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Figure S1. Sample inclusion in discovery, replication and merged datasets, 10-time bootstrap and 
leave-one-out cross-validation 
159 participants enrolled in our study. Our discovery set comprised of 15 patients harboring an 
EIF1AX-mutated tumor, 16 patients harboring an SF3B1-mutated tumor and 37 patients harboring 
a BAP1-mutated tumor. Additionally, 46 control-participants were included in the discovery set. 
The replication set included 9 patients harboring an EIF1AX-mutated tumor, 17 patients harboring 
an SF3B1-mutated tumor and 19 patients harboring a BAP1-mutated tumor. To assess batch effects 
in the merged dataset (discovery and replication set combined), 15 samples were used as a technical 
replication set (see Figure S5). These technical replicates were used in the discovery cohort for ex-
ploring differential features (and subsequent metabolites). Afterwards, in the replication cohort, 
these samples were only used for quality control evaluation. Two patients harboring an SF3B1-mu-
tated tumor and one patient harboring an EIF1AX-mutated tumor had an additional plasma sample, 
retrieved at the same time-point, included in the replication set as biological replicates to assess 
similarity in the metabolite profiles (A). To assess the reproducibility of using metabolite abundan-
cies for random forest classifiers (RFC) and leave-one-out cross-validation (LOOCV), we repeated 
this ten times on samples that were randomly picked from the merged dataset and then evenly 
distributed in two in-silico batches in the respective groups (B). The LOOCV procedure entails using 
all-but-one samples to train a model and using the left-out sample to test the models’ performance. 
This procedure is performed for all samples and produces performance metrics for all samples and 
equivalent models (C). 
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Figure S2. Quality control characteristics by internal standards in discovery set.  

To eliminate technical variances, internal standards were added to each sample. These internal 
standards were used to normalize feature abundancies (see methods). For some groups we observe 
overall abundancy differences for the internal standards. Normalization reduced these group dif-
ferences when looking at the normalized internal standards. Boxplots show z-scores of log-trans-
formed abundancies of the internal standards in the discovery set in the positive ion mode (A) and 
negative ion mode (B); on the left are unnormalized abundancies and the right side shows normal-
ized abundancies. 
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Figure S3. Quality control characteristics by internals standards in replication set. 

To eliminate technical variances in the replication set, internal standards were used to normalize 
feature abundancies. After normalization, technical differences in metabolite abundancy were re-
duced in the positive ion mode (A) and negative ion mode (B). 
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Figure S4. Assessment of Metchalizer normalization in the merged dataset.  

The four metrics Within variance Total variance Ratio (WTR) scores, Batch prediction scores, quality 
control (QC) correlations and QC prediction scores are determined for both the log-transformed raw 
data and the Metchalizer normalized data. Technical replicates of the same sample were included 
in the replication and discovery set. Additionally, technical replicates were included in each indi-
vidual dataset. Assessment of these technical replicates indicate improved normalization as they are 
associated with increased WTR scores, QC correlations and QC predictions scores, and with re-
duced batch prediction scores [1]. These metrics are determined for both ion modes. 
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Figure S5. Assessment of technical and biological variation by using replicates in the discovery 
cohort and merged dataset.  

The Spearman correlation between two samples was determined using all features for samples in 
the discovery cohort and merged dataset, where abundancies were either log-transformed raw 
abundancies or normalized abundancies. In the discovery cohort, these correlations were deter-
mined between biological replicates (two different UM-patient plasma samples retrieved at one 
time-point) or between a random selection of samples (A). For the latter we expect, and observe, 
lower correlation coefficients than the biological replicates. Furthermore, normalized abundancies 
should ideally further improve the correlation between the latter. In the merged dataset, correlations 
were determined between technical replicates (a UM-patient sample being measured in each of the 
two batches), between the quality control (QC) samples (same sample measured multiple times per 
batch and in both batches) and between a random selection of samples (B). The Spearman correla-
tion of normalized feature abundancies of biological and technical replicates (both UM-patient sam-
ples and QC-samples) showed better correlation than randomly chosen samples.  
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Figure S6. P-value distribution of differentially abundant features in UM versus controls. 

The distribution of p-values obtained from the t-test by comparing feature abundancies between 
UM and controls. This distribution shows to be uniformly distributed except for p-values in the left 
tail for the merged dataset in the positive and negative ion modes, respectively. This shows that 
most features are not differentially abundant between UM patients and controls and that a subset 
of features are differentially abundant between UM patients and controls, which is a sign of good 
quality data. 
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Figure S7. Quality control by dimensionality reduction analyses in the positive ion mode.  

Unsupervised clustering by principal component analyses (PCA) and t-distributed Stochastic 
Neighbor Embedding (t-SNE) on all normalized feature abundancies show no deviations in three 
dimensions of the PCA and in two dimensions of the t-SNE (normalized) feature abundancies be-
tween plasma samples of patients with BAP1, SF3B1 or EIF1AX and control-participants in the 
whole cohort consisting of the discovery and replication sets (i.e., the merged dataset) in the positive 
ion mode. The control participants are marked for their co-occurring diseases (consisting of AMD, 
cataract and others (Table S1) and no separation based on metabolite feature abundancies is ob-
served. 
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Figure S8. Quality control by dimensionality reduction analyses in the negative ion mode.  

Unsupervised clustering by principal component analyses (PCA) and t-distributed Stochastic 
Neighbor Embedding (t-SNE) on all normalized feature abundancies show no deviations in three 
dimensions of the PCA and in two dimensions of the t-SNE (normalized) feature abundancies be-
tween plasma samples of patients with BAP1, SF3B1 or EIF1AX and control-participants in the 
whole cohort consisting of the discovery and replication sets (i.e., the merged dataset) in the nega-
tive ion mode. The control participants are marked for their co-occurring diseases (consisting of 
AMD, cataract and others (Table S1) and no separation based on metabolite feature abundancies is 
observed. 
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Figure S9. Repeated leave-one-out cross-validation on random forest classifier. 

Leave-one-out cross-validation (LOOCV) using a random forest classifier trained on 10 bootstraps 
each selecting a random 50% of the samples per group. Note, that we balanced each (boostrapped) 
dataset by oversampling each group (i.e. by randomly selecting 200 times a sample from each group 
with replacement) and addition of normal noise N(0,0.25). The boxplots represent recall and preci-
sion per group based on the results of the 10 bootstraps. The merged dataset is used with positive 
(left panel) and negative ion modes (right panel). These results show a good concordance with the 
original dataset and reproduce the random forest classifier results in the original experiment. 
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Figure S10. Receiver operating characteristic of the repeated leave-one-out cross-validation of the 
random forest classifiers. 

Leave-one-out cross-validation (LOOCV) using a random forest (RF) classifier trained 10 bootstraps 
on 50% of the sample per group. Each receiver operating characteristic (ROC) curve is based on the 
probability scores from the RF classifier for one bootstrap, i.e., a random 50% of the samples from 
the UM and controls samples is selected, where after a LOOCV strategy is deployed.  
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Figure S11. Correlation of m/z features with tumor size and differential abundance between UM 
patients and controls.  

Since tumor size characteristics prominence and longest tumor diameter (LTD) correlate, the first 
PC from PCA analysis was used as metric to correlate with feature abundance (A). Next, the t-sta-
tistic of feature abundance in UM-patients versus control-participants was calculated. By scattering 
both metrics, we obtain interesting regions in each corner of the scatter plot and these features are 
depicted by red dots (p-value <0.05) (B). In the top-right corner of the plot the relatively high feature 
abundance in UM-patients and (strong) correlation with tumor size are depicted; the bottom-left 
corner shows low feature abundance in UM-patients and inverse correlation to tumor size. No fea-
ture is significantly differentially abundant between UM-patients and control-participants and cor-
related with tumor size, after correcting for multiple testing using the Benjamini/Hochberg proce-
dure with a family-wise error rate of 0.05.  
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Figure S12. Pathway analysis of top-10 affected pathways in UM-patients compared to controls.  

All metabolite annotations with a HMDB ID were pulled from both ion modes. For metabolites that 
were annotated in both ion modes, we selected the ion mode that had on average the highest abun-
dancy (i.e., better signal-to-noise ratio). The fold-change between UM-patients and control-partici-
pants and the p-values from the t-test were used as input for Ingenuity Pathway Analysis (IPA). 
Metabolites were annotated using an in-house developed database as described previously[2]. Data 
was analyzed using QIAGEN IPA (QIAGEN Inc., https://digitalinsights.qiagen.com/IPA). Z-scores 
were obtained by calculating the Fold Change between annotated metabolite abundancy in UM-
patients compared to control-participants. The p-values were obtained by t-test of differences in 
metabolite abundancy between UM-patients and control-participants. The differentially abundant 
annotated metabolites are listed in Table S3. Upregulation of pathways is depicted in orange and 
downregulation is visualized by blue bars, in which color intensity correlates to the Z-score. We 
observed an upregulation of transfer RNA (tRNA) charging and the use of glycine for the creatine 
biosynthesis. Purine ribonucleosides degradation and the super pathway of citrulline metabolism 
were downregulated in UM-patients. 
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Table S1. Characteristics of controls.  
Control-participants are included from the Combined Ophthalmic Research Rotterdam Biobank 
(CORRBI). These patients had blood drawn prior to surgical treatment and no systemic treatment 
was administered during the period of phlebotomy. Abbreviation: AMD: Age-related macular de-
generation. 

 Study ID Sex 
Age at phlebotomy 

(range) 
Disease 

11603 Male 76-80 AMD 
11621 Male 76-80 AMD 
11628 Male 71-75 Cataract 
11643 Female 61-65 AMD 
11652 Female 76-80 AMD 
11657 Female 61-65 Cataract 
11687 Female 86-90 Branch retinal vein occlusion 
11743 Female 81-85 AMD 
11794 Male 81-85 Traumatic cataract 
11819 Female 56-60 Open angle glaucoma 
11825 Male 61-65 AMD 
11826 Male 76-80 AMD 
11828 Female 86-90 AMD 
11900 Female 61-65 Cataract 
11901 Female 61-65 Cataract 
11932 Male 81-85 AMD 
11952 Male 71-75 Cataract 
11963 Female 65-70 Cataract 
11965 Male 81-85 Cataract 
11966 Male 81-85 Cataract 
11967 Male 96-100 AMD 
11969 Male 81-85 Diabetic macular edema 
11970 Female 56-60 Cataract 
11971 Male 66-70 Cataract 
11972 Male 81-85 Cataract 
11978 Female 76-80 AMD 
12156 Male 65-70 AMD 
12157 Male 65-70 Cataract 
12158 Female 71-75 Cataract 
12162 Female 61-65 Cataract 
12163 Female 66-70 Cataract 
12165 Female 81-85 AMD 
12166 Male 71-75 Cataract 
12167 Male 61-65 Cataract 
12168 Female 65 AMD 
12175 Female 88 AMD 
12178 Female 74 AMD 
12237 Male 76 Cataract 
12280 Female 63 Cataract 
12287 Female 87 AMD 
12288 Female 81 AMD 
12291 Female 77 AMD 
12292 Male 78 Cataract 
12293 Female 75 Central retinal vein occlusion 
12294 Male 72 AMD 
12296 Female 67 Cataract 
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Table S2. Patient and sample characteristics of the technical and biological replication sets.  
To compare metabolite profiles and evaluate batch-effects a technical replication set comprising of 
15 samples was analyzed in both the discovery and replication set. Additionally, three samples were 
used as a biological replicate in which a different plasma sample was retrieved at the same time-
point. The patients resemble their respective cohorts in metastatic free survival (MFS), age at onset 
and male/female ratio. These samples were retrieved and subsequently stored in -80 C between 
1998 and 2019. 

Study_ID Sex  
Age at onset 

(years) 
DFS 

(months) 
Plasma retrieval  Mutation Replication set 

EOM-0147 Male 56,4 95,7 1998 SF3B1 Technical replication 
EOM-0296 Male  66,6 8,2 2003 BAP1 Technical replication 
EOM-0334 Male  65,4 23,7 2004 BAP1 Technical replication 

EOM-0355a Female 72,9 19,4 2004 EIF1AX Technical replication 
EOM-0355 Female  72,9 19,4 2004 EIF1AX Biological replication 
EOM-0409 Female  27,3 154,1 2006 SF3B1 Technical replication 
EOM-0464 Female  73,5 130,9 2008 SF3B1 Technical replication 
EOM-0472 Female  66 143,8 2008 EIF1AX Technical replication 
EOM-0485 Male  82,8 63,2 2008 EIF1AX Technical replication 
EOM-0501 Female  57,5 15,8 2009 BAP1 Technical replication 
EOM-0534 Male  66,2 48,5 2010 BAP1 Technical replication 
EOM-0627 Female  71,5 102,3 2011 EIF1AX Technical replication 
EOM-0724 Female  43 67,5 2014 SF3B1 Technical replication 

EOM-0779a Male  47,7 70 2015 SF3B1 Technical replication 
EOM-0779 Male  47,7 70 2015 SF3B1 Biological replication 

EOM-1097a Female  46 11,3 2018 SF3B1 Technical replication 
EOM-1097 Female  46 11,3 2018 SF3B1 Biological replication 
EOM-1104 Male  59,9 14,3 2019 EIF1AX Technical replication 
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