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Abstract: MT1-MMP (MMP-14) is a multifunctional protease that regulates ECM degradation, acti-
vation of other proteases, and a variety of cellular processes, including migration and viability in
physiological and pathological contexts. Both the localization and signal transduction capabilities of
MT1-MMP are dependent on its cytoplasmic domain that constitutes the final 20 C-terminal amino
acids, while the rest of the protease is extracellular. In this review, we summarize the ways in which
the cytoplasmic tail is involved in regulating and enacting the functions of MT1-MMP. We also
provide an overview of known interactors of the MT1-MMP cytoplasmic tail and the functional
significance of these interactions, as well as further insight into the mechanisms of cellular adhesion
and invasion that are regulated by the cytoplasmic tail.
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1. Introduction

Cell invasion is a process cells utilize in a wide range of situations, such as cancer
cell metastasis, angiogenesis, macrophage motility, or during development [1]. MT1-MMP
(Membrane Type 1 Matrix Metalloproteinase) is essential for a mesenchymal mode of
invasion. It is one of the main components of podosomes and invadopodia, extracellular
matrix (ECM) contacts which, thanks to MT1-MMP and other matrix metalloproteinases,
have the capacity to degrade ECM components [1].

Initially, invadopodia were described as ECM-degrading actin-rich puncta in 2D exper-
iments where cells were seeded typically on gelatine-coated glass cover slips (for reviews,
see [1,2]). A detailed description of the structure of invadopodia in a 3D environment was
initially resolved by electron microscopy using a thick Matrigel layer [3]. In this environ-
ment, invadopodia exhibit a pseudopodia-like appearance [3]. Using a dense fibrillar 3D
collagen (such as a skin-based matrix or high-density fibrillar collagen) usually leads to a
formation of invadopodia with a protruding base from which numerous thin filopodia-like
filaments extend [4,5]. This phenotype was recently confirmed using a detailed 3D CLEM
(correlative light-electron microscopy) visualization combining confocal and FIB-SEM (fo-
cused iron beam scanning electron microscopy) imaging [6]. Although the initial structure
can form in the absence of MT1-MMP, invadopodia elongation into the matrix is dependent
on the presence of MT1-MMP, as is their degradative function [7,8].

MT1-MMP is a member of matrix metalloproteinases (MMPs), zinc-dependent en-
zymes which degrade ECM components. MMPs can be separated into two subgroups–
soluble and membrane-type MMPs. The membrane type subgroup comprises MMPs
that either contain a transmembrane domain (MT1-, MT2-, MT3-, MT5-MMP) or a glyco-
sylphosphatidylinositol (GPI) anchor, which tethers them to the surface of the cell (MT4-,
MT6-MMP) [9].
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MT1-MMP is synthesized as a proMT1-MMP zymogen with an inhibitory prodomain,
a catalytic domain (CAT), a hemopexin domain (HPX), which serves for dimerization,
substrate binding, and phospholipid bilayer interactions [10], a trans-membrane domain
(TM), and a short cytoplasmic tail (CT) [11,12]. As a protease, MT1-MMP has an ample
portfolio of substrates, including many ECM components, other MMPs, receptors, and
other proteins, and it also serves as a signaling hub (for reviews, see [13,14]. It is expressed
in invasive cancer cells and many other cell types, such as fibroblasts, endothelial cells, and
cells of the immune system [15].

The cytoplasmic tail comprises the last 20 C-terminal amino acids of the protein,
residues 563–582 (human sequence numbering used throughout, UniProt ID P50281).
It consists of four regions: a juxtamembrane basic cluster (563RRH565), an amphipathic
region (566GTPRR570), a nonpolar region (571LLYC574), and a final amphipathic region
(575QRSLLDKV582). The central part of the CT (569RRLLYC574) can form a β-strand
structure, which contains a β-bulge due to the insertion of an extra leucine (Leu571) [16]
(Figure 1). Despite its meager length, the CT contains multiple amino acids, which are
post-translationally modified, and several binding sites for intracellular proteins, as sum-
marized in Figure 1. Thanks to these interactions, this short tail serves as a hub of incoming
and outgoing signaling. In this review, we provide an overview of how MT1-MMP and
its functions are regulated through the CT and, in return, how it uses the CT to modulate
signaling in the cell.
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Figure 1. Overview of the cytoplasmic tail of MT1-MMP and its main interactors. The cytoplasmic
tail (CT) contains one basic cluster, one non-polar region, and two amphipathic regions. Residues
Arg569-Cys574 can form a β-sheet-like structure (dark purple background). Thr567 and Tyr573 can be
phosphorylated, Lys581 can be ubiquitinated, and Cys574 can undergo palmitoylation. Interacting
partners and known binding sites are depicted on the right side of the diagram.
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2. Post-Translational Modifications

Following its synthesis, the activity, localization, and function of MT1-MMP are deter-
mined by a plethora of modifications. We will discuss the contribution of the cytoplasmic
tail to the glycosylation of the enzyme, activation of the zymogen, and self-proteolysis, and
the sites of phosphorylation, palmitoylation, and ubiquitination that have been identified
within it. In this chapter, we will describe the modifications as such, and they will be
revisited in a later chapter in regard to their effect on MT1-MMP trafficking or function.

2.1. The Role of the CT on the Regulation of O-Linked Glycosylation

MT1-MMP performs most of its functions on the cell surface. Therefore, such as
most other membrane proteins, it is glycosylated. According to software predictions and
experimental evidence, it seems that MT1-MMP is not N-glycosylated [17,18]. The hinge
region between the CAT and HPX domains is subject to O-linked glycosylation, specifically
on four residues: Thr291, Thr299, Thr300, and Ser301. Glycosylation seems to regulate only a
certain subset of MT1-MMP functions, given that collagen proteolysis and autoprocessing
are unaffected, but it is essential for MMP2 activation [17,18].

The mutation of the cytoplasmic dileucine motif LL572 was shown to impact the
glycosylation pattern of MT1-MMP. The following Tyr573 was also assessed for a potential
role in glycosylation regulation, as it often acts as a unit with LL572, but it does not seem
to have a pronounced effect here. The role of LL572 in ensuring proper glycosylation of
MT1-MMP seems to be unrelated to the well-studied role of LLY573 in MT1-MMP trafficking
(see Section 4), as glycosylation occurs in Golgi prior to prodomain cleavage [18].

The mechanism underlying the function of LL572 in glycosylation remains unknown,
but MT1-MMP was found to bind GRASP55 (Golgi reassembly-stacking protein of 55 kDa)
via the LLY573 motif [19]. GRASP55 is responsible for the morphology of the Golgi appara-
tus and certain unconventional modes of secretion, but it has also been found to regulate
the glycosylation of proteins and also spatially organize glycosylation enzymes within the
Golgi [20–22]. It is possible that the interaction with GRASP55 or a similar adaptor protein
facilitates proper glycosylation of MT1-MMP.

2.2. The Role of the CT in MT1-MMP Activation via Prodomain Cleavage

MT1-MMP is synthesized as a zymogen—a latent form of the enzyme where the
catalytic site is blocked by a prodomain. The initial form of MT1-MMP activation is the
removal of the prodomain by furin or other proprotein convertases (PCs) either in the Golgi
or after secretion [23,24]. However, the soluble prodomain is also capable of inhibiting
MT1-MMP and must be cleaved by MT1-MMP itself to be degraded [25].

Interestingly, although the CT domain is positioned on the other side of the protein
and is located on the inside of the cell, unlike the extracellular prodomain, it regulates
the processing of the prodomain. The deletion of the CT leads to a strong reduction in
prodomain cleavage [26]. As mentioned above, the LLY573 motif in the CT binds GRASP55,
which also interacts with furin and could therefore act as a potential adaptor for these
two proteins during MT1-MMP activation. The disruption of this interaction did lead to a
reduction in MT1-MMP activation, albeit a small one [19]. On top of that, the substitution
of the CT for the CT of MT2-MMP, which is not identical but does contain the LLY motif
and was found to also associate with GRASP55 [19], also partially blocked MT1-MMP
prodomain cleavage [26]. It seems that the interaction with GRASP55 is not the only one
that assures proper activation of the zymogen. This could be due to activation by other
PCs, which may not bind GRASP55 and use a different mechanism to access MT1-MMP or
the presence of multiple adaptors.

2.3. The Role of the CT in MT1-MMP Autoprocessing

One form of regulating MT1-MMP activity is the removal of the catalytic domain,
which results in the production of a species composed of the HPX, TM, and CT domains.
The actual molecular weight of this degradation product is 37.7 kDa, but it is usually
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referred to as a 43 or 44 kDa form due to how it migrates on SDS-PAGE [27]. The formation
of this species is an autocatalytic process facilitated by a second molecule of MT1-MMP.
It requires dimerization of the “substrate” and “catalytic” molecules of MT1-MMP and is
associated with MMP2 activation [27–30].

The cytoplasmic tail has been shown to play a role in MT1-MMP autoprocessing [31].
Apart from Cys574, whose involvement in homodimerization will be discussed later
(Section 3), the RRH563 motif, which is the binding site of moesin, an ERM (ezrin, radixin,
moesin) protein, seems to be particularly important. ERM proteins link transmembrane
proteins to the actin cytoskeleton and act as organizers of plasma membrane domains [32].
The RRH563 motif is necessary for MT1-MMP clustering in tetraspanin-enriched domains
in cell protrusions. This clustering, which likely mediates the trans-autocatalytic removal
of the CAT domain by bringing MT1-MMP spatially closer together and thus allowing
dimerization, is proposed to occur thanks to the interaction with moesin [33].

2.4. Palmitoylation of the CT

MT1-MMP was identified as a substrate of Zinc Finger DHHC-Type Palmitoyltrans-
ferase 13 (ZDHHC13) [34]. In particular, the cytoplasmic cysteine at position 574 is palmi-
toylated [35]. This modification causes the tethering of the CT to the plasma membrane
(PM). Therefore, the proposed model is that it positions neighboring residues in an opti-
mal way to allow for membrane-bound proteins to interact with them [35]. Mutation of
Cys574 to alanine or serine results in aberrant localization of MT1-MMP in multiple cell
types [34,35]. Palmitoylation at Cys574 affects clathrin endocytosis and cell motility (further
discussed later).

2.5. Phosphorylation of the CT

MT1-MMP contains three potential phosphorylation sites in its cytoplasmic tail, Thr567,
Tyr573, and Ser577. The former two have been confirmed to be phosphorylated in cells, and
the effect of their phosphorylation on adhesion, migration, invasion and other processes has
been extensively studied. Here we provide an overview of the mechanisms of phosphoryla-
tion, while the specific roles of Thr567 and Tyr573 phosphorylation in MT1-MMP regulation
and MT1-MMP-mediated cellular processes will be discussed in respective chapters.

2.5.1. Thr567

Thr567 was shown to be phosphorylated by the serine/threonine kinase Protein Kinase
C (PKC) in vitro [36] and in response to PKC activation by phorbol 12-myristate 13-acetate
(PMA) treatment in cancer cells [37], but not in a purely physiological context. The silencing
of another PKC superfamily member, atypical PKC iota (aPKCι), led to the disruption
of MT1-MMP trafficking. It also colocalized with MT1-MMP at cell-cell contacts and in
vesicles, but whether MT1-MMP is a substrate of aPKCι has not been determined [38].
Thr567 phosphorylation was also observed in response to β1 integrin activation, which
occurs upon adhesion to the ECM. Activation of β1 integrin causes the recruitment of the
Src kinase and subsequent Epidermal Growth Factor Receptor (EGFR) phosphorylation
upstream of Thr567 phosphorylation [39,40].

PKC interacts with tetraspanins, transmembrane proteins that act as scaffolds for orga-
nizing membrane domains, which link it to β1 integrin [41–43]. Simultaneously, MT1-MMP
is also known to bind many tetraspanins [44]. It has been proposed that tetraspanins facili-
tate MT1-MMP proteolytic function by bringing MT1-MMP and its substrates together [45].
It is then feasible that tetraspanin-enriched domains also cluster MT1-MMP, PKC, and
β1 integrin together to allow PKC-mediated Thr567 phosphorylation in response to β1
integrin activation.

2.5.2. Tyr573

Despite not being embedded in any canonical tyrosine kinase recognition motif, Tyr573

was found to be phosphorylated in COS-7 cells overexpressing MT1-MMP and the tyro-
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sine kinase Src and in response to EGF treatment, which activates Src, in OVCA433 cells
overexpressing MT1-MMP [46,47]. Expression of a dysfunctional Src mutant leads to the
loss of Tyr573 phosphorylation, confirming that either Src itself or one of its downstream
effector kinases phosphorylates MT1-MMP at this residue [46]. Tyr573 was also found to
be phosphorylated by LIMK1/2 (LIM domain containing kinase 1 and 2), which binds
MT1-MMP via DKV582 at the very C terminus of the CT [48]. In endothelial cells, Tyr573

phosphorylation increases upon stimulation with sphingosine-1-phosphate, a signaling
molecule naturally abundant in blood [46,49].

2.6. Ubiquitination of the CT

Ubiquitination is mostly known to target proteins for degradation; however, it also
regulates many non-proteolytic cellular processes, such as protein-protein interactions,
protein activity, or localization [50]. In the case of MT1-MMP, monoubiquitination of Lys581

by the E3 ubiquitin-protein ligase NEDD4 (neural precursor cell expressed developmentally
down-regulated protein 4) regulates its trafficking and, therefore, function. A prerequisite
for Lys581 monoubiquitination is the phosphorylation of Tyr573 [51].

3. The Role of the CT in Homodimerization

MT1-MMP multimerization is necessary for cellular processes such as adhesion, col-
lagenolytic, and 3D matrix invasion [52–54], as well as for MT1-MMP self-regulation in
the form of autoprocessing [31]. All four domains of the active proteinase—CAT, HPX,
TM, and CT—have been implicated in facilitating homodimerization [31,55–58]. How-
ever, the contribution of the cytoplasmic tail has been a subject of debate. Studies have
shown conflicting results, with some providing evidence that CT is, in fact, essential for
dimerization [31,52], while others argue it is not [35,56].

It was proposed that the observation of dimers in some experiments was a result of
artefactual disulfide bridge formation in lysates [35]. Nonetheless, experiments that use
iodoacetamide, an inhibitor that covalently binds free cysteine thiol groups and therefore
prevents disulfide bridge formation in lysates, confirmed the necessity for an intact CT,
Cys574 in particular, during multimerization. They also showed an identical multimeriza-
tion pattern in regular lysates and lysates where iodoacetamide was added to the lysis
buffer [52].

Furthermore, expression of a truncated construct containing the TM and CT domains
of MT1-MMP was sufficient to block autoprocessing to the 43 kDa form, which occurs in
trans and requires homodimerization [30], likely through the TM-CT construct acting as a
competitive partner for dimer formation [31]. Itoh et al. have shown that the TM itself is
sufficient for dimer formation. Therefore, it is unclear which domain was responsible [56].

Another process for which homodimerization of MT1-MMP is needed is the activation
of MMP2. This activation occurs in a complex consisting of an MT1-MMP dimer, where
one of the molecules acts as a tether for TIMP2 (tissue inhibitor of metalloproteinases 2)
bound to proMMP2, bringing the proenzyme into the proximity of the other MT1-MMP
molecule, which carries out the enzymatic reaction [15]. Interestingly, tempering with the
CT did not greatly affect the activation of MMP2, regardless of whether the experiments
showed that the CT contributed to multimerization or not [52,56,59].

As discussed earlier, Cys574 is palmitoylated, which leads to the tethering of the CT
to the membrane. Thus, Cys574 might contribute to homodimerization by maintaining
MT1-MMP clustered in certain regions of the plasma membrane, bringing the monomers
to close together.

4. The Influence of the CT on MT1-MMP Trafficking and Localization

Compartmentalization is a significant mechanism of regulation of MT1-MMP. It un-
dergoes complex context-dependent trafficking through the cell and into and out of distinct
PM domains (summarized in Figure 2). It has been observed in specialized domains–
tetraspanins, flotillins, caveolae [29,44,60–62], in invadopodia [63], as well as in early,
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late, and several types of recycling intracellular compartments. Many of these events are
orchestrated by interactions of various proteins with the CT.
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rin-coated pits (CCPs) into Early endosome antigen 1 (EEA1)-positive early endosomes 
(EEs), an event which was blocked by the deletion of the CT [65]. The internalization rate 
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Figure 2. Overview of the main trafficking pathways of MT1-MMP. MT1-MMP is subjected to
extensive trafficking through the cell as a form of regulation. The main sites of degradation are
where the cell body is constricted by ECM fibers in the direction of migration [64]. (1) Biosynthetic
Rab8-dependent pathway. (2) Endocytosis in clathrin-coated pits. (3) Endocytosis in caveolae.
(4) Endocytosis in flotillin-rich microdomains. (5) Fast Rab4/Rab14-dependent recycling. (6) Slow
Rab11-dependent recycling. (7) Recycling through the Rab8-positive compartments. (8) Recycling
from Rab7-positive LEs to sites of degradation. (9) Progression to the lysosome for degradation.
EE—early endosome; LE—late endosome; Lys—lysosome.

4.1. Membrane Localization and Endocytosis

The CT is the main region that facilitates the internalization and movements of MT1-
MMP through the cell. Its deletion markedly decreases the uptake of MT1-MMP into
cells and increases its surface localization [59,61,65,66]. Three pathways of MT1-MMP
endocytosis have been observed–clathrin-, caveolae-, and flotillin-dependent.

In clathrin-mediated endocytosis, molecules of the coat protein clathrin are recruited to
the PM. Their accumulation causes a curving of the membrane, resulting in the formation of
pits. Further recruitment of clathrin deepens the pits into vesicles, which are then pinched
off into the cytosol [67]. Studies showed that MT1-MMP is taken up in clathrin-coated pits
(CCPs) into Early endosome antigen 1 (EEA1)-positive early endosomes (EEs), an event
which was blocked by the deletion of the CT [65]. The internalization rate when the CT is
removed is slower (none was observed within the first 5 min, and it was reduced by about
60% at the 30-min mark compared to wild-type (WT)) and occurs in a caveolae-dependent
manner [35,59], indicating that the CT in indispensable for clathrin-mediated endocytosis.
Endocytosis in CCPs is mediated by the interaction of the LLY573 motif in the MT1-MMP
CT with the µ2 subunit of AP-2, a CCP cargo adaptor protein [59]. The palmitoylation of
the following Cys574 is also critical, likely facilitating this interaction by bringing the LLY573

motif close to the membrane [35].
There have been many studies confirming and disproving the physiological relevance

of caveolae-dependent endocytosis of MT1-MMP. Caveolae lipid rafts are membrane do-
mains that form PM invaginations and are involved in clathrin-independent endocytosis,
lipid homeostasis, and cell signaling. They are rich in cholesterol, sphingolipids, and their
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resident protein, caveolin-1 [68,69]. A couple of reports observed very little presence of en-
dogenous WT MT1-MMP in caveolar membrane fractions, identifying caveolae-dependent
endocytosis as a substitute mechanism in the case of CT deletion, and therefore considered
it physiologically irrelevant and not dependent on the CT [35,66].

However, other studies obtained contradictory results, finding MT1-MMP in caveolin-
1-positive membrane domains and vesicles [29,61,62] and observing partial inhibition of
MT1-MMP internalization when caveolae were disrupted in cancer cells [47,61,70]. Yang
et al. showed that MT1-MMP colocalized with caveolin-1 at invadopodia of breast cancer
cells in response to fluid shear stress, a factor cancer cells encounter when metastasizing
through blood and lymphatic vessels [71]. MT1-MMP localization to caveolae seems to be
particularly abundant in endothelial cells, where blocking clathrin-dependent endocytosis
has almost no effect, whereas disrupting caveolae has a pronounced impact on MT1-MMP
internalization [72]. Furthermore, MT1-MMP was found to associate with caveolin-1 upon
vascular endothelial growth factor (VEGF) stimulation of endothelial cells. This interaction
may not be direct, as both the C- and N-termini of caveolin-1 face the cytosol, and the
MT1-MMP CT lacks a consensus caveolin-binding motif [73–75]. In any case, it requires
Cys574 and Val582 from the CT [76]. Similarly, epidermal growth factor (EGF) stimulation of
ovarian cancer cells leads to the localization of MT1-MMP to caveolae and internalization
in caveolin-1-positive vesicles [47].

Flotillin microdomains are another type of lipid raft that is independent of caveolae.
They are rich in sphingolipids and cholesterol, facilitate receptor clustering, and, when
overexpressed, form invaginations leading to endocytosis [77]. MT1-MMP was shown
to be internalized in these microdomains, but the role of the CT in flotillin-dependent
endocytosis has not been addressed. However, flotillins are cytosolic, and MT1-MMP was
found to coimmunoprecipitate with flotillin-1. Therefore, it is probable this interaction
occurs thanks to the CT, be it direct or otherwise [60].

MT1-MMP internalization is also modulated through Thr567, whose phosphorylation
promotes the process, as was shown in experiments where PMA-induced phosphorylation
or the expression of a phosphomimetic lead to higher endocytosis. PMA treatment resulted
in co-internalization and co-trafficking with α5β1 integrin [37]. Endocytosis is further
dependent on the integrity of the juxtamembrane RRH563 region, which, as mentioned
in Section 2.3., ensures clustering in tetraspanin-enriched domains [33]. These domains
are where β1 integrin is also enriched and linked to PKC, which phosphorylates both β1
integrin and Thr567 of MT1-MMP [33,41]. Finally, the ubiquitination of Lys581 upon Tyr573

phosphorylation downregulates the uptake of MT1-MMP into cells [51].
Regardless of the endocytic mechanism, MT1-MMP is found in vesicles with the early

endosome markers Rab5 or EEA1 in many cell types and contexts [37,40,60,61,65,78,79].
Cells regulate endocytosis of MT1-MMP to control the amount of available MT1-MMP on
the surface, such as in the case of nutrient starvation, which blocks clathrin endocytosis
via mTOR (mammalian target of rapamycin), sequesters MT1-MMP on the surface, thus
assuring abundant proteolysis of ECM (e.g., fibronectin or type I collagen) to create a
nutrient source for starved cells [80]. Conversely, endocytosis is also a contributor to proper
MT1-MMP function, for example, by taking up MT1-MMP inhibited by TIMP2, which is
then released from the protease in the acidic pH of endosomes [61,81].

4.2. Intracellular Trafficking and Recycling

Endocytosed MT1-MMP can travel through many routes inside the cell, mostly
through various modes of recycling. A major pathway, which has been observed in a
large number of studies, is the progression from EEs to Rab7, VAMP7 (Vesicle Associ-
ated Membrane Protein 7), and LAMP-1 (Lysosomal Associated Protein 1) containing late
endosomes (LEs) and on-demand recycling to the PM [37,61,82–85].

MT1-MMP has also been found in Rab4 or Rab14-positive fast recycling vesicles [61,78,86],
Rab11-positive slow recycling vesicles [87], Rab22-positive recycling clathrin-independent
endosomes [78], and Rab8-positive compartments, which can be either involved in exocytosis



Int. J. Mol. Sci. 2023, 24, 5068 8 of 20

in the biosynthetic pathway or in recycling as well [78,87]. The selection of the recycling
process depends on the context and cell type.

Of particular interest is the delivery of MT1-MMP to invadopodia, which has been
described in many publications and reviewed in detail previously [63,88]. The translocation
of MT1-MMP-positive LEs to the invadopodial PM was shown to be triggered by the
association of Srcasm (Src activating and signaling molecule) with TOLLIP (Toll interacting
protein), an endosomal sorting protein [82]. Similarly, the ER protein Protrudin was shown
to make contacts with MT1-MMP-loaded LEs containing the kinesin-1 adaptor FYCO1
(FYVE And Coiled-Coil Domain Autophagy Adaptor 1), thus assuring LE translocation
to the invadopodial PM and exocytosis [8]. The microtubule-associated motor protein
kinesin-1 is recruited to MT1-MMP LEs by JIP3/JIP4, which in turn are recruited by the
WASH (Wiskott-Aldrich syndrome protein and scar homolog) complex [89]. WASH is also
part of a complex that forms when MT1 LEs establish contact with the PM. Apart from
WASH, it includes F-actin, cortactin (an invadopodial component that modulates actin
polymerization), and the exocyst (a vesicle tethering complex) [90]. The exocyst complex,
which ensures MT1-MMP delivery to invadopodia, is activated by RhoA and Cdc42 by
way of triggering the interaction of the Sec3 and Sec8 subunits of the complex [91].

Once the vesicle arrives at the PM, membrane fusion is mediated by target membrane
(t) and vesicle membrane (v) SNAREs (SNAP [Soluble N-ethylmaleimide-sensitive factor
attachment protein] receptors). Two SNARE complexes have been described to specifically
facilitate fusion at invadopodia: a complex composed of the tSNAREs SNAP23 and syn-
taxin 4 and the vSNARE VAMP7 [83,84], and an unconventional complex of Bet1 and its
interacting SNAREs Vti1B (vSNARE) and syntaxin 4 (tSNARE) [85]. Additionally, another
complex was identified, and although the exact site of the vesicle delivery was not deter-
mined in the experiments, it was shown to be crucial for ECM degradation and invasion. It
comprises of the vSNARE VAMP3, which directs the exocytosis of microvesicles containing
MT1-MMP [92] and MT1-MMP exocytosis from Rab4 recycling vesicles [93], and tSNARES
SNAP23 and syntaxin 13 [94].

Taken together, many proteins facilitating the delivery of MT1-MMP to the membrane
have been identified, but our understanding of the involvement of the CT in most of the
aforementioned pathways is poor. Although we can assume it is important for vesicle cargo
selection, which decides the fate of each molecule, and adaptor binding, there is currently
little experimental evidence that describes these interactions.

The contribution of the C-terminal DKV582 motif has been described. Its disruption
arrested MT1-MMP-containing vesicles inside the cell [86], and it was found to interact
with sorting nexin 27 (SNX27) and the Vps26 subunit of the retromer, a protein complex
responsible for sorting transmembrane proteins from the endosomes [95]. This interaction
promotes MT1-MMP recycling, presumably from LEs, because the retromer interacts with
the WASH complex and Rab7 and recruits’ cargo in response to sequential Rab5 and Rab7
signaling [96–99].

5. The Role of the CT in Downstream Signalling of MT1-MMP

The original perception of MT1-MMP solely as an MMP2 activator and ECM degrada-
tion enzyme has long been surpassed by the notion of MT1-MMP as a multifaceted player
in many cellular processes. MT1-MMP is able to assume a receptor-like role, transducing
signals from the exterior of the cell inside via its cytoplasmic tail and modulating signaling
therein (Figure 3).
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Figure 3. Simplified overview of signaling pathways downstream of MT1-MMP dependent on the
CT. The QRSL578 motif is responsible for binding FIH-1, an inhibitor of HIF-1α, leading to HIF-1α
activation and sustained Warburg metabolism in normoxic conditions (left). MT1-MMP forms a
complex with Src and VEGFR-2, promoting VEGF-A expression (center). Through an unknown
mechanism, the YCQR576 sequence is responsible for the induction of the ERK pathway in response
to adhesion (right). All three pathways also induce the expression of MT1-MMP.

5.1. HIF-1α: Metabolism

MT1-MMP was identified as an inducer of Warburg metabolism, a metabolic strategy
employed by certain cell types where anaerobic glycolysis is used even in normoxic condi-
tions [100,101]. In macrophages and cancer cells, MT1-MMP activates HIF-1α (subunit α
of hypoxia-inducible factor 1) by associating with asparaginyl hydroxylase FIH-1 (factor
inhibiting HIF1-α) in normoxic conditions through its CT. Namely, the QRSL578 sequence is
important for this interaction, especially Arg576, whose mutation abolishes FIH-1 binding
completely. The interaction with MT1-MMP sequesters HIF-1α in the Golgi, preventing it
from binding and inhibiting HIF-1α in the cytosol [102,103]. Additionally, the expression
of MT1-MMP in cancer cells which do not normally express it, is enough to induce the
Warburg metabolism [103]. MT1-MMP, therefore, seems to be the key to maintaining
hypoxic metabolism even in normoxic conditions.
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Additionally, in hypoxic conditions, MT1-MMP transcription is induced in a HIF-
1α-dependent manner [104,105]. Therefore it is possible that a positive feedback loop is
also established when HIF-1α is upregulated in the context of normoxia, thus reinforcing
the effect.

5.2. ERK: MAPK Signaling

The activation of MAPK (mitogen-activated protein kinase) ERK1/2 (extracellular signal-
regulated kinase 1/2) downstream of a Ras-Raf-MEK1/2 (MAPK/ERK kinase 1/2) pathway in
response to growth factors is one of the most studied signaling pathways [106–108]. However,
ERK activation also occurs upon attachment to ECM, which requires MT1-MMP and is
dependent on the CT and the presence of TIMP2 [109–112]. The exact interactor(s) that
transduce(s) the message is/are not known, but the YCQR576 region in the CT is necessary
for it. Mutation of Tyr573 or Cys574 to alanine activates ERK irrespective of whether TIMP2
is present, while the phosphomimetic Y573D mutation leads to no ERK activation. Tyr573

phosphorylation is, therefore, a mechanism of downregulation of the ERK pathway [111].
Expression of MT1-MMP, along with the presence of TIMP2, also upregulated Ras expression
and Raf phosphorylation [111]. MT1-MMP-mediated activation of ERK results in survival
and proliferation in 3D gels [113]. At the same time, activation of the ERK pathway leads to
higher MMP2 activation, which is MT1-MMP dependent, and sustained ERK signaling also
increases MT1-MMP levels, indicating a positive feedback loop [70,110,114].

5.3. VEGF: Stimulation of Angiogenesis

Overexpression of MT1-MMP in cancer cells leads to an induction of vascular endothelial
growth factor (VEGF) expression and stimulation of tumor angiogenesis in vivo [115–117].
MT1-MMP upregulates specifically VEGF-A, independently of ERK, p38, or phosphatidylinos-
itol 3-kinase, but inhibition of the Src family of kinases reduces the effect [117]. MT1-MMP was
found to form a complex with VEGFR-2 (VEGF receptor 2) and Src, leading to the activation
of Akt and mTOR, ultimately stimulating VEGF-A expression [118]. This process requires the
CT, primarily Tyr573, Cys574, and DKV582 [34,117,118]. Similarly to the two aforementioned
pathways, VEGF also induces MT1-MMP expression, reinforcing the signaling pathway [119].

6. The Importance of the CT for Cell Adhesion

MT1-MMP has several functions in cellular adhesion, although the role of CT in this
process is less clear. Many studies have demonstrated a functional interaction between MT1-
MMP and integrins, its role in the processing of pro-α subunits, and MT1-MMP localization
with β1 integrins at distinct cell compartments [13,120,121]. So far, to our knowledge,
only one study showed functional interaction between integrins and the CT of MT1-MMP.
MT1-MMP-GFP was found colocalizing with β1 or αvβ3 integrins at cell-cell contacts
and motility structures, presumably focal adhesions (FAs) and lamellipodia, of migrating
endothelial cells on collagen I, while the CT deletion mutant could rarely be observed at
those cell sites colocalizing with integrins [122]. β1 integrin association with MT1-MMP
might directly interfere with and/or induce modifications around its internalization motif,
also affecting the multimerization site (Cys574) required for its full function [31,122] (see
Section 3). However, it is possible that this effect was a consequence of impaired recycling or
due to other signaling events that were discovered later, and the main functional interaction
between integrins and MT1-MMP is within their extracellular domains.

CD44 is an important adhesion molecule and a major receptor for hyaluronic acid.
However, due to a glycosylation pattern that is also manipulated by alternative splicing,
it can establish a number of indirect interactions with other ECM components (collagen,
fibronectin, laminin, and several growth factors) [123]. CD44 interacts with MT1-MMP
through the HPX domain and directs it to lamellipodia [124]. The interaction through
HPX is critical for CD44 shedding by MT1-MMP [125], which causes the cell to detach
from the ECM and thus stimulates cell migration [126]. The juxtamembrane region of the
CD44 cytoplasmic tail directly binds to the N-terminal FERM domain of radixin [127] and
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moesin [33] and is thus connected to filamentous actin. It was shown that radixin simulta-
neously binds the CTs of MT1-MMP and CD44 [16]. MT1-MMP binding to subdomain A of
the radixin FERM domain has no overlap with CD44 binding to subdomain C, therefore
a stable ternary complex comprising MT1-MMP, ERM proteins, and CD44 could form at
the invasive front [16]. Concurrently, ERM proteins bring MT1-MMP and CD44 into close
proximity and accelerate CD44 shedding by MT1-MMP. The CT of MT1-MMP thus has a
direct role in cell adhesion and detaching through ERM protein-mediated colocalization of
MT1-MMP and CD44.

The interaction interphase of MT1-MMP with radixin was located at a six amino
acid sequence at the very end of the CT (569–574) that overlaps with the phosphorylation
site at Tyr573, though it is not clear whether this modification imposes any constrains on
the interaction or other functional interferences. The phosphorylation of MT1-MMP at
Tyr573 is induced by sphingosine-1-phosphate in an Src-dependent manner and is involved
in the migration of tumor and endothelial cells [46] (described in Section 2.5.2). This
phosphorylation is important for MT1-MMP association with an adaptor protein p130cas
(CRK-associated substrate) [49]. p130cas is an important substrate of Src and is dominantly
localized in FAs of adherent cells, and plays a central role in integrin-mediated control of
cell behavior [128]. Moreover, MT1-MMP is targeted to FAs through an interaction with a
FAK (focal adhesion kinase)–p130cas complex [129]. Disruption of these interactions results
in a significant reduction in ECM degradation at FAs but not at invadopodia, suggesting
an FA-specific, Src-regulated mechanism. Further analysis revealed that the FAK–MT1-
MMP interaction is mediated by the PRR domain of FAK and the CT of MT1-MMP. Direct
interaction between FAK and MT1-MMP was, however, not detected and is believed to be
mediated by p130cas [129].

The other phosphorylation site within the CT, Thr567 (see Section 2.5.1), was also
shown to have a role in adhesion. Phospho-mimetic mutant T567E of MT1-MMP led
to increased adhesion of ovarian cancer cells and multicellular aggregates to peritoneal
explants relative to cells expressing wild-type or phosphodeficient mutant T567A [130].
It was reported that Thr567 is phosphorylated by integrin-linked kinase (ILK) [131]. ILK
is a multifunctional protein that binds cytoplasmic domains of β-integrin and forms a
ternary complex with PINCH (particularly interesting new cysteine-histidine-rich protein),
and parvin termed IPP. This complex has a role in the adhesion and organization of the
actin cytoskeleton downstream of integrins [132]. However, it is questionable whether
Thr567 of MT1-MMP can actually be phosphorylated by ILK. It was shown that ILK is a
pseudokinase whose putative kinase activity is non-existent and, therefore, cannot be the
means of enacting its function in vivo. Instead, the kinase homology domain is a critical
mediator of several protein–protein interactions [132–134]. It is more likely that Thr567

phosphorylation is modulated during adhesion downstream of β1-integrin via PKC instead
of ILK, as described in Section 2.5.1. How this phosphorylation contributes to increased
adhesion is, at the moment, unclear.

7. Regulation of Invasiveness through the CT

Invasion—directed movement into surrounding tissue—is a mechanism employed
by cells in both physiological (e.g., angiogenesis, tissue remodeling, development) and
pathological (e.g., cancer metastasis) contexts. Various invasion modes can be employed
by invading cells that differ in their requirement of proteolytic activity, thus showing
varying dependency on MT1-MMP. Amoeboid cells push through pores within the ECM
by dynamical propulsions enabled by actomyosin contractility and membrane blebbing.
This type of migration is preferably adopted in extracellular environments that allow for
cell passage without the necessity to digest the ECM. On the other hand, collective and
mesenchymal migration depends on proteolytical degradation of the ECM in the proximity
of the cell body to create tunnel-like passages large enough for direct translocation of the cell
body. This also enables invasion in dense matrices with constricting pore sizes [135–137].
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MT1-MMP is one of the main enactors of mesenchymal invasion, as it depends on
matrix degradation to make way for the cell [13]. On top of that, MT1-MMP also drives cell
motility, which in itself is proteolysis-independent [102,138].

Promoting ECM rearrangement is the main role of MT1-MMP. Therefore most of
the discussed mechanisms of regulation of MT1-MMP, such as post-translational modifi-
cations and trafficking, impact some aspects of the invasive capabilities of the cells that
express it. Since the CT orchestrates many of these mechanisms, its deletion has been ob-
served to lead to the loss of the MT1-MMP-induced proteolysis-independent promotion of
migration [35,59,66,102,111], gelatine degradation [26,139], invasion into the matrix (while
proteolytic activity stayed unaffected) [59], and even a significant decrease in capacity for
tumor development in xenograft models [66].

However, other reports found the CT to be dispensable for migration [26], the pro-
teolytic activity of the cells [59,140–142], MMP2 activation [66,141,143], and invasive
capacity [140,142]. In some cases, the retention of the CT deletion mutant on the sur-
face of the cells even led to an increase in proteolysis and invasion [26,144].

Looking more closely at the CT, several amino acids and motifs have been shown to
influence cell invasion. Phosphorylation of both Thr567 and Tyr573, discussed in earlier
chapters, leads to a higher invasion rate. Cells carrying the phosphodeficient Thr567 mutant
migrate and invade less than the WT despite the mutant being more abundant on the
cell surface, and conversely, a phosphomimetic mutant or a high phosphorylation state
increases migration and invasion [37,40,130]. Phosphorylation of Tyr573, on the other
hand, promotes migration, matrix degradation, and invasion while increasing MT1-MMP
concentration on the surface [46–48]. It is also necessary for proliferation in 3D matrix
gels [47,145].

Another regulator of MT1-MMP activity is MTCBP-1 (MT1-MMP cytoplasmic tail
binding protein 1), which binds the PRR570 motif and inhibits MT1-MMP-mediated mi-
gration, ECM degradation, and invasion [146,147]. It prevents MT1-MMP from binding
actin, an interaction that happens through the LLY573 motif directly adjacent to the bind-
ing site of MTCBP-1 and is mediated by N-WASP (neural Wiskott-Aldrich syndrome
protein) [139,147]. Disruption of the interaction with actin leads to the loss of targeting of
MT1-MMP to invadopodia [147]. Overexpression of MTCBP-1 also reduces the number
of invadopodia, possibly preventing the formation of new invadopodia [147]. It is of note
that invadopodia are not only centers of ECM degradation but also adhesive structures,
and the uncoupling of MT1-MMP from the actin cytoskeleton may affect adhesion as well.
However, the role of MTCBP-1 in FAs and other MT1-MMP-regulated adhesive scenarios
is yet to be tested.

The LLY573 motif is indispensable for invadopodia formation and invasion through
ECM, likely due to it being the site of actin binding, the role of the motif on endocytosis
of MT1-MMP, and the regulatory effect of the final tyrosine [35,59,139]. Interestingly,
the dileucine motif itself is necessary for invadopodia formation [148]. LL572 regulates
MT1-MMP glycosylation (Section 2.1) [18], which was shown to influence MT1-MMP
function. Unglycosylated mutants were unable to process proMMP2, while collagenolysis
and autoprocessing remained unaffected [17].

Cys574, which directly follows the LLY motif, is palmitoylated and plays a role in
MT1-MMP endocytosis and homodimerization. It is not important for MMP2 activation,
but it is crucial for proper adhesion, migration, and invasion [52,76].

Lastly, the C-terminal DKV582 motif, a binding site for PDZ domain-containing pro-
teins, is dispensable for MT1-MMP-mediated stimulation of motility [35], but it is necessary
for the maturation and proteolytic function of invadopodia, and therefore invasion in
ECM [76,96]. The ubiquitination of the lysine in this motif (Section 2.6) is also essential for
invasion through type I collagen [51].

As experimental findings vary, it is difficult to make generalizing conclusions. For
example, if we consider the fact that MT1-MMP needs the CT to be endocytosed initially,
that might result in an increase in MT1-MMP activity on the surface as it accumulates
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there. However, in the long run, this might become disadvantageous as focal recruitment
becomes impossible, and TIMP2 cannot dissociate since MT1-MMP does not pass through
the late endocytic compartment [61,81]. Similarly, the level of expression contributes to
the resulting phenotype of the mutant-containing cells [26]. Additionally, as described in
Section 5, the CT plays a role in regulating major signaling pathways that receive multiple
inputs and have a widespread effect on the behavior of the cell. Therefore the entire context
the cell finds itself in majorly contributes to its resulting ability, or decision, to invade.

8. Conclusions

The cytoplasmic tail of MT1-MMP can affect many of the functions that we know MT1-
MMP has in the cell, although most of these are carried out by its much larger extracellular
part. The 20 amino acids that comprise the cytoplasmic tail of MT1-MMP are the only site
of direct contact with the interior of the cell for this 582 amino acids long enzyme. Therefore
it is unsurprising that there are many proteins that interact with this sequence in some way
(Figure 1). Of particular note is the central region, where several interactors compete for
binding (MTCBP-1, radixin, actin, AP-2, GRASP55) and which contains three sites of post-
translational modifications (phosphorylation at Thr567 and Tyr573 and palmitoylation of
Cys574). It should also be considered that it is likely that other proteins, whose interactions
have not been described, bind this sequence. Additionally, there is a substantial number of
indirect interactors, which crowd the limited space around the CT. The competition over a
small sequence of the CT by several adhesion and migration-associated molecules suggests
that the CT is indeed an important regulatory hub in the processes of cellular adhesion and
migration. The CT serves to modulate the proteolytic function of MT1-MMP itself, as well
as other pathways. MT1-MMP uses to contribute to the stimulation of the invasive and
metastatic program.

It is currently unclear which interactions are mutually exclusive, apart from MTCBP-1
binding disrupting the interaction with actin [147]. Similarly, we do not have much
information on how the post-translational modifications affect the binding of interactors,
except the necessity for Cys574 palmitoylation for AP-2 binding [35]. It seems that Tyr573

and the final DKV582 are functionally related, seeing as LIMK1/2 binds the C-terminal motif
and phosphorylates the tyrosine and, conversely, phosphorylation of Tyr573 is required
for the ubiquitination of Lys582 [48,51]. These examples imply an interconnectedness and
mutual influence between the interactors and modifications.

Given the involvement of MT1-MMP in regulating several important pathways of
tumorigenesis and metastasis (Sections 5–7), developing inhibitors against the CT might
not only hinder the invasion of cancer cells but also deregulate other aspects, such as the
metabolism or adhesive properties of the cells.
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