND1 gene is located on chromosome 20. SCAND2P gene
is located on chromosome 15. These SCAN-TF genes overlap with other genes encoding
MZF1-AS1 (antisense 1), CNBD2, and WDR73. SCAND2P gene is located neighboring with
ZSCAN2 gene, another member of SCAN-ZFs. MZF1 gene is located near the TRIM28 gene,
encoding a stress-related transcriptional elongation factor.
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Figure 1. Gentic loci of MZF1(ZSCAN6), SCAND1, and SCAND2P in the human genome.
(A) Locations and structures of MZF1, SCAND1, and SCAND2P genes on human chromosomes
(hg38). (B,C) Mapping of heat shock elements (HSEs) in the promoter regions (−5000 to +1000) of
(B) MZF1, SCAND1, and (C) SCAND2P genes.

To predict whether MZF1, SCAND1, and SCAND2P genes are transcriptionally reg-
ulated by HSFs and MZF1, we searched for binding sequences of these TFs in promoter
regions. Several binding sequences (BSs) for HSF1 and HSF4 were found in the promoter
regions of MZF1, SCAND1, and SCAND2P genes (Figure 1B,C; Table 1). Moreover, dozens
of MZF1-BSs were found in the promoter regions of SCAND1 and MZF1 genes (Table 1).
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These data suggested that MZF1, SCAND1, and SCAND2P genes are transcriptionally
regulated by HSFs, MZF1, and SCANDs.

Table 1. The numbers of binding sites for HSF1, HSF4 and MZF1 in the promoter regions of SCAND1
and MZF1 genes.

Gene Promoter 1 HSF1-BS HSF4-BS MZF1-BS MZF1-BS var.2

SCAND1 7 9 5 15
MZF1 4 4 27 30

1 Promoter regions from −5000 to +1000 were analyzed. Numbers of binding sequences with p-values > 0.001
were counted.

2.2. Heat Shock Stress Induces MZF1, SCAND1, and SCAND2 Gene Expression and Reduces
lncRNA-SCAND2P in Prostate Cancer

We next considered transcript variants of MZF1, SCAND1, and SCAND2. We found
eight MZF1 RNA variants, three SCAND1 RNA variants, and three SCAND2(SCAND2P)
RNA variants in the NCBI database (Figure 2A–C). Of note, the SCAND2 complete coding
DNA sequence (AF229246.1) and lncRNA-SCAND2P (NR_004859.1 and NR_003654.2)
were found at the same genome locus (Figure 2C). We designed primer pairs that can detect
all these variants for qRT-PCR analysis (Figures 2 and S2, Table S1).

We then asked whether MZF1, SCAND1, and SCAND2 mRNA expression was in-
ducible by heat shock stress (HSS). MZF1, SCAND1, and SCAND2 mRNA expression
was significantly induced by HSS in DU-145 cells (Figures 3A–C and S3). On the other
hand, the expression level of lncRNA-SCAND2P was significantly reduced upon HSS
(Figures 3D and S3). These data suggested that the alternative transcript balance was
shifted from lncRNA-SCAND2P to protein-coding SCAND2 mRNA upon cell stress, which
potentially regulates alternative splicing.

To examine the stress inducibility of the SCAN-TFs, we next performed immunocy-
tochemistry after HSS. MZF1, SCAND1, SCAND2 expression levels were increased upon
HSS in DU-145 cells (Figures 3E–G and S4). We next examined whether the gene expression
of SCAN-TFs (MZF1, SCAND1, and SCAND2(P)) was correlated with HSF1 or HSF4 gene
expression in prostate cancer specimens derived from patients. SCAND1 and MZF1 gene
expression levels were correlated with the degree of gene expression of HSF1 and HSF4
(Figure 3H, Table 2). SCAND2 expression was correlated with the expression of HSF4 but
not with HSF1.

These data suggested that these SCAND-TF genes (MZF1, SCAND1, and SCAND2) are
highly responsive stress-inducible genes in prostate cancer, whose regulation is intricately
mediated by the coordinated action of HSF1 and/or HSF4. Furthermore, cell stress in
prostate cancer changes the variant expression of the SCAND2 gene from the lncRNA-
SCAND2P to protein-coding SCAND2 mRNA.

Table 2. Co-expression correlation between HSFs, MZF1, and SCANDs in prostate adenocarcinomas.

Gene Correlated Gene Spearman’s
Correlation 1 p-Value 2 q-Value 3

HSF1 vs. MZF1 0.375 9.52 × 10–18 7.37 × 10–17

HSF1 vs. SCAND1 0.518 6.73 × 10–35 2.92 × 10–33

HSF1 vs. SCAND2 0.0925 4.12 × 10–2 6.42 × 10–2

HSF4 vs. MZF1 0.705 1.97 × 10–74 3.03 × 10–72

HSF4 vs. SCAND1 0.585 3.99 × 10–46 1.86 × 10–44

HSF4 vs. SCAND2 0.55 5.55 × 10–40 1.89 × 10–38

1 Spearman’s correlation > 0.3 were shown in bold. 2 p-Values < 1 × 10–15 were shown in bold. 3 q-Values < 1 × 10–15

were shown in bold. n = 494.
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Figure 2. Alternative splicing variants and primer mapping of (A) MZF1(ZSCAN6), (B) SCAND1,
and (C) SCAND2 genes. Complete coding DNA sequence (CDS) of SCAND2 mRNA and lncRNA-
SCAND2 overlapped in the genome. Ex., exon numbers. Primer positions were mapped, e.g., F1
and R1.
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Figure 3. Heat shock stress induces the expression of MZF1(ZSCAN6), SCAND1, and SCAND2 but
eliminates lncRNA-SCAND2P in DU-145 prostate cancer cells. (A–D) qRT-PCR analysis for MZF1 (A),
SCAND1 (B), and SCAND2 (C) RNA and lncRNA-SCAND2P (D) upon HSS. LncRNA-SCAND2P
was detected under the NH37 condition but lost after HSS. NH37, non-heated at 37 ◦C. HS43, heat-
shocked at 43 ◦C for 30 min. ** p < 0.01, n = 3. (E–G) immunocytochemistry of MZF1 (E), SCAND1 (F),
and SCAND2 (G) expressed with or without heat shock. (H) Co-expression correlation between HSF1
or HSF4 vs. MZF1, SCAND1, and SCAND2 in patient-derived prostate adenocarcinoma (494 samples,
TCGA PanCancer Atlas).

2.3. Co-Expression Correlation of SCAN-TF Genes in Prostate Cancer

We recently showed that MZF1 and SCAND1 gene expression could mutually induce
each other’s expression [43]. Moreover, several MZF1-BSs exist in the promoter regions of
SCAND1 and MZF1 genes, as shown in Table 2. We analyzed co-expression correlations
of MZF1, SCAND1, and SCAND2 genes in prostate cancer. In prostate adenocarcinoma
specimens, the expression of MZF1 was positively correlated with both SCAND1 and
SCAND2 RNA expression (Figure 4A–C; Table 3).
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Figure 4. Co-expression correlation between MZF1, SCAND1, and SCAND2 in prostate cancer.
(A) SCAND1 vs. MZF1, (B) SCAND2 vs. MZF1, (C) SCAND1 vs. SCAND2 in prostate adenocarci-
noma specimens derived from patients (494 samples, TCGA PanCancer Atlas).

Table 3. Co-expression correlation between HSFs, MZF1, and SCANDs in prostate adenocarcinomas.

Gene Correlated
Gene

Spearman’s
Correlation 1 p-Value 2 q-Value 3

MZF1 vs. SCAND1 0.548 1.27 × 10–39 6.16 × 10–38

MZF1 vs. SCAND2 0.524 1.01 × 10–35 3.95 × 10–34

SCAND1 vs. SCAND2 0.170 2.20 × 10–4 4.16 × 10–4

1 Spearman’s correlation > 0.5 were shown in bold. 2 p-Values < 1 × 10–30 were shown in bold. 3 q-Values < 1 × 10–30

were shown in bold. n = 494.

Therefore, these data suggested that MZF1 could induce SCAND1 and SCAND2 gene
expression in prostate cancer.

2.4. Heat Shock Stress Induces HSF1 and MZF1(ZSCAN6) Binding to HSP90 Genes

To ask whether HSP90 genes were directly regulated by HSF1 and MZF1/ZSCAN6,
we next analyzed promoter regions of HSP90AA1 and HSP90AB1 genes and performed
ChIP-qPCR. The HSP90AA1 promoter region (−5000 to +1000) contained 9 sites for HSF1
and 40 binding sites for MZF1. The HSP90AB1 promoter region (−5000 to +1000) contained
8 binding sites for HSF1 and 50 binding sites for MZF1 (Table 4; Figure 5A,B). These data
indicated that HSP90 genes could be potential targets for the HSF1 and MZF1-SCAND
complex.

Table 4. The number of binding sites for HSF1, HSF4 and MZF1 in the promoter regions of the
HSP90AA1 and HSP90AB1 genes.

Promoter HSF1-BS HSF4-BS MZF1-BS MZF1-BS var.2

HSP90AA1 9 12 22 18
HSP90AB1 8 8 22 28

Promoter regions from −5000 to +1000 were analyzed. Numbers of binding sequences with p-values > 0.001
were counted.
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Figure 5. Heat shock stress induces HSF1 and MZF1(ZSCAN6) binding to HSP90 genes.
(A,B) Promoter regions (−5000 to +1000) of the HSP90AA1 gene (A) and the HSP90AB1 gene
(B) mapped with binding sites of HSFs and MZF1(ZSCAN6). Black vertical bars indicate bind-
ing sites. Hatched boxes indicate regions analyzed by ChIP-qPCR. (C–E) ChIP-qPCR assay. PC-3 cells
were treated with heat shock at 43 ◦C (HS43) for 15 or 30 min or non-heated (NH), and chromatin was
fixed. ChIP was performed using antibodies against HSF1 (C), MZF1/ZSCAN6 (D) and acetylated
histone H3 (H3ac) (E) for qPCR of HSP90 genes.

We next performed ChIP-qPCR analysis to ask about the direct regulation of HSP90
genes by HSF1 and MZF1(ZSCAN6). The binding of HSF1 to the HSP90AA1 gene pro-
moter region was increased in response to HSS in PC-3 prostate cancer cells (Figure 5C).
MZF1(ZSCAN6) binding to the HSP90AB1 gene promoter region was also increased in
response to HSS (Figure 5D). Histone H3 acetylation, a marker of transcriptional activation,
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in the HSP90AA1 gene promoter region was transiently increased in response to HSS in
15 min and then reduced in 30 min (Figure 5E).

These data suggested that HSF1 and MZF1 binding to the HSP90 gene promoter
regions could be transiently activating HSP90 genes and repressing them later. Induction
of SCAND expression upon HSS and its binding to MZF1 may function to turn off the
transcription of HSP90 genes in 30 min.

2.5. MZF1 and SCAND1 Blocks the Heat Shock Response of HSP90

We next examined whether MZF1 and SCAND1 could affect the heat shock response of
the HSP90AA1 gene. Indeed, HSP90AA1 mRNA expression was induced by HSS. However,
MZF1 or SCAND1 overexpression blocked the HS response of HSP90AA1 gene expression
(Figure 6A).
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Figure 6. MZF1 and SCAND1 blocked the heat shock response of the HSP90AA1 gene. (A) qRT-
PCR for HSP90AA1 gene. Stable DU-145 cells transfected with pcDNA3.1 vector, pcDNA/MZF1-
Flag, and pCMV/SCAND1-Flag were treated with or without HSS for 30 min. ** p < 0.01, n = 3.
(B–D) Co-expression correlation between HSP90AA1 vs. MZF1(ZSCAN6) (B), SCAND1 (C) and
SCAND2 (D) genes in prostate adenocarcinoma (494 samples, TCGA PanCancer Atlas).

To ask whether HSP90AA1 gene was regulated by transcription factors, including
SCAN-TFs and HSFs, we examined their co-expression correlation in prostate adenocar-
cinoma specimens. HSP90AA1 gene expression was negatively correlated with the gene
expression of MZF1(ZSCAN6), SCAND1, SCAND2, and HSF4 in prostate adenocarcinoma
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specimens (Figure 6B–D; Table 5). HSP90AA1 gene expression was not significantly cor-
related with the gene expression of HSF1, HSF2, and HSF5 in prostate adenocarcinoma
specimens (Table 5).

Table 5. The negative correlation of gene expression of HSP90AA1 vs. MZF1, SCANDs, and HSFs in
prostate adenocarcinoma specimens.

Gene Correlated
Gene

Spearman’s
Correlation 1 p-Value 2 q-Value 3

HSP90AA1 vs. MZF1 −0.321 3.63 × 10–13 3.35 × 10–11

HSP90AA1 vs. SCAND2 −0.32 4.34 × 10–13 3.88 × 10–11

HSP90AA1 vs. SCAND1 −0.188 2.86 × 10–5 1.71 × 10–4

HSP90AA1 vs. HSF4 −0.241 6.97 × 10–8 9.73 × 10–7

HSP90AA1 vs. HSF1 −0.045 3.21 × 10–1 4.38 × 10–1

HSP90AA1 vs. HSF2 −0.0164 7.17 × 10–1 7.94 × 10–1

HSP90AA1 vs. HSF5 −0.00297 9.48 × 10–1 0.963 × 10–1

1 Spearman’s correlation < –0.15 were shown in bold. 2 p-Values < 1 × 10–4 were shown in bold. 3 q-Values < 1 × 10–3

were shown in bold. n = 494.

We next examined whether the expression of other HSP genes is correlated with
expression of these SCAN-TFs in addition to HSP90AA1. MZF1, SCAND1, and SCAND2
expressions were negatively correlated with gene expression of HSPA13, HSPA4, HSPA4L,
and HSPH1 (Table 6 and Table S2). These data suggested that SCAN-TFs co-repressed
multiple HSP genes.

Table 6. The negative correlation of HSPs vs. MZF1, SCAND1, and SCAND2 gene expression in
prostate adenocarcinoma specimens.

vs. MZF1 vs. SCAND1 vs. SCAND2

Correlated
Gene

Spearman’s
Correlation 1 p-Value 2 Spearman’s

Correlation p-Value Spearman’s
Correlation p-Value

HSPA13 −0.448 1.75 × 10–25 −0.572 7.79 × 10–44 −0.357 4.18 × 10–16

HSPA4 −0.358 3.41 × 10–16 −0.303 7.97 × 10–12 −0.394 1.52 × 10–19

HSPA4L −0.326 1.58 × 10–13 −0.411 2.66 × 10–21 −0.0341 4.52 × 10–1

HSP90AA1 −0.321 3.63 × 10–13 −0.188 2.86 × 10–5 −0.32 4.34 × 10–13

HSPH1 −0.300 1.42 × 10–11 −0.191 2.20 × 10–5 −0.312 1.67 × 10–12

1 Spearman’s correlation < –0.25 were shown in bold. 2 p-Values < 1 × 10–10 were shown in bold.

These data indicated that HSP90AA1 gene expression was negatively regulated by
MZF1(ZSCAN6), SCAND1, SCAND2, and HSF4 in prostate adenocarcinomas.

2.6. Reduced Expression of SCAND2 and MZF1 Coincide with the Increased HSP90 Expression in
Tumor Tissues Compared with Normal Tissues

We next hypothesized that the repressing factors SCAND2 and MZF1 were reduced in
tumor tissues while HSP90 gene expression was increased in tumor tissues. SCAND2 and
MZF1(ZSCAN6) gene expression was lower in prostate adenocarcinoma (PRAD), breast
invasive carcinoma (BRCA), colon adenocarcinoma (COAD), rectum adenocarcinoma
(READ), skin cutaneous melanoma (SKCM), testicular germ cell tumors (TGCT) and uterine
carcinosarcoma (UCS), while HSP90AA1 and HSP90AB1 gene expression was higher in
these cancer types compared with paired normal tissues (Figures 7 and S5). Exceptionally,
SCAND2 and MZF1(ZSCAN6) gene expression was higher in acute myeloid leukemia
(LAML), while the expression levels of HSP90AA1 and HSP90AB1 genes were lower,
compared with paired normal tissues.
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Figure 7. Gene expression levels of ZSCAN6(MZF1), SCAND2, and HSP90 in various tumor types
vs. paired normal tissues. Red box, tumor tissues (T). Gray box, normal tissues (N). Prostate
adenocarcinoma (PRAD), breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), rectum
adenocarcinoma (READ), skin cutaneous melanoma (SKCM), testicular germ cell tumors (TGCT),
uterine carcinosarcoma (UCS), and acute myelo1id leukemia (LAML). Patient-derived clinical samples
from TCGA PanCancer Atlas and GTEx were analyzed using GEPIA2. * p < 0.01.

These data suggested that reduced expression of SCAND2 and MZF1 could result in
the elevated expression of HSP90 genes in tumor tissues in many cancer types.

2.7. SCANDs and MZF1(ZSACAN6) Expression Correlates with Enhanced Prognoses Whereas
HSP90 Expression Is Correlated with Poor Prognoses in Cancers

We next hypothesized that the repressive transcription factors SCAND1, SCAND2
and MZF1(ZSCAN6) would contribute to enhanced prognosis in cancer patients, whereas
high expression of HSP90 genes would likely be involved in a poorer prognosis. High
expression levels of SCAND1, SCAND2 and MZF1 genes were significantly correlated with
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enhanced prognosis of patients suffering from pancreatic ductal adenocarcinoma (DAC)
(Figure 8A–C; Table 7). High expression levels of HSP90AA1 and HSP90AB1 (associated
with a low MZF1 expression scenario) were significantly correlated with poorer prognosis
of patients suffering from pancreatic cancer (Figure 8D–F).

SCAND2A

Pancreatic ductal adenocarcinoma

SCAND1 MZF1

HSP90AB1HSP90AA1 HSP90AA1 + HSP90AB1

B C

D E F

Figure 8

Figure 8. Kaplan–Meier plots showing prognostic values of SCANDs, MZF1, and HSP90 gene
expression in pancreatic cancer. Data were from TCGA PanCancer Atlas, pancreatic adenocarcinoma
(PAAD), n = 177. High expression of SCANDs and MZF1 genes (A–C) are correlated with better
prognoses whereas high expression of HSP90 genes (D–F) are correlated with poor prognosis of
pancreatic DAC. Data in panels A and C were published in: Eguchi, T., et al., 2022 [43].

Table 7. SCAND1, SCAND2, and MZF1 expression correlate with enhanced prognoses in cancer.

Cancer Type
Log-Rank P

N
SCAND2 SCAND1 MZF1

Pancreatic adenocarcinoma 0.00018 *** 0.0041 ** 0.0009 ** 177
Head & Neck SCC (stage III) 0.045 * 0.024 * 0.018 * 78

Lung adenocarcinoma 0.00032 *** 0.32 0.21 504
Sarcoma 0.0096 ** 0.11 0.14 259

Cervical SCC 0.015 * 0.34 0.21 304
* p < 0.05, ** p < 0.05, *** p < 0.0001.

Similarly, high expressions of SCAND2, SCAND1, and MZF1 genes were significantly
correlated with enhanced prognosis of patients suffering from stage III head and neck squa-
mous cell carcinoma (SCC) (Figure 9A–C), whereas high expression levels of HSP90AA1 and
HSP90AB1 genes were significantly correlated with poorer prognosis of patients suffering
from stage III head and neck SCC (Figure 9D,E).
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Figure 9. Kaplan–Meier plots showing prognostic values of SCANDs, MZF1, and HSP90 gene
expression in head and neck cancers. Data were from TCGA PanCancer Atlas, head and neck
squamous cell carcinoma (HNSC) (stage III), n = 78. High expressions of SCANDs and MZF1 (A–C)
are correlated with better prognosis, whereas high expressions of HSP90 (D,E) are correlated with
poor prognosis of head and neck SCC. Data in panels A and C were published in: Eguchi, T., et al.,
2022 [43].

High expression of SCAND2 and MZF1 was significantly correlated with enhanced
prognosis of patients suffering from lung adenocarcinoma (Figure S6A–C). Consistent with
this, high expression of HSP90AA1 and HSP90AB1 was significantly correlated with poorer
prognosis of patients suffering from lung adenocarcinoma (Figure S6D,E).

Moreover, high expression of SCAND2 was correlated with enhanced prognoses in
sarcoma and cervical SCC (Table 7).

These data suggested that high expression of SCAND2, SCAND1, and MZF1 genes
were superior prognostic markers in several cancer types, including pancreatic cancer, head
and neck cancers, lung adenocarcinoma, sarcoma and cervical cancer.

3. Discussion

We have shown that the cell stress-inducible SCAND1 and MZF1 genes repress
the stress response of the HSF–HSP system (Figures 1–6). SCAND1, SCAND2, and
MZF1/ ZSCAN6 are heat-inducible and could form repressing complexes on HSP90 genes
(Figure 10) [37,43]. These findings were consistent with the data from clinical tumor speci-
mens. SCAND2 and MZF1 RNA were expressed at higher levels in normal tissues than in
paired tumor tissues (Figure 7). In contrast, HSP90 RNA was expressed at higher levels in
tumor tissues than in paired normal tissues in many cancer types (Figure 7). These data
suggest that SCAND2/MZF1 hetero-oligomers could inhibit the excess stress response of
HSP90 expression in normal tissues, whereas loss of expression of these SCAN-TFs could
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result in the gain of HSP90 in tumor tissues. We showed that high expression of SCAN-TFs
(SCAND1, SCAND2, and MZF1) were predictive biomarkers of enhanced prognoses for
patients suffering from pancreatic cancer and head and neck cancers (Figures 8 and 9).
Moreover, high expression of SCAND2 (and/or lncRNA-SCAND2P) was a predictive
biomarker of enhanced prognoses for patients suffering from lung adenocarcinoma, sar-
coma, and cervical cancer (Table 7, Figure S6). These data indicate that SCAND/MZF1
repressing complexes are potentially tumor suppressing, contributing to better prognoses
of patients suffering from several cancer types.

Cell 
stress

SCAND

HSP90 ZSCAN6(MZF1) SCAND1

MZF1
(ZSCAN6)

SCAND1

Poorer
prognosis

MZF1

Hetero-oligomerization via SCAN domains

HSF HSF HSF

HSF MZF1

SCAND

OFF

HSP90

SCAND MZF1

HSF
HSP90

Misfolded protein

MZF1

Enhanced
prognosis

Re-folding

SCAND2

HSF

lncRNA-SCAND2P

Cell 
stress

SCAND2 mRNA

Figure 10. Stress-inducible SCAN transcription factors SCAND and MZF1 repress HSP90 gene
expression. Cell stress activates HSF1 that binds to HSEs in the promoter regions of the HSP90 genes
(HSP90AA1 and HSP90AB1), ZSCAN6(MZF1) gene, and SCAND genes (SCAND1 and SCAND2).
MZF1 induces SCAND1 expression. Cell stress also switches the SCAND2 transcript variants from
lncRNA-SCAND2P to SCAND2 mRNA. Hetero-oligomers of MZF1 and SCAND bind to and repress
HSP90 genes. High expression of HSP90 is a biomarker of poorer prognosis, while SCAN-TF
complexes repress the transcription of HSP90 gene and enhance the prognosis of cancer patients.

Our data, for the first time, indicate that SCAND2 RNA expression is a novel biomarker
of better prognoses in cancer patients (Table 7, Figures 8 and 9). Only one group has previ-
ously reported the existence of the SCAND2 gene [47]. Moreover, SCAND2 has been regis-
tered as SCAND2P, a pseudogene for lncRNA (Ref seq ID: NR_004859.1 and NR_003654.2).
Gene expression data of SCAND2 (or SCAND2P) were found in many databases. Of note,
the protein structure of SCAND2 found in Phosphosite plus is more conserved with the
N-terminal region of MZF1(ZSCAN6) than SCAND1 (Figure S1). Moreover, complete
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coding DNA sequences of SCAND2 mRNA are found in the NCBI database (GenBank
ID: AF229246.1 (coding 306 aa, AAG33966.1), AK022844.1 (coding 152 aa, BAB14268.1),
and AK290489.1 (coding 152 aa, BAF83178.1)) (Figures 2 and S2). Our research highlights
that HSS can shift the transcript balance from the lncRNA to the protein-coding mRNA
of SCAND2 (Figures 3 and S3), potentially via changing alternative splicing. SCAND2
and MZF1 RNA were each expressed in normal tissue at higher levels than in tumor tis-
sues (Figure 7), whereas SCAND1 RNA expression did not show this pattern. Therefore,
SCAND2 may form more stable hetero-oligomers with MZF1(ZSCAN6) than SCAND1 to
repress oncogenic gene expression in tumors. Further functional analysis of SCAND2 is
required for this novel gene.

Our data also suggested that cell stress regulates RNA variants of the SCAND2 gene,
potentially via alternative RNA splicing, alternative RNA polyadenylation, and/or protein
translational control (Figures 2, 3 and S2–S4). Cell stresses, including oxidative stress and
cancer therapy-induced stress, have been reported to regulate alternative RNA splicing
via the Hu antigen R (HuR), also known as ElavL1 [9,48,49]. We have reported that
HSF1 regulates β-catenin RNA, which contains many AU-rich sequences, in mammary
cancer cells by controlling HuR/ElavL1 expression [9]. The Hu/Elav RNA-binding protein
family, composed of HuR (also known as HuA), HuB, HuC, and HuD), regulate alternative
splicing [8,50–52], while HuR is the most investigated member that binds to AU-rich
sequences of RNA. Cell stress also modulates the function of the splicing regulatory protein
RBM4 in translation control [53]. Therefore, alternative expression of SCAND2 RNA
variants, including lncRNA-SCAND2P and SCAND2 mRNA, could be regulated by Hu
and/or RBM4 RNA-binding proteins under cell-stressed conditions.

Our study also revealed a striking correlation between the expression of HSF1 and the
SCAN-TF genes (SCAND1 and MZF1) (Figure 3). Furthermore, we have identified HSF4 as
a potential inducer of SCAN-TF gene expression, including SCAND1, SCAND2 and MZF1.
HSF4 lacks a leucine zipper 4 (LZ4) domain, resulting in its constitutive trimerization
and DNA-binding activity [54]. Several HSF4-BSs were found in the promoter regions of
SCAND1, SCAND2, and MZF1 genes (Table 1). Thus, the expression of HSF4 could result
in the constitutive expression of SCAND2, SCAND1, and MZF1 without requiring cellular
stress. While HSF4 is known to be oncogenic in several cancer types, such as colorectal
cancer, hepatocellular carcinoma, and lymphoma [55–57], our data suggested that HSF-
dependent expression of SCAN-TFs could actually reduce oncogenic gene expression
in tumors.

Moreover, our data suggested that the stress-inducible SCAND–MZF1 complex re-
presses the HSP90AA1 gene while also repressing other HSPs and many more stress-
responsive genes (Table 6 and Table S2). We have recently shown SCAND1 and MZF1
expression to negatively correlate with EMT driver genes, including ZEB1, CTNNB1 and
TGFBR1/2/3, and mitogenic genes encoding kinases in the MEKK–MEK–ERK signaling
pathway [43]. Moreover, SCAN-only family genes and MZF1 expression were negatively
correlated with the expression of NF-κB signaling molecules and PI3K-AKT signaling
molecules. Thus, we have shown that EMT, some oncogenic signaling pathways, and
the HSF–HSP gene expression system are all key targets of the SCAND–MZF1 repression
complexes.

Our data also suggested that tumors’ stress levels differs among clinical cases (Figure 7).
Tumor cells are characteristically exposed to various stresses from the microenvironment,
such as immune/inflammatory stress [19], therapeutics [18], hypoxia [22,58–61], acidifi-
cation [62,63], hyperthermia [64,65] or heat stress [4,6,19,25,28], endoplasmic reticulum
stress [66], nuclear envelope stress [67,68], replication stress [69], oxidative stress [70],
mechanical stress, osmotic stress, and genotoxic (DNA damage) [71,72] and proteotoxic
stress [1,2,4,73]. Therefore, it might be difficult to determine the types and levels of stresses
in each tumor. However, there were strong correlations between the RNA expression of
SCAN-TFs and HSP90AA1 in clinical tumor specimens (Figures 6–9). These clinical data
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support the hypothesis that the SCAN-TF complexes repress excessive HSP gene expression
and suppress tumors.

In conclusion, we have demonstrated that the cell stress-inducible SCAND and MZF1
repress the stress response in cancer. MZF1 and SCAND1 are mutually inducible and can
form a repressive complex on the HSP90 gene promoters. Moreover, cell stress changed
the transcript variants from the lncRNA-SCAND2P into protein-coding SCAND2 mRNA.
Nevertheless, elevated levels of SCAND2 RNA are novel potential markers of better
prognoses in several cancer types, including pancreatic cancer, head and neck cancers, lung
adenocarcinoma, sarcoma, and cervical cancer. This effect may ensue from the findings
that the SCAND–MZF1 repressive system is important for preventing cancer-related gene
expression physiologically while playing a key role in tumor suppression.

4. Materials and Methods
4.1. Cell Culture and Heat Shock Stress

Prostate cancer cell lines DU-145 and PC-3 were provided by ATCC and cultured in
DMEM and RPMI medium, respectively, with 10% FBS. For HSS, the medium was replaced
with pre-warmed medium at 43 or 37 ◦C and then put in a water bath at 43 or 37 ◦C, as
described previously [6,28].

4.2. Genome and Promoter Analysis

We used the Subio platform (subioplatform.com, accessed on 20 February 2023) for
genome analysis. The human genome (hg38, GRCh38.p14) sequence was downloaded
from the UCSC server (hgdownload.soe.ucsc.edu/goldenPath/hg38/chromosomes, ac-
cessed on 20 February 2023). We used ‘Find Regions from Seq’ plug-in to seek HSEs
(5’-nnAnnTTCnnG-3’ and 5’-GAAnnTTCnnn-3’) in SCAND2P gene. We also used the
Eukaryotic Promoter Database (EPD) (epd.epfl.ch//index.php, accessed on 20 February
2023) [68]. Promoter IDs (MZF1_1, SCAND1_1, HSP90AA1_1, and HSP90AB1_1) from
−5000 to +1000 bp relative to TSS were analyzed with a cut-off p-value of 0.001. We searched
TF-binding motifs using the Library of Transcription Factor Motifs (JASPAR CORE 2018
vertebrates).

To seek HSEs, we used the Eukaryotic Promoter Database (EPD) with a cutoff value of
p < 0.001 for MZF1 and SCAND1 genes and the Subio platform for the SCAND2P gene.

4.3. qRT-PCR

Primer pairs for RNA of MZF1, SCAND1, SCAND2, and lncRNA-SCAND2P were
designed to cover all transcript variants with the assistance of Primer3Plus (Table S1,
Figures S2 and 2). The qRT-PCR was performed as previously described [37,74]. To
analyze MZF1 and SCAND1 RNA, total RNA was prepared with DNase I treatment using
RNeasy columns (Qiagen, Hilden, Germany). Synthesis of cDNA was carried out using the
QuantiTect kit (Qiagen)and a mixture of oligo dT and random primers, then diluted 5-fold
in 10 mM Tris-Cl and 0.1 mM EDTA buffer. A step dilution of the cDNA pool was prepared
as a standard for relative expression. Aliquots of cDNA (4–10 µL), 0.25 µM of each primer
and 10 µL SYBR green 2× Master Mix (Applied Biosystems, Waltham, MA, USA) were
mixed and made up to a 20 µL reaction mixture. The qPCR and melting curve analyses were
performed using the StepOnePlus Realtime PCR system (Applied Biosystems, Waltham,
MA, USA). To analyze SCAND2 mRNA and lncRNA, total RNA was extracted from cells
using TRI Reagent (MRC, Cincinnati, OH). After DNase I treatment, cDNA was synthesized
using an iScript cDNA synthesis kit (Bio-Rad, Hercules, CA, USA) and quantified using
Micro-Spectophotometer CB2800 (CLUBIO). To perform the qPCR, 10 µL of SsoAdvanced
Universal SYBR Green Supermix (2×) (Bio-Rad), 0.25 µM of each primer, and 100 ng of
cDNA were mixed and made up to a 20 µL reaction mix volume. The qPCR and melting
curve analyses were performed using a CFX96 Realtime PCR system (Bio-Rad).

subioplatform.com
hgdownload.soe.ucsc.edu/goldenPath/hg38/chromosomes
epd.epfl.ch//index.php
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4.4. Plasmids and Transfection

We used pcDNA3.1 (as a control), pcDNA3/MZF1Flag, and pCMV6/SCAND1myc-Flag

(variant 1, purchased from OriGene, accession number NM_016558) as previously de-
scribed [37]. DU-145 cells were transfected with these plasmids using Lipofectamine 2000
(Thermo Fisher Scientific, Waltham, MA, USA) and cultured with 0.8 µg/mL geneticin for
2 weeks to establish stable clones as described previously [43].

4.5. ChIP

ChIP-qPCR was performed as previously described [37]. Briefly, PC-3 cells were
cultured in 150 mm dishes and heat-shocked for 0, 15, and 30 min. ChIP was performed
using a magnetic beads-based ChIP assay kit (Merck/Millipore, Kenilworth, NJ, USA).
Briefly, endogenous proteins/DNA were cross-linked with 5% formaldehyde. Cells were
collected by cell scrapers, centrifuged at 600× g for 5 min and resuspended in a ChIP
buffer (10 mM Tris, pH 8.0, 200 mM KCl, 1 mM CaCl2, 0.5% NP-40) containing a protease
phosphatase inhibitor cocktail (Sigma-Aldrich, Burlington, MA, USA). Cells were treated
with 3 cycles of sonication on ice with a sonicator. One cycle was a 5 sec sonication with
a 15 sec interval at 100% power. OD260 was measured to obtain brief reference DNA
concentrations. Sonicated cells containing 10–20 µg DNA or 1 × 106 cells were treated with
MNase at a final concentration of 100 unit/mL in 500 µL of ChIP buffer and incubated at
37 ◦C for 40 min, then centrifuged at 15,000× g at 4 ◦C for 10 min. Sheared chromatin DNA
in the supernatants was analyzed by 2% agarose gel electrophoresis. For antibody-beads
preparation, 20 µL M280 sheep anti-rabbit IgG magnetic beads (Thermo Fisher Scientific)
with 2 µg antibodies against MZF1 (C10502, Assay Biotechnology, Fremont, CA, USA),
HSF1 (#4356, Cell Signaling Technology, Danvers, MA, USA) or acetylated histone H3
(06-599, Millipore) were mixed in 500 µL ChIP buffer and then rotated for 3 h or overnight.
DNA was purified using a QIAquick PCR Purification Kit (Qiagen). Primer pairs for
ChIP-qPCR were designed using EPD and Primer3Plus as previously described [37] and
listed (Table 8). The qPCR was performed as described above.

Table 8. Primer sequences for ChIP-qPCR.

Primer Name Sequences (5′ to 3′)

HSP90AA1 h −100F GGCTGGGGAGGGTTCTTC
HSP90AA1 h +200R GAGGCCTCCGGAATAGAAAG
HSP90AB1 h −800F CCTGAGGATTGGGCTGGTA
HSP90AB1 h −430R CATCTGCCCTACACATCTCG
HSP90AB1 h +600F GTCTCCAGCACCCGATACTC
HSP90AB1 h +900R GAACAGGACCAAACCCAAGA

4.6. Immunocytochemistry and Confocal Laser Scanning Microscopy (CLSM)

Immunocytochemistry and CLSM were performed as previously described [74,75].
Cells were cultured on 12 mm round coverslips coated with poly-D-Lysine/Laminin (BD
Bioscience, Franklin Lakes, NJ). Cells were fixed with 4% paraformaldehyde for 20 min, then
permeabilized with 0.1% Triton X-100 in PBS for 10 min. Cells were incubated in a blocking
buffer containing 1% bovine serum albumin (for MZF1 and SCAND2) or, alternatively, 3%
normal goat serum (for SCAND1) in PBS for 30 min, incubated with primary antibodies
at 4 ◦C overnight and then with secondary antibodies at RT for 1 h in the blocking buffer.
Cells were washed thrice with PBS for 5 min between the steps. Cells were mounted within
ProLong Gold Antifade Mountant (Thermo Fisher Scientific). Fluorescence images were
acquired using Axio Vision CLSM (Zeiss, Oberkochen, Germany) with an AxioCam MR3
(Zeiss) camera for SCAND1, and alternatively, FSX100 inverted microscope (Olympus,
Tokyo, Japan) for MZF1 and SCAND2. We used antibodies against MZF1 (C10502, Rb pAb,
Assay Biotechnology, Fremont, CA), SCAND1 (ab64828, Rb pAb, Abcam), SCAND2 (5F1,
H00054581-M02, Ms mAb, Thermo Fisher Scientific), and anti-rabbit IgG conjugated with
Alexa Fluor 488 (Thermo Fisher Scientific).
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4.7. Co-Expression Analysis

A data set of prostate adenocarcinomas (Project ID: TCGA-PRAD, PanCancer Atlas;
494 patients/samples) was analyzed with Spearman’s rank correlation coefficient of co-
expression using cBioPortal [76,77].

4.8. Gene Expression Profiling of Tumors vs. Paired Normal Tissues

The gene expression profile across tumor samples and paired normal tissues was
analyzed using GEPIA2 (gepia2.cancer-pku.cn) to draw box-whisker-scatter plots [78].
Tumor samples from TCGA PanCancer Atlas (gdc.cancer.gov/about-data/publications/
pancanatlas, accessed on 20 October 2022) were matched with TCGA normal samples and
GTEx data (gtexportal.org, accessed on 20 December 2022) (Table S3) [79]. The p-value
cutoff was 0.01 as default. Graphs were expressed as a log scale.

4.9. Kaplan–Meier Analysis

Kaplan–Meier plotting from RNA-seq data was performed using KM plotter (kmplot.
com/analysis, accessed on 20 October 2022) [80]. Data from TCGA PanCancer Atlas
were analyzed, including the overall survival of patients suffering from pancreatic ductal
adenocarcinoma (n = 177), head and neck squamous cell carcinoma (stage III) (n = 78), lung
adenocarcinoma (n = 504), sarcoma (n = 259), and cervical SCC (n = 304) with auto-select
best cutoff.

4.10. Statistics

Values of two groups were compared with an unpaired Student’s t-test. Values of
p < 0.05 or < 0.01 were considered to indicate statistical significance unless otherwise
specified. Data were expressed as Mean ± SD unless otherwise specified.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms24065168/s1.
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