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Abstract: Previous studies on biocatalytic transformations of pinenes by cytochrome P450 (CYP)
enzymes reveal the formation of different oxygenated products from a single substrate due to the
multistate reactivity of CYP and the many reactive sites in the pinene scaffold. Up until now, the
detailed mechanism of these biocatalytic transformations of pinenes have not been reported. Hereby,
we report a systematic theoretical study of the plausible hydrogen abstraction and hydroxylation
reactions of α- and β-pinenes by CYP using the density functional theory (DFT) method. All
DFT calculations in this study were based on B3LYP/LAN computational methodology using the
Gaussian09 software. We used the B3LYP functional with corrections for dispersive forces, BSSE,
and anharmonicity to study the mechanism and thermodynamic properties of these reactions using
a bare model (without CYP) and a pinene-CYP model. According to the potential energy surface
and Boltzmann distribution for radical conformers, the major reaction products of CYP-catalyzed
hydrogen abstraction from β-pinene are the doublet trans (53.4%) and doublet cis (46.1%) radical
conformer at delta site. The formation of doublet cis/trans hydroxylated products released a total
Gibbs free energy of about 48 kcal/mol. As for alpha pinene, the most stable radicals were trans-
doublet (86.4%) and cis-doublet (13.6%) at epsilon sites, and their hydroxylation products released
a total of ~50 kcal/mol Gibbs free energy. Our results highlight the likely C-H abstraction and oxygen
rebounding sites accounting for the multi-state of CYP (doublet, quartet, and sextet spin states) and
the formation of different conformers due to the presence of cis/trans allylic hydrogen in α-pinene
and β-pinene molecules.

Keywords: pinene; CYP; modelling; DFT; catalysis; hydroxylation

1. Introduction

Cytochrome P450 (CYP) enzymes represent a notable family of biocatalysts involved
in the metabolism of both exogenous and endogenous compounds using thiolate-ligated
heme scaffolds (Figure 1) [1,2]. For instance, cytochrome P450 2E1 (CYP2E1) is one of
the major human hepatic CYP enzymes with direct relevance in alcoholism [3]. CYPs
are responsible for the metabolism of about 90% of administered drugs in men [4]. CYP
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enzymes were reported to catalyze a wide array of important chemical reactions such as
arene oxidation, activation of inert C–H bonds, C–C coupling, epoxidation, hydroxylation,
and N-dealkylation reactions [1,2,5–10]. In particular, hydroxylation reactions by CYP
enzymes are among the most vital reactions in drug metabolism [3,11,12]. Most members of
the CYP family are monooxygenases that activate molecular O2, forming a highly reactive
oxidant species that can metabolize several substrates and generate various products
from a single reactant [4,13,14]. The issues of the regio- and stereo-selectivity of such
reactive enzymes are still hampering in spite of their versatile and important roles in the
pharmaceutical industry.
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oxygenated products from pinenes reported in the literature.

Biocatalytic transformation of monoterpenes, such as those catalysed by CYPs, is
an active area of research. Monoterpenes and their oxygenated products are important
raw materials for a variety of value-added products such as pharmaceuticals, flavors,
and fragrances [7,15,16]. Bicyclic monoterpenes such as α-pinene and β-pinene are major
components of turpentine oil, the distillate of certain pine trees [17]. Important pharma-
cological effects [18] of α- and β-pinenes were demonstrated in several studies such as
their antitumor [17,19], antimicrobial [20], and anticonvulsant [21] activities. In addition,
monoterpenes represent around 11% of the volatile organic compounds emitted into the
atmosphere, with α- and β-pinenes being among the most abundant terpenes in the tro-
posphere. Monoterpenes thus play considerable roles in atmospheric chemistry where
oxidation of these products can take place by atmospheric oxidants such as nitrate radicals
and ozone molecules [22–24].

Previous studies on biocatalytic transformations of pinenes have demonstrated the
formation of different oxygenated products from a single substrate due to the multistate
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reactivity of the enzymes and the many reactive sites in the pinene scaffold (Figure 1) [25].
For instance, in rabbits, (−)-trans-verbenol, myrtenol, and myrtenic acid were the urinary
metabolites from α-pinene, while (−)-1-p-Menthene-7,8-diol and (−)-trans-10-pinanol were
the major products from β-pinene [26]. Similar metabolites were found in brushtail possum
fed with α- and β-pinenes [27]. Studies on bark beetle showed verbenols, verbenone, and
4-methyl-2-pentanol in α-pinene post-treatment [28,29], and trans-pinocarveol and pinocar-
vone in β-pinene experiments [28]. Two additional reports showed the biocatalytic conver-
sion of α-pinene into the mountain pine beetle aggregation pheromone trans-verbenol by
cytochromes P450 CYP6DE1 [30] and CYP6DE3 [31]. Likewise, CYP345E2, an antennae-
specific P450 from the mountain pine beetle, was reported to epoxidize α-pinene into
α-pinene oxide and hydroxylate β-pinene into (E)-pinocarveol [32]. More recently, cis-
and trans-verbenol, myrtenol, and other metabolites such as myrtenic acid were found in
α-pinene urinary metabolites in post-oral administration in humans [33]. Other examples
of recent reports show the possible metabolic conversion of β-pinene to β-ionone with
violet scent by CYP [34–36].

Several mechanistic studies on biocatalytic transformations by CYP enzymes revealed
multi-state reactivity in many cases with different spin states and reaction routes that are
close in energy. These results explain the generation of various products from the same
initial substrate [2,37,38]. A study on CYP125 enzyme presents an interesting example of
these multi-transformations caused by the competition among various possible catalytic
routes. CYP125 sequentially oxidizes the terminal methyl of cholest-4-en-3-one to its alcohol,
aldehyde, and lastly cholest-4en-3-one-26-acid, following the consensus catalytic cycle of
most oxidizing CYPs [39]. Five additional metabolites were also identified in this reaction
produced by the deformylation of the aldehyde via peroxohemiacetal formation [39]. Other
studies showed that CYP-catalyzed epoxidation reaction generates one product in the
doublet state and a mixture of products in the quartet state [4,40].

Thus, regarding the reactivity of CYP, both theoretical and experimental studies show
no clear-cut mechanism. In this study, we focus on the hydrogen-abstraction and hydrox-
ylation steps of pinenes catalyzed by CYP. Understanding H-abstraction reactions has
a key role in deciphering complex physical organic concepts and reaction systems such
as oxidation of biological systems, autoignition, and combustion of hydrocarbons, as well
as oxidations in atmospheric chemistry. On the other hand, hydroxylation reactions and
rebound mechanisms by CYP are vital steps in drug metabolism [4,41–44]. A detailed
investigation of the possible mechanisms and interactions of the CYP/pinene system is
important for predicting the various possible products observed experimentally. Up to the
present, such mechanistic studies have not been reported. Herein, we present a system-
atic mechanistic study on the different possible hydrogen-abstraction and hydroxylation
reactions of CYP on α- and β-pinenes in multi-state reactivity (different spin states) on the
basis of density functional theory (DFT).

2. Results and Discussion
2.1. Alpha- and Beta-Pinene Bare Systems

We first started by computing the relative energies of the radicals and the hydroxylated
products of the α-pinene and β-pinene without a CYP450 model using the B3LYP/LAN
methodology. We arbitrarily named the carbon atoms in these compounds with Greek
letters to identify the sites from which hydrogen atoms can be abstracted. The structures
in Tables 1 and 2 illustrate the employed nomenclature. The nu (ï) site was employed to
differentiate the reaction pathways of the cis hydrogen (same side) and trans hydrogen
(opposite site) on the epsilon C. Starting with α-pinene (Table 1), our calculations showed
that the most stable radical was formed with the removal of the hydrogen atom from the
epsilon site. All other radicals, with the exception of the one formed at the gamma site
(~2 kcal/mol), had considerably higher energies (17–29 kcal/mol). The steric strain of the
bridgehead alpha radical might have contributed to making the alpha radical considerably
less stable (21.7 kcal/mol) with lack of resonance [41,42]. The order of stability of the allyl
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radicals was as follows: epsilon > gamma > alpha. Considering the computed energies of
the hydroxylated structures, the products formed at the zeta, delta, and alpha sites were
found to be more stable (0–2 kcal/mol) than the other hydroxylated ones.

Table 1. Computed relative energies of the radicals and hydroxylated products of α-pinene. The
term “cor” refers to the dispersion, BSSE, and Grimme quasi-harmonic corrections to the calculated
absolute Gibbs free energies (in Hartree). Energies in kcal/mol were calculated with reference to the
most stable conformation for the hydroxylated radical and product.

Radical Gcor(Eh) Gcor(ref)
(kcal/mol)

Hydroxylated
Product Gcor(Eh) Gcor(ref)

(kcal/mol)
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Alpha −389.788789 21.7 Alpha −465.658506 1.4
Gamma −389.819706 2.27 Gamma −465.645667 9.45

Delta −389.777607 28.7 Delta −465.660286 0.28

Epsilon −389.823321 0
Epsilon cis −465.651306 5.91

Epsilon trans −465.652273 5.31
Zeta −389.790994 20.3 Zeta −465.660730 0.00
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Table 2. Computed relative energies of the radicals and hydroxylated products of β-pinene. The
term “cor” refers to the dispersion, BSSE, and Grimme quasi-harmonic corrections to the calculated
absolute Gibbs free energies (in Hartree). Energies in kcal/mol were calculated with reference to the
most stable conformation for the hydroxylated radical and product.

Radical Gcor
(Eh)

Gcor(ref)
(kcal/mol)

Hydroxylated
Product

Gcor
(Eh)

Gcor(ref)
(kcal/mol)
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Alpha −389.784833 21.9 Alpha −465.653831 0.57
Gamma −389.770224 31.1 Gamma −465.649621 3.21

Delta −389.819707 0
Delta cis −465.645132 6.03

Delta trans −465.644727 6.28

Epsilon −389.797584 13.9
Epsilon cis −465.6451796 6.00

Epsilon trans −465.6473512 4.63
Zeta −389.786313 20.9 Zeta −465.6547380 0

Theta −389.788711 19.4 Theta −465.6488230 3.71
Iota −389.789920 18.7 Iota −465.6375598 10.78

Kappa −389.790510 18.3 Kappa −465.6399752 9.26

With respect to β-pinene (Table 2), our geometry optimizations showed that the most
stable radical was formed at the delta allylic site. Similar to the α-pinene, all the other
radicals were far above this structure in the potential energy surface, with the gamma
radical being the least stable (~31 kcal/mol). Also in line with the α-pinene, the tertiary
bridgehead alpha radical was considerably less stable (21.9 kcal/mol) than the other allylic
radical at delta carbon. The most stable hydroxylated products were also found to be the
tertiary hydroxylated carbons at zeta and alpha sites.

2.2. CYP Monooxygenase Model

Modelling biochemical reactions is demanding, particularly with diverse enzyme
families such as CYP. Several model systems have been used for CYP monooxygenases.
In this study, we employed one model (Figure 1) of CYP that showed good efficiency
in previous DFT calculation studies. It is important to mention that this model is rep-
resentative of the CYP family but does not account for all CYP classes. The chosen
Fe4+O2−(C20N4H12)−(SH)− model [3,4] is composed of an unsubstituted porphyrin ring
instead of a porphyrin IX ring and an SH– group instead of SMe or protein side chains as
axial Cys437 [45].
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2.3. R and S Enantiomers Cis/Trans Reaction

We first computed the cis/trans hydrogen transfer to the CYP reaction using both R
and S enantiomers of α-pinene (Figure 2 and Table 3) and β-pinene (Figure S1 and Table S1,
Supplementary Materials). The results show that there are no significant structural differ-
ences and consequently no significant energy differences between the two enantiomers.
This result can be explained by the absence of any electronic or steric clashes differences
introduced in the hydrogen transfer reaction mechanism by the R or S pinene isomers,
as expected.
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Figure 2. DFT/LAN level-optimized transition state structures for the hydrogen transfer to CYP
through the cis reaction path in the doublet state for the R and S α-pinene enantiomers.

Table 3. Gibbs free energy coordinates of the reaction R/S and cis/trans paths for the α-pinene. Data
are provided in kcal/mol and relative to the most stable structure formed in reaction coordinate 1,
the gamma conformer. RC is reaction coordinate.

RC Site Spin Gref
(kcal/mol) RC Site Spin Gref

(kcal/mol)

1
Epsilon
cis-(S) S = 1/2

2.41 1
Epsilon
cis-(R) S = 1/2

2.40
2 11.4 2 11.4
3 −12.6 3 −12.6

1
Epsilon
trans-(S) S = 1/2

0.184 1
Epsilon
trans-(R) S = 1/2

0.184
2 12.4 2 12.4
3 −13.7 3 −13.7

2.4. CYP-Catalyzed Hydroxylation of β-Pinene

Based on the preliminary results confirming the stability of the allyl radical from the
delta site of the β-pinene and the interesting high energy of the allyl radical generated at
the alpha site, we focused on studying the catalytic interactions of the CYP model with
allyl-type hydrogens only. The higher stability of allyl radicals versus other non-delocalized
radicals can be rationalized in terms of the delocalization of the paired electrons of the
olefin bond and the non-paired electron [41,42,46].

First, we studied the catalytic C-H abstraction followed by hydroxylation of the delta
site of β-pinene by CYP in the doublet, quartet, and sextet spin states since transition
metal complexes (and CYP) can react through multistate reactivity patterns with several
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close-lying spin states [2,37,40,47,48]. Figures 3 and 4 illustrate the computed mecha-
nisms using the B3LYP/LAN methodology. Table 4 presents absolute energies, kinetic,
and thermodynamic calculated parameters (see Tables S2–S10, S13 and Figure S2 in the
Supplementary Materials for the coordinates of the energy profile and the calculations in
detail). Since there are two hydrogen atoms in the delta carbon, the hydrogen abstraction
can occur in a cis/trans fashion with respect to the η site of β-pinene. We set up to use
one configuration for cis (R-cis) and the other for trans (S-trans) since our preliminary cal-
culations of the R and S structures of the pinene system showed similar electronic energies
(vide supra). The sextet spin state was found to be considerably high in energy (Figure 4B),
in line with previous studies in the literature [49], so it was excluded in further calculations.
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Figure 4. Reaction coordinates for the Gibbs free energies from the hydrogen abstraction and rebound
mechanism of the β-pinene catalyzed by the CYP enzyme; (A) alpha and (B) delta. Data are provided
in kcal/mol and relative to the alpha site reactant, the most stable structure in coordinate 1. The
optimized structures of doublet alpha and delta trans-(S) paths are displayed in this figure.

We observed that all cis transition state structures have slightly more elevated energies
than the trans structures. Analysis of the structures suggests that this could be due to the
steric clashes between the oxygen atom in the CYP and the β-pinene scaffold. According to
our calculations, the doublet and quartet reaction paths (coordinate I in Figure 4B) have
similar energies, while the paths of the sextet spin state were found to be high in energy, as
mentioned. For the doublet and quartet reaction paths, the hydrogen transfer reactions are
characterized by exothermicity and relatively low electronic barriers. As can be observed
in Table 4, the general trend in the application of vibrational corrections to the electronic
energies led to a decrease in the enthalpy of activation and in the enthalpy of reaction
(except to sextet delta trans and alpha quartet structures, in which the effect is nearly
null). For the entropy corrections, a less clear trend was observed. Except for the sextet
high-spin states and quartet delta trans conformer, the entropic factor led to increasing the
activation energy and reaction Gibbs free energy. It is largely known that the two main
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DFT sources of error are the missing dispersion forces and the basis set superposition
error [50]. Thus, as expected, the effects of corrections added to our DFT/LAN method
led to lower barriers and more favorable thermodynamics (again, except for the high-spin
thermodynamic parameters) for the hydrogen transfer reaction. We observed that the
addition of empirical corrections for the dispersive forces lead to a great decrease in the
CYP-catalyzed reaction barriers (Figure S3). The same trend was observed by Mulholland
and colleagues [51]. These lower reaction barriers are reasonable in a context of catalyzed
biochemical reactions where barriers are expected to be no greater than 18 kcal/mol [52].
Moreover, we observed that the stability order of the radical products is marginally affected
by these corrections, in contrast to the stability of the hydroxylated products. Therefore, the
applications of these corrections are essential for more accurate predictions of the selectivity
and reaction barriers.

Table 4. Thermodynamic and kinetic data computed for the hydrogen capture reaction by CYP in
β-pinene. The terms ∆rE, ∆rH, and ∆rG refer to electronic, enthalpic, and Gibbs free energy variation
in the reaction, respectively. The terms ∆E‡, ∆H‡, and ∆G‡ refer to the electronic, enthalpic, and
Gibbs free energy reaction barriers, respectively, and the term “cor” refers to the dispersion, BSSE, and
Grimme quasi-harmonic corrections to the calculated absolute Gibbs free energies. Hyd∆rGcor refers
to the hydroxylation free energies computed as the difference between the hydroxylated product and
the reactant in coordinate 1. Data are displayed in kcal/mol.

Site Spin ∆rE ∆E‡ ∆rH ∆H‡ ∆rG ∆G‡ ∆rGcor ∆G‡cor Hyd∆rGcor

Delta cis-(R) S = 1/2 −4.11 17.4 −6.13 12.8 −3.82 17.6 −7.05 12.4 −47.4
Delta trans-(S) S = 1/2 −4.64 15.4 −5.56 10.9 −5.10 15.4 −8.30 10.8 −48.4
Delta cis-(R) S = 3/2 −0.183 18.7 −1.59 13.8 −0.548 18.8 −2.64 13.6 −45.6

Delta trans-(S) S = 3/2 −1.03 16.5 −1.16 13.0 −3.67 13.4 −5.08 9.87 −47.3
Delta cis-(R) S = 5/2 −6.52 19.6 −7.19 15.9 −13.3 15.8 −9.18 12.8 −54.0

Delta trans-(S) S = 5/2 −7.36 17.3 −7.35 14.4 −15.1 12.5 −11.5 10.1 −54.2
Alpha S = 1/2 +17.4 21.5 +15.4 16.8 +18.9 22.2 +17.4 15.3 −50.0
Alpha S = 3/2 +13.0 18.8 +13.6 15.3 +14.3 18.5 +10.8 12.8 −43.4

The calculation of the allylic alpha hydrogen abstraction by CYP showed the unex-
pected instability of the alpha radical that was observed in the calculations using the bare
β-pinene system (Figure 4A). It appears that alpha-H abstraction is destabilizing the bicyclic
ring. At reaction coordinate I, the alpha site CYP + β-pinene complex in the doublet state
was found to be the most stable structure (0 kcal/mol) over the potential energy surface.
Nevertheless, the energy differences among other optimized structures in coordinate I were
very small, excluding the sextet state. We are able to identify several other conformers in
the doublet and quartet with slightly more elevated energies, as the β-pinene can be freely
rotated/translated around the CYP due to its weak interaction with the enzyme. To the
alpha site, our calculations showed that the activation barriers are more elevated at the
doublet state than the quartet state. However, the hydrogen abstraction from this site is
unlikely due to the unfavorable thermodynamics for the alpha radical formation.

We then investigated the rebound mechanism from the β-pinene radical after the
hydrogen abstraction by CYP. The transition states connecting the radical and the hy-
droxylated product for the low and high spin states could not be found in an exhaustive
potential energy surfaces search. In the quartet state, we were successful in locating these
transition states structures only at a lower theoretical level (B3LYP/6-31G). Searches in the
potential energy surface through scan calculations suggested a small electronics barrier
of ~3.0 kcal/mol. However, at a higher theoretical level, the potential energy surface
turns flat and all attempts to optimize these transition states at B3LYP/LAN level were
not fruitful. Therefore, in line with previous studies, we consider that the hydroxylation
rebound mechanism is barrierless at our theoretical level, with the hydrogen-abstraction by
the CYP enzyme as the rate-limiting step [12].
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The bare system alpha-delta trend in the relative stability of hydroxylated product
repeats in the CYP + β-pinene system. The doublet alpha hydroxylated product is about
~3 kcal/mol more stable than the delta hydroxylated product. We observed that high-
spin sextet structures (Figure 5) do not give classical rebounded hydroxylated products.
The increase of electronic repulsion around the iron atom in higher spin states repels
the ligands above and below the plane occupied by the porphyrin system, evidenced by
the increased interaction distance between Fe and O and the slight distortion of the Fe
coordination sphere.
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With these results, we can reason a dynamic equilibrium scenario for the most probable
reaction path in a theoretical mixture. Table 5 shows the computed Boltzmann distribution
based on the free energies of the reactant structures in the first reaction coordinate. The
alpha site reactant in the doublet potential energy surface is the most stable structure,
responding by about half of the conformation states in the distribution. The other half
is mainly composed of delta cis/trans doublet and delta cis quartet conformers. Due
to the complex electronic nature of the transition metal-containing systems, the reaction
can proceed through multiple potential energy surfaces. As the structures in doublet
and quartet reaction paths are very similar, nearly as degenerate states or with very close
energies, we can assume that spin crossover can occur through these spin states. Indeed,
experimental and theoretical evidence suggests facile interconversion between these spin
states in iron porphyrin compounds [12,53].

Table 5. Boltzmann distribution for conformers present in reaction coordinate I for the β-pinene.

Reactant G (hartree) Mole Fraction Population % ∆rG ∆G‡

alpha-doublet −1976.037587 0.49 48.77 28.1 15.3
alpha-quartet −1976.030510 0 0.03 10.8 12.8

delta-trans-doublet −1976.035861 0.08 7.83 −8.3 10.8
delta-cis-doublet −1976.036419 0.14 14.14 −7.05 12.4
delta-cis-quartet −1976.037104 0.29 29.23 −2.64 13.6

delta-trans-quartet −1976.014863 0 0 −5.08 9.87
delta-cis-sextet −1976.015837 0 0 −9.18 12.8

delta-trans-sextet −1976.014863 0 0 −11.5 10.1



Int. J. Mol. Sci. 2023, 24, 5150 9 of 16

Lastly, the calculated Boltzmann distribution for the product conformers of the H-
abstraction (coordinate III) predicts approximately a 50:50 distribution around cis/trans
conformers in the doublet state (Table 6). Using the Eyring equation, we can estimate
the reaction through the delta trans doublet path as three and two times faster than the
delta cis quartet and doublet paths, respectively. Despite the initially lower concentration
in the reaction coordinate I for the trans doublet conformer, the lower activation barrier
suggests greater kinetic favor to the reaction through this path. Thus, it is expected that
β-pinene CYP-catalyzed hydrogen abstraction led to the formation of the doublet trans
radical conformer as the major reaction product.

Table 6. Boltzmann distribution for radical conformers present in reaction coordinate III for the
β-pinene.

Reactant G (hartree) Mole Fraction Population % ∆rG ∆G‡

alpha-doublet −1975.973971 0 0 28.1 15.3
alpha-quartet −1975.973075 0 0 10.8 12.8

delta-trans-doublet −1976.009716 0.534 53.4 −8.3 10.8
delta-cis-doublet −1976.009578 0.461 46.1 −7.05 12.4
delta-cis-quartet −1976.004151 0.00147 0.147 −2.64 13.6

delta-trans-quartet −1976.004891 0.00321 0.321 −5.08 9.87
delta-cis-sextet −1976.000132 0 0 −9.18 12.8

delta-trans-sextet −1976.001255 0 0 −11.5 10.1

After the formation of the cis/trans doublet radical, the rebound mechanism can form
the highly stable hydroxylated product. The formation of these structures is accompanied
by the release of substantial amount of energy. The total Gibbs free energies released
by the formation of doublet cis and trans hydroxylated products can be estimated as
approximately −48 kcal/mol. Reversal of the hydroxylation reaction demands overcoming
barriers as large as 40 kcal/mol. Thus, our results suggest that the hydroxylated product
formation acts as a “thermodynamic trap” for the reaction system since the reverse reaction
is kinetically hindered.

2.5. CYP-Catalyzed Hydroxylation of α-Pinene

Considering the α-pinene molecule, we studied the CYP-catalyzed hydrogen abstrac-
tion followed by hydroxylation of the epsilon, alpha, and gamma allylic sites in the doublet,
quartet, and sextet spin (for epsilon only) states. Figures 6 and 7 (and Figure S3 and S4)
show the calculated reaction coordinates. Table 7 (and Table S11, S12 and S14) presents the
calculated absolute energies and the kinetic and thermodynamic parameters. As in the case
of the β-pinene delta-site, the epsilon-site has two cis/trans hydrogen atoms (regarding the
η site), liable for being abstracted by the CYP. The R and S configurations also had similar
electronic energies. The cis transition states of hydrogen abstraction (coordinate II) had
slightly higher energies than the trans transition states, except for the doublet state. The
sextet state potential energy surface (PES) lies above the doublet and quartet PES. We thus
excluded sextet PES from calculations at alpha and gamma sites. The reactions through the
epsilon and gamma sites had favorable thermodynamic profiles and low activation barriers,
whereas the reaction at the alpha site was found to be thermodynamically unfavorable.
As the β-pinene, the application of vibrational corrections to the electronic energy led to
a decrease in the enthalpic activation energies (Table 7) for the α-pinene reaction. The effect
in the reaction enthalpy is less accentuated, but trends to an increase in the liberated energy.
Except for the doublet epsilon cis conformation, the entropic effect led to an increase in the
activation energy values regarding the enthalpy of activation. The results of the empirical
corrections added in our DFT/LAN methodology over the pure DFT repeat the trend
observed in the β-pinene, resulting in better thermodynamic and kinetic profiles for the
CYP-catalyzed hydrogen transfer reaction.
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Figure 7. Reaction coordinates for the Gibbs free energies from the hydrogen abstraction and rebound
mechanism of the α-pinene catalyzed by the CYP enzyme; (A) alpha and gamma, and (B) epsilon.
Data are provided in kcal/mol and relative to the gamma site reactant, the most stable structure in
coordinate 1. Optimized structures for the gamma doublet path in the left and epsilon cis-(S) doublet
path in the right.

Our calculations at B3LYP/LAN level showed that the most stable products were
formed in the doublet state by hydrogen abstraction at the epsilon site in agreement with
the calculations of the bare system. The trans product is slightly more stable; however, the
reaction through the cis path has a lower activation barrier (9.00 vs. 12.2 kcal/mol) and
lower Gibbs free energy (−15 vs. −13.8 kcal/mol).

As in the case of β-pinene, the transition state for the rebound mechanism was not
identified. So, we consider that this mechanism is barrierless at our theoretical level with
the hydrogen abstraction by the CYP enzyme as the rate-limiting step. The most stable
hydroxylated rebounded product was formed at the alpha site followed by the epsilon trans
product, which was only 0.7 kcal/mol less stable. The same order of the allylic products
(alpha > epsilon > gamma) was obtained as in the bare system. However, the difference
between alpha and epsilon is only 1 kcal/mol rather than those 5–6 kcal/mol obtained
from the bare system. This indicates that the presence of CYP450 and the rebounded
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structure formation linked to the iron center slightly shifted the equilibrium in relation to
the bare model.

Table 7. Thermodynamic and kinetic data computed for the hydrogen capture reaction by CYP in
α-pinene. The terms ∆rE, ∆rH, and ∆rG refer to electronic, enthalpic, and Gibbs free energy variation
in the reaction, respectively. The terms ∆E‡, ∆H‡, and ∆G‡ refer to the electronic, enthalpic, and
Gibbs free energy reaction barriers, respectively, and the term “cor” refers to the dispersion, BSSE, and
Grimme quasi-harmonic corrections to the calculated absolute Gibbs free energies. Hyd∆rGcor refers
to the hydroxylation free energies computed as the difference between the hydroxylated product and
the reactant in coordinate 1. Data are displayed in kcal/mol.

Site Spin ∆rE ∆E‡ ∆rH ∆H‡ ∆rG ∆G‡ ∆rGcor ∆G‡cor Hyd∆rGcor

Epsilon cis-(S) S = 1/2 −13.6 15.9 −12.9 12.9 −13.4 12.5 −15.0 9.00 −50.2
Epsilon trans-(R) S = 1/2 −14.8 14.6 −14.8 11.0 −10.5 16.6 −13.8 12.2 −48.9

Epsilon cis-(S) S = 3/2 −0.1 18.0 −0.215 14.1 −0.981 16.4 −3.06 12.3 −36.8
Epsilon trans-(R) S = 3/2 +0.814 16.7 +0.413 12.7 −1.10 15.0 −1.87 11.2 −37.9

Epsilon cis-(S) S = 5/2 −16.0 18.7 −15.8 14.7 −18.6 15.5 −18.7 12.7 −53.9
Epsilon trans-(R) S = 5/2 −15.7 17.5 −16.8 13.0 −14.1 17.3 −15.2 13.2 −53.9

Alpha S = 1/2 +18.4 22.8 +18.0 18.7 +18.3 21.4 +14.8 15.9 −50.2
Alpha S = 3/2 +16.7 24.9 +15.9 20.6 +15.7 23.1 +13.5 18.1 −37.1

Gamma S = 1/2 −3.18 16.1 −4.05 12.5 −0.516 16.9 −5.73 12.6 −41.9
Gamma S = 3/2 +1.09 18.0 +0.612 14.0 +0.437 15.8 −1.80 14.2 −30.8

With this data, we can reason the possible paths that the reaction can proceed in
this theoretical scenario. The Boltzmann distribution (Table 8) related to the structures in
coordinate I shows the existence of a mixture of conformers in the initial reaction mass.
There is no hydrogen transfer reaction through the sextet spin state and the reaction through
the alpha site is thermodynamically unfavorable. The reactions through the remaining sites
have relatively low barriers and are thermodynamically feasible. However, our calculations
(Table 9) showed that the most stable radicals are formed at the epsilon cis and trans path
in the doublet state. The Boltzmann distribution indicates that the equilibrium is totally
shifted to the formation of these products. From these structures, the hydroxylation reaction
of α-pinene can proceed fast with a substantial release of ~50 kcal/mol, a little more than
the ones computed for β-pinene.

Table 8. Boltzmann distribution for conformers present in reaction coordinate I for the α-pinene.

Reactant G (hartree) Mole Fraction Population % ∆rG ∆G‡

alpha-doublet −1976.041937 0.0871 8.71 14.8 17.6
alpha-quartet −1976.024096 0.209 20.9 13.5 18.1

epsilon-trans-doublet −1976.042897 0.241 24.1 −13.8 12.2
epsilon-cis-doublet −1976.039343 0.00557 0.557 −15.0 8.99

epsilon-trans-quartet −1976.040800 0.0261 2.61 −1.87 11.2
epsilon-cis-quartet −1976.041490 0.0542 5.42 −3.06 12.3
epsilon-trans-sextet −1976.024055 0 0 −15.2 13.2

epsilon-cis-sextet −1976.022164 0 0 −18.7 12.7
gamma-doublet −1976.043191 0.329 32.9 −5.73 12.6
gamma-quartet −1976.041393 0.0489 4.89 −1.80 14.2

To get more insight into the hydrogen transfer to the CYP model reaction, we con-
ducted an electronic analysis of the α-pinene. We analyzed the Mulliken and NPA chargers,
as well as the Mulliken and NBO spin population in doublet and quartet states for epsilon
cis and trans paths (Table S12). The orbital analysis shows that the lowest orbitals shown
are the bonding type orbitals along the Fe–O bond and include the σz2 for the overlap
of 3dz2 on iron with 2pz on oxygen and the degenerate pair of πxz and πyz molecular
orbitals for the bonding interaction between the 3dxz (or 3dyz) on iron with the 2px (or
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2py) atomic orbital on oxygen [45,54]. The antibonding combination of this pair of orbital
π*xz reflects the antibonding interactions of the 3dxz orbitals on Fe with the 2py orbitals
on O along the Fe–O bond [54]. The δx2–y2 orbital is non-bonding and located in the
plane of the heme/porphyrin. The two σ* antibonding orbitals are high in energy and
virtual—one along the O–Fe–S axis (the z-axis) [2,55], namely σ*z2, is seen in Figure S4.

Table 9. Boltzmann distribution for radical conformers present in reaction coordinate III for the
α-pinene.

Reactant G (hartree) Mole Fraction Population % ∆rG ∆G‡

alpha-doublet −1976.018408 0 0 14.8 17.6
alpha-quartet −1976.021248 0 0 13.5 18.1

epsilon-trans-doublet −1976.064967 0.864 86.4 −13.8 12.2
epsilon-cis-doublet −1976.063223 0.136 13.6 −15.0 8.99

epsilon-trans-quartet −1976.043787 0 0 −1.87 11.2
epsilon-cis-quartet −1976.046371 0 0 −3.06 12.3
epsilon-trans-sextet −1976.048297 0 0 −15.2 13.2

epsilon-cis-sextet −1976.051903 0 0 −18.7 12.7
gamma-doublet −1976.052329 0 0 −5.73 12.6
gamma-quartet −1976.044266 0 0 −1.80 14.2

3. Materials and Methods

All DFT calculations were conducted in the Gaussian09 software (dftd4 version
3.2.0 from GitHub) [56] with the well-known three-parameter hybrid functional of Becke
(B3) [57,58] in combination with the Lee-Yang-Parr (LYP) [59,60] correlation functional.
The B3LYP hybrid functional with unrestricted formalism has been largely used in the
theoretical studies for modeling active sites and analyzing reaction mechanisms in many
systems, particularly CYP [3,61] and Heme [62] models of enzymes, where it was shown
to give correct spin-state energetics for these species [2,4,38]. Studies have shown that
this functional can provide accurate geometries and reasonable agreement with Coupled
Cluster Singles and Doubles Theory (CCSD(T)) calculations of the relative spin states
energies for porphyrin [63] complexes and heme-related [62,64] models. For geometry
optimizations, vibrational analyses, and Intrinsic Reaction Coordinate (IRC) calculations,
we employed the Pople double-zeta polarized 6-31G(d) basis set [65,66] for all atoms, except
iron. In this atom, the orbitals are expanded with the LANL2DZ [67–69] ECP basis set.
The default Gaussian algorithm (Berny algorithm using GEDIIS) was adopted to minimize
energy in the minimum and maximum stationary points. In the optimization process, we
consider that structural convergence occurs only when the maximum force and its root
mean square (RMS) fall below 4.5 × 10−4 and 3 × 10−4 hartree/bohr. We fix a threshold of
1.8 × 10−3 and 4 × 10−3 bohr for the maximum displacement, and its RMS with the default
grid for the numerical integration step in all calculations. Low-lying harmonic vibrational
mode’s contribution to entropy frequencies obtained from calculations were treated using
a free-rotor approximation [70] (quasi-rigid-rotor-harmonic-oscillator) implemented in the
GoodVibes software (GoodVibes version 3.1.1 from GitHub) [49]. To address the basis
set superposition error (BSSE), we added Grimme geometrical counterpoise gCP [71,72]
correction for all computed energies. Dispersion effects may play a relevant role in CYP-like
systems [73,74]. Therefore, to assure the correct dispersion computation, we added the D4
Grimme’s empirical corrections [75,76] for all computed energies via external software (Gcp
version 2.3.1 from GitHub). The Polarizable Continuum Model (PCM) [77,78] was used to
simulate the water effect in this molecular system. This computational methodology will
be referred to as B3LYP/LAN in the manuscript.
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4. Conclusions

To conclude, we report a systematic mechanistic study of biocatalytic hydrogen ab-
straction and hydroxylation of α- and β-pinenes by multi-state cytochrome P450 enzymes
(CYP) based on the density functional theory (DFT) method using the Gaussian09 software
and B3LYP/LAN computational methodology. CYPs are an interesting class of biocatalysts
as they can generate several products from the same substrate due to the presence of
multi-states (different spin states). In our DFT study, we started by studying the hydrogen
abstraction and hydroxylation of α-pinene and β-pinene without a CYP450 model using the
B3LYP/LAN methodology (bare system) as a reference to the subsequent CYP-catalyzed
hydroxylation of β-pinene and CYP-catalyzed hydroxylation of α-pinene accounting for
the doublet, quartet, and sextet spin states of CYP. According to the potential energy surface
and Boltzmann distribution for radical conformers, the major reaction products of CYP-
catalyzed hydrogen abstraction from β-pinene were the doublet trans (53.4%) and doublet
cis (46.1%) radical conformers at the delta site, and the formation of doublet cis/trans
hydroxylated products released a total Gibbs free energy of ~48 kcal/mol. As for α-pinene,
the most stable radicals were trans-doublet (86.4%) and cis-doublet (13.6%) at epsilon sites,
and their hydroxylation products released a total of ~50 kcal/mol Gibbs free energy. The
transition state connecting the radical (from hydrogen abstraction) and the hydroxylated
product (from oxygen rebound) was not located. The rebound mechanism is considered
barrierless at our mentioned theoretical level, in line with previous studies in the literature,
and the hydrogen abstraction by CYP is the rate-limiting step.
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