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Abstract: As a member of the TRIM (tripartite motif) protein family, TRIM56 can function as an E3
ubiquitin ligase. In addition, TRIM56 has been shown to possess deubiquitinase activity and the
ability to bind RNA. This adds to the complexity of the regulatory mechanism of TRIM56. TRIM56
was initially found to be able to regulate the innate immune response. In recent years, its role in
direct antiviral and tumor development has also attracted the interest of researchers, but there is no
systematic review on TRIM56. Here, we first summarize the structural features and expression of
TRIM56. Then, we review the functions of TRIM56 in TLR and cGAS-STING pathways of innate
immune response, the mechanisms and structural specificity of TRIM56 against different types of
viruses, and the dual roles of TRIM56 in tumorigenesis. Finally, we discuss the future research
directions regarding TRIM56.
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1. Introduction

The tripartite-motif (TRIM) family of proteins, also known as really interesting new
gene (RING)-B-box-Coiled-Coil (RBCC) region proteins, is composed of an N-terminal
RING structural domain, one or two B-box patterns, and an α-helical coiled-coil domain,
followed by a highly variable carboxyl structural domain from the N-terminus to the
C-terminus [1–3]. TRIMs are a large family of proteins, and approximately 80 members
of the TRIM family have been identified in humans [4,5]. Based on the highly variable
C-terminal structural domains, TRIMs with RING structural domains can be classified into
subfamilies I to XI (C-I to C-XI). The variable C-terminal regions include the PRY structural
domain, the SPRY structural domain, the COS structural domain, the fibronectin type III
repeat region (FNIII), the acid-rich region (ACID), the Meprin and TRAF-homologous struc-
tural domain (MATH), the ADP-ribosylation factor family structural domain (ARF), the
filamine-type IG structural domain (FIL), the NHL structural domain, the PHD structural
domain, bromodomain (BROMO), and the transmembrane region (TM) [3,6,7].

TRIM family members are involved in a wide range of cellular activities and biological
processes, including DNA damage repair [8], RNA binding [9], autophagy [1,10], apop-
tosis [11], cell cycle [12], viral infection [13,14], immune activation [7,15], inflammatory
processes [16], stem cell differentiation [17], and neurogenesis [18,19]. The aberrant ex-
pression of TRIM family members leads to the development of various diseases, including
tumors and neurological disorders [19–21].

TRIM56 is a member of the TRIM family. TRIM56 was originally reported to regulate
the intracellular double-stranded DNA innate immune response [22]. In recent years, an
increasing number of studies have shown that TRIM56 is involved in the host response
to viral infection. On one hand, TRIM56 acts by regulating host innate immune signaling.
TRIM56 is able to cause the transcriptional induction of pro-inflammatory cytokines and
type I interferon (IFN) by regulating the toll-like receptor (TLR) signaling pathway and the
cyclic GMP-AMP synthase (cGAS)-stimulator interferon gene (STING) signaling pathway
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to limit viral transmission [23–27]. On the other hand, as a direct antiviral restriction factor,
TRIM56 has been shown to have a direct antiviral effect on positive single-stranded RNA
viruses of the Flaviviridae, Coronaviridae, and Retroviridae families. In addition, it is also
effective against negative single-stranded RNA viruses (influenza A and B) and two DNA
viruses [28].

The expression level of TRIM56 is not consistent among different tumor types, and its
expression changes are closely related to tumor development and prognosis. This suggests
that TRIM56 may play different pro- or anti-cancer functions in different tumor types. In
recent years, many studies have revealed the function of TRIM56 in tumor development.
TRIM56 is an oncogene in glioma, breast cancer, and Kaposi’s sarcoma [29–32], but it is a tu-
mor suppressor in ovarian cancer, multiple myeloma, lung adenocarcinoma, hepatocellular
carcinoma, and leukemia [33–37].

Here, we first describe the structural features and expression characteristics of TRIM56.
Next, we focus on reviewing the role of TRIM56 in innate immunity and antiviral processes.
We also summarize the role of TRIM56 in tumors. Finally, we discuss the future directions
of TRIM56 research. Reviewing the antiviral and tumor regulatory functions and specific
mechanisms of TRIM56 is beneficial to provide new ideas for developing novel antiviral
drugs and enriching therapeutic strategies against tumors.

2. Structure and Expression of TRIM56

TRIM56, also known as Ring finger protein 109 (RNF109), is an 81 kDa protein of
755 amino acids encoded by the TRIM56 gene on human chromosome 7. The protein
contains three structural domains, a RING domain, a B-box domain, and a coiled-coil
domain (Figure 1). Because it lacks a C-terminal structural domain, TRIM56 belongs to the
C-V subfamily.
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proteins do not contain any RING domain, such as TRIM14 and TRIM66 [6]. 
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Figure 1. Schematic representation of the domains of TRIM56. TRIM56 has three structural domains,
an N-terminal RING domain (red), a B-box domain (green), and a coiled-coil domain (blue). The
human TRIM56 transcript is 755 aa long.

The RING structural domain is a unique linear sequence of cysteine and histidine
residues in a zinc finger structural domain that forms the catalytic center of the ubiquiti-
nating enzyme. Ubiquitination is a very important post-translational modification process
that plays roles in innate immune and tumorigenic development [38–40]. Ubiquitin is
a 76-residue polypeptide. The key enzymes required for the ubiquitination process are
ubiquitin-activating enzyme E1, ubiquitin-binding enzyme E2, and ubiquitin-ligase E3 [41].
Among them, E3 ubiquitin ligase can catalyze the covalent binding of ubiquitin molecules
to substrates. E3 ubiquitin ligases can be classified into several groups according to their
specific structural domains: the RING family, the family of homologous to E6AP C-terminus
(HECT), RBR E3s, and those of unclassified type [42]. As we mention above, most members
of the TRIM family have a RING structural domain, and most TRIM members have been
identified as functional E3 ubiquitin ligases [43]. Notably, a few TRIM proteins do not
contain any RING domain, such as TRIM14 and TRIM66 [6].

The B-box structural domain consists of small peptide sequences that contain finger-
like protrusion. Although the B-box structural domain also contains a “zinc finger” struc-
ture, it generally does not exert E3 ubiquitin ligase activity. There are two distinct isoforms
of the B-box, B-box1 and B-box2. Most TRIM proteins contain one B-box2 structural domain
or two B-box structural domains, while a few TRIMs, such as TRIM69, do not have either
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structural domain [44]. The B-box structural domain is thought to be involved in the
recognition of target proteins by TRIM proteins [4]. The coiled-coil structure domain of
TRIMs can serve as a scaffold for mediating the homomeric and heteromeric assembly of
TRIMs and other proteins. Additionally, it also exhibits enzymatic or nucleic acid binding
activity [21,45].

TRIM56 can act as an E3 ubiquitin ligase that catalyzes the ubiquitination of Vimentin,
DVL2 (Dishevelled-2), ERα, SAP18 (Sin3A associated protein 18), IκBα, STING, cGAS, and
TGF-β-activated kinase 1 (TAK1) [23,31–33,36]. Interestingly, TRIM56 also has deubiquiti-
nating enzyme activity and the ability to bind RNA [29,30,46]. The relationship between
the exertion of these functions and the structure needs to be further investigated.

TRIM56 is widely expressed in various tissues of adult mammals [47]. Similar to many
other TRIM proteins, the expression of TRIM56 is regulated by type I IFN. The expression
level of TRIM56 was significantly upregulated in cells after type I IFN treatment [22,48].
There are differences in the subcellular distribution of TRIM proteins [49]. Some TRIM
proteins are widely distributed in the cytoplasm and nucleus, such as TRIM30 and TRIM32.
Some are only present in the nucleus, such as TRIM19, and some are only present in the
cytoplasm, such as TRIM29. In resting cells, the TRIM56 protein is only present in the
cytoplasm and thus interacts with cytoplasmic proteins [47].

3. Antiviral Effects of TRIM56

TRIM family members have direct and indirect antiviral effects, including direct inter-
actions with virus-associated proteins or nucleic acids, or modulation of antiviral signaling
pathways associated with host immune function [15]. In recent years, numerous studies
have demonstrated that TRIM56 exerts antiviral effects. TRIM56 can affect viral replication
by modulating signaling pathways of the innate immune response. In addition, TRIM56 can
directly target viral components to affect viral replication or inhibit their function, thereby
exerting antiviral effects. Here, we summarize the studies on the interaction between the
TRIM56 protein and viruses, in particular the role of TRIM56 in the signaling of the innate
immune response and the direct interaction between TRIM56 and viruses.

3.1. TRIM56 Regulates the Antiviral Innate Immune Response

Innate immunity is the first line of defense against pathogen invasion. Upon pathogen
invasion, pathogen-associated molecular patterns (PAMPs) are recognized by the pattern
recognition receptors (PRRs) of innate immune cells, including retinoic-acid inducible
gene-I (RIG-I)-like receptors (RLRs), TLRs, and cell membrane DNA receptors [50,51].
The triggering of PRRs ultimately leads to the activation of various signaling pathways
and the transcriptional induction of pro-inflammatory cytokines and type I IFN to limit
viral transmission [52,53]. Type I and type III IFNs are potent antiviral agents. They
efficiently induce the production of hundreds of interferon-stimulated genes (ISGs) via the
JAK-STAT signaling pathway, establishing an antiviral state by controlling and limiting
viral infection and replication [54]. By modulating the innate immune response signaling
pathway, TRIM56 can regulate downstream interferons and ISGs to precisely exert antiviral
immune responses (Figure 2).

3.1.1. Regulation of TLR Signaling Pathway

TLRs are the first-known PRRs capable of recognizing extracellular viral components
that enter the cytoplasm by phagocytosis or endocytosis to induce type I IFN (IFN-I)
and pro-inflammatory cytokines to counteract viral invasion. The TLR family contains
13 members [55]. Upon activation, all TLRs, except for TLR3, recruit adaptor molecule
myeloid differentiation factor 88 (MyD88), which recruits kinase IL-1 receptor-associated
kinase 1/4 (IRAK1/4) and E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6).
TRAF6 catalyzes its own ubiquitination. Ubiquitinated TRAF6 recognizes TAK1/MAP3K7
binding protein 2 (TAB2) and activates TAK1, ultimately leading to the activation of IκB
kinase α/β/γ (IKKα/β/γ) and NF-κB [56,57].
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Figure 2. Regulatory network of TRIM56 in innate immunity. (A) TRIM56 in the TLR signaling
pathway. TRIM56 catalyzes the M1-type ubiquitination modification of TAK1 and thus the interaction
between TAK1 and IKKα. TRIM56 interacts with TRIF to positively regulate the TLR3-mediated
interferon pathway in an E3-independent manner. (B) TRIM56 in the cGAS-STING signaling pathway.
TRIM56 induces the Lys335 monoubiquitination of cGAS, resulting in a significant increase in
cGAMP production. TRIM56 catalyzes the formation of the K63-linked ubiquitination of STING.
This modification induces STING dimerization, which recruits TBK1 and induces IFN-1β. TRIM56
synthesizes a ubiquitin chain that binds to NEMO and mediates the ubiquitination of NEMO to
activate IKKβ. P, phosphate; Ub, ubiquitin.

TRIM56 catalyzes the M1-type ubiquitination modification of TAK1, which enhances
the interaction of the TAK1-IKKα complex. The overexpression of TRIM56 enhances the
TNF-α-induced activation of NF-κB signaling, whereas the knockdown of TRIM56 has the
opposite effect. The C-terminus is the binding region of TRIM56 to TAK1, while the RING
structural domain of TRIM56 is the active region of the E3 enzyme and is important for the
ubiquitination of TAK1 [23].

Unlike other TLRs, TLR3 uses adaptor Toll-IL-1 receptor (TIR) domain-containing
adaptor inducing IFN-β (TRIF) and then activates IRF3 via TBK1/IKKε-mediated phospho-
rylation. Phosphorylated IRF3 forms a dimer and then translocate to the nucleus, initiating
IFN-I expression [58]. TRIM56 was found to interact with TRIF, which positively regulates
the TLR3-mediated interferon pathway. This mechanism is independent of E3 ligase activity.
The deletion of the C-terminus of TRIM56 abolished TRIM56-TRIF interaction and the
enhancement of the TLR3-mediated IFN response [24] (Figure 2A). Furthermore, the overex-
pression of TRIM56 inhibits PEDV replication by positively regulating the TLR3-mediated
antiviral signaling pathway [59].

3.1.2. Regulation of cGAS-STING Signaling Pathway

cGAS, also known as MB21D1/C6orf150, is considered to be one of the most important
cell membrane DNA sensors [60]. Upon recognition of viral DNA, cGAS synthesizes
a second messenger molecule, cyclic GMP-AMP (cGAMP), which binds and activates
STING and the transfer of STING from the endoplasmic reticulum (ER) to the Golgi
apparatus via COPII-mediated vesicles [61]. Activated STING recruits and activates TBK1
and IKKβ, which promote the nuclear import of IRF3 and NF-κB, respectively, ultimately
producing IFN-I and pro-inflammatory cytokines [62,63]. TRIM56 induces the Lys335
monoubiquitination of cGAS, resulting in a marked increase in cGAMP production, STING
dimerization, and DNA-binding activity. TRIM56-deficient cells are defective in cGAS-
mediated IFNα/β production during herpes simplex virus-1 (HSV-1) infection [25].
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Tsuchida et al. found that the overexpression of TRIM56 enhanced IFN-β promoter
activation after double-stranded DNA stimulation. TRIM56 interacts with STING and
uses it as a substrate for lysine 63-linked ubiquitination. This modification induces STING
dimerization, which recruits antiviral kinase TBK1 and induces IFN-β [22]. Ubiquitin
regulatory X domain-containing proteins 3B (UBXN3B) can positively regulate STING
signaling. Sting-/- mice and Ubxn3b-/- mice are highly susceptible to lethal HSV-1 and
vesicular stomatitis virus (VSV) infections. UBXN3B interacts with STING and its E3
ligand TRIM56 and promotes STING ubiquitination, dimerization, translocation, and the
subsequent recruitment and phosphorylation of TBK1 in the innate immune processes [26].
However, recent studies have shown that TRIM56 does not directly ubiquitinate STING.
Wang et al. found that TRIM56 cannot add ubiquitinated signals to STING proteins using
a two-step immunoprecipitation method. This suggests that TRIM56 may ubiquitinate a
protein that can bind STING, rather than STING itself [64]. TRIM56 synthesizes ubiquitin
chains that bind to NF-κB essential modifier (NEMO) and mediates the ubiquitination of
NEMO to activate IKKβ, which is required for the activation of TBK1 and NF-κB [27,65]
(Figure 2B). In the future, as technology advances, we believe that the relationship between
TRIM56 and STING will eventually be determined.

3.1.3. Enhancement of the Production of ISGs

IFN exerts its antiviral effect by inducing the expression of hundreds of ISGs [66].
After IFNα treatment, Kane et al. found that the overexpression of TRIM56 increased the
expression of many ISGs. In this way, TRIM56 could suppress the expression of late HIV-1
genes, thereby establishing an anti-HIV status [67]. In addition, the overexpression of
TRIM56 greatly enhanced extracellular the dsRNA-induced expression of IFN-β and ISGs,
whereas the knockdown of TRIM56 severely impaired IRF3 activation, IFN-β and ISGs
induction, the establishment of the antiviral state of TLR3 ligands, and severely impaired
TLR3-mediated chemokine induction after hepatitis C virus (HCV) infection [24].

The known activity of ISGs is still insufficient to explain the antiviral effect of IFN,
suggesting that more ISGs with antiviral activity need to be discovered. IFN-I itself
enhances the expression of TRIM56 [22,48]. This suggests that TRIM56 is also a potential
ISG. By inducing a positive feedback regulatory mechanism, TRIM56 plays an important
role in the innate immune process.

3.2. TRIM56 Directly Targets Viruses

Viruses are a serious threat to the health of living organisms. TRIM56 can act as a direct
antiviral restriction factor against many types of viruses, such as positive single-stranded
RNA viruses, negative single-stranded RNA viruses, and DNA viruses (Table 1).

3.2.1. Positive Single-Stranded RNA Viruses

The N-terminal protease (N(pro)) of bovine viral diarrhea virus (BVDV) is a proviral
interferon antagonist capable of degrading interferon regulatory factor 3 (IRF3) via the
proteasome. Although TRIM56 overexpression does not affect the protein levels of N(pro)
and IRF3, it still interferes with BVDV replication. The anti-BVDV viral activity of TRIM56
is dependent on its E3 ubiquitin ligase activity and the integrity of its C-terminal region
and is not due to a general enhancement of the interferon antiviral response [47].

TRIM56 does not improve cellular resistance to yellow fever virus (YFV), dengue
virus serotype 2 (DENV2), or human coronavirus (HCoV) OC43. The anti-flavivirus (YFV,
DENV2, and BVDV) function of TRIM56 requires the E3 ligase activity located in the
N-terminal RING structural domain and the integrity of its C-terminal portion, whereas
anti-HCoV-OC43 restriction only depends on TRIM56 E3 ligase activity. TRIM56 inhibits
YFV, DENV2, and BVDV replication by impairing intracellular viral RNA replication,
whereas it inhibits HCoV-OC43 progeny production later in the viral life cycle by targeting
the viral packaging and release phase rather than intracellular viral RNA accumulation [68].
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The above studies suggest that different structural domains of TRIM56 are adapted for
different antiviral mechanisms.

Zika virus (ZIKV) infection is associated with microcephaly and other neurological
disorders and is a serious threat to human health [69]. TRIM56 acts as an RNA-binding pro-
tein and binds to ZIKV RNA in infected cells. A recombinant TRIM56 fragment consisting
of 392 C-terminal residues is able to directly bind ZIKV RNA in vitro. The overexpression
of TRIM56, but not the E3 ligase-activating mutant or mutants lacking the short C-terminal
portion, inhibits ZIKV RNA replication [46]. Thus, the C-terminus of TRIM56 interacts
with ZIKV RNA, while the RING structural domain inhibits viral RNA replication.

Porcine epidemic diarrhea virus (PEDV) infection causes severe enteric disease in
lactating piglets, resulting in significant economic losses to the swine industry [70]. TRIM56
expression levels were upregulated in cells infected with PEDV. The overexpression of
TRIM56 increased the protein levels of TRAF3, a component of the TLR3 pathway, and up-
regulated IFN-β, ISG, and chemokine expression, which significantly activated downstream
IRF3 and NF-κB signaling. The overexpression of TRIM56 inhibited PEDV replication, and
the RING domain, N-terminal domain, or C-terminal portion of TRIM56 failed to inhibit
PEDV replication [59].

Human immunodeficiency virus (HIV), also known as the AIDS virus, is a retro-
virus that causes defects in the human immune system [71]. TRIM56 alters the release of
HIV-1 [72]. TRIM56 enhances the induction of ISGs by IFNα and suppresses late HIV-1
gene expression [67].

TRIM56 exerts direct antiviral effects against several positive single-stranded RNA
viruses, including members of the Coronaviridae family. 2019-nCoV belongs to the same
family of coronaviruses as HCoV-OC43 and causes Coronavirus Disease 2019 (COVID-19).
COVID-19 patients were found to have higher levels of TRIM56 expression. There was also
a strong positive correlation between the expression levels of TRIM56 and VEGF [73]. This
suggests that TRIM56 may have an anti-2019 nCoV function.

The antiviral activity of TRIM56 is virus-specific. TRIM56 was reported to be resistant
to only seven positive single-stranded RNA viruses, including Flaviviridae YFV, DENV2,
ZIKV, and BVDV; Retroviridae HIV-1; and OC43 and PEDV of the Coronaviridae family
(Table 1). The overexpression of TRIM56 did not inhibit two positive single-stranded RNA
viruses, encephalomyocarditis virus (EMCV) and HCV [47,68]. Whether TRIM56 affects
other positive single-stranded RNA viruses remains to be investigated. Interestingly, the
viral functions of anti-positive single-stranded RNA viruses are all dependent on the E3
ligase activity of TRIM56 [47,68].

3.2.2. Negative Single-Stranded RNA Viruses

Therapeutic approaches for influenza remain very limited, and genetically mutated
drug-resistant influenza virus strains often emerge [74]. Understanding novel virus–host
interactions that alter influenza virus adaptations may reveal new targets/approaches for
therapeutic intervention [75]. TRIM56 is able to specifically inhibit the RNA synthesis of
influenza A and B viruses (Table 1). Interestingly, anti-influenza virus activity was not
associated with E3 ligase activity, or B-box or coiled-coil structural domain. In contrast, the
deletion of the 63-residue long C-terminal tail of TRIM56 abolished the antiviral function. In
addition, the expression of this short C-terminal tail was as effective as full-length TRIM56
in inhibiting influenza virus replication [76].

The antiviral activity of TRIM56 is virus-specific. The overexpression of TRIM56 has
been reported not to inhibit three negative single-stranded RNA viruses, VSV, Sendai
virus, and human parapneumovirus [47,76]. Whether TRIM56 affects other negative single-
stranded RNA viruses remains to be investigated.

3.2.3. Double-Stranded DNA Viruses

TRIM56 expression is upregulated in IFN-treated HepG2 cells and Hepatitis B virus
(HBV)-infected liver tissue. TRIM56 inhibits HBV replication with its RING and C-terminal
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structural domains. The C-terminal structural domain is essential for TRIM56 translocation
from the cytoplasm to the nucleus during HBV infection (Table 1). TRIM56 ubiquitinates
IκBα using the RING structural domain. This modification induces the phosphorylation of
p65, which subsequently inhibits HBV core promoter activity, leading to the inhibition of
HBV replication [77].

TRIM56 also promotes IFNα/β expression levels via the cGAS-STING signaling
pathway and inhibits the replication of double-stranded DNA virus HSV-1 [25]. TRIM56-
deficient mice show impaired production of IFNα/β and high susceptibility to lethal HSV-1
infection, but not to influenza A virus infection, because cGAS-STING-mediated immune
responses are only directed against dsDNA and not against RNA viruses such as influenza
A virus [25] (Table 1).

Table 1. Antiviral functions of TRIM56 against various viruses.

Virus Genome Mechanisms Functions Reference

BVDV +ssRNA RING and C-terminus Inhibition of BVDV replication [53]
YFV +ssRNA RING and C-terminus Inhibition of YFV replication [70]

DENV1/2 +ssRNA RING and C-terminus Inhibition of DENV1/2 replication [52,70]
HCoV-OC43 +ssRNA RING Inhibition of packaging and release [70]

ZIKV +ssRNA RING and C-terminus Binding to ZIKV RNA and inhibition
of ZIKV replication [52]

PVDV +ssRNA RING, and N- and C- termini Activation of TLR3 signaling and
inhibition of PVDV replication [64]

HIV-1 +ssRNA - Suppression of HIV-1 release [69]
IAV, IBV -ssRNA C-terminus Inhibition of IAV and IBV replication [76]

HSV-1 dsDNA - Activation cGAS-STING signaling and
inhibition of HSV-1 replication [26]

HBV dsDNA RING Ubiquitination of IκBα and inhibition
of HBV replication [50]

3.3. Other Pathogens

The hallmark of Salmonella typhi infection is an acute intestinal inflammatory response,
which is mediated by the action of secreted bacterial effector proteins [78]. Inflammation-
promoting Salmonella effector SopA is an E3 ligase similar to HECT [79,80]. By targeting
TRIM56 and TRIM65, SopA can stimulate innate immune signaling with two innate im-
mune receptors, RIG-I and MDA5, respectively [69]. However, Fiskin et al. proposed the
opposite mechanism. They found that endogenous TRIM56 and TRIM65 protein levels
decreased under standard Salmonella infection conditions. SopA inhibited TRIM56 E3
ligase activity by occluding the E2 binding surface of TRIM56. At the same time, SopA
ubiquitinates TRIM56, leading to proteasomal degradation during infection [81]. Whether
TRIM56 plays a role in other types of bacterial infections remains to be investigated.

4. The Function of TRIM56 in Tumors

By regulating various signaling pathways and proteins in an E3 ligase-dependent or
-independent manner, TRIM56 plays different roles in different tumors. It inhibits ovarian
cancer, multiple myeloma, lung adenocarcinoma, hepatocellular carcinoma, and leukemia;
however, it promotes the development of glioma, breast cancer, and Kaposi’s sarcoma
(Figure 3 and Table 2).

4.1. Tumor Suppression
4.1.1. Ovarian Cancer

Ovarian cancer is a gynecologic oncologic disease and one of the major female lethal
cancers [82]. Epithelial-to-mesenchymal transition (EMT) leads to tumor metastasis, which
accelerates tumor progression [83]. Vimentin is an important protein that regulates EMT
and cancer progression in ovarian cancer [84]. TRIM56 is able to ubiquitinate and downreg-
ulate Vimentin. The TRIM56 inhibition of ovarian cancer migration and invasion in vitro
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occurs via an inhibitory effect on Vimentin [33]. TRIM56 expression is post-transcriptionally
regulated at the translational level by RNA-binding protein poly r(c)-binding protein 1
(PCBP1) [85]. PCBP1 promotes ovarian cancer migration and invasion in vitro by inhibit-
ing TRIM56 translation, reducing its protein levels, thereby inducing Vimentin expres-
sion [33,85].
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cancer, and Kaposi’s sarcoma, but is an oncogenic repressor in ovarian cancer, multiple myeloma,
lung adenocarcinoma, hepatocellular carcinoma, and leukemia. TRIM56 affects multiple signaling
pathways, including the TLR3-TRIF pathway, the ELF4-IRF4 pathway, the Wnt pathway, and the
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Table 2. Expression and clinical significance of TRIM56 in various cancers.

Cancer Type Expression Mechanisms Functions References

Ovarian cancer - Ubiquitination and
downregulation of Vimentin

Inhibition of migration
and invasion [35]

Multiple myeloma Decrease
Production of inflammatory

cytokines with activation of the
TLR3/TRIF signaling pathway

Inhibition of cell proliferation [36]

Lung cancer Decrease -
Inhibition of the invasion and

migration of lung
adenocarcinoma cells

[37]

Leukemia - Ubiquitination and
downregulation of DVL2

Inhibition of AML stem cell
self-renewal and leukemogenesis [38]

Hepatocellular
carcinoma Decrease Inactivation of Wnt signaling

and targeting of RBM24 Inhibition of HCC proliferation [39]

Glioma Increase
Deubiquitination of and

increase in FOXM1 and cIAP1
protein levels

Promotion of glioma progression
and inhibition of radiosensitivity of

glioblastoma
[31,32]

Breast cancer - Ubiquitination of and increase
in the stability of ERα Promotion of proliferation [33]

Kaposi’s sarcoma - Ubiquitination and
downregulation of SAP18

Promotion of cell invasion and
angiogenesis [34]



Int. J. Mol. Sci. 2023, 24, 5046 9 of 17

4.1.2. Multiple Myeloma

Multiple myeloma (MM) is a group of plasma cell malignancies characterized by
the extensive clonal proliferation of tumor plasma cells in the bone marrow [86]. MM
accounts for approximately 10% of hematologic neoplastic diseases [87]. The bone marrow
microenvironment and cytokines such as interleukin (IL)-6 and TNF (tumor necrosis factor)-
α play an important role in the growth and survival of MM cells and are associated with the
clinical presentation and prognosis of MM [88]. The expression of TRIM56 is significantly
decreased in MM cells. TRIM56 inhibits cell proliferation and produces inflammatory
cytokines by activating the TLR3/TRIF signaling pathway [34]. Huang et al. found that
cell lines from early MM patients showed upregulated miR-9 expression, which promoted
MM cell proliferation and reduced apoptosis. TRIM56 is a target protein of miR-9 that
reverses miR-9-mediated proliferation and anti-apoptotic effects. Thus, miR-9 promotes
MM development and progression with the regulation of the TRIM56/NF-κB pathway [89].

4.1.3. Lung Cancer

Lung cancer is the most common and lethal malignancy, with lung adenocarcinoma
accounting for up to 40% of cases [90]. The reduced expression of TRIM56 in lung adeno-
carcinoma is associated with poor prognosis. The overexpression of TRIM56 inhibits the
invasion and migration of lung adenocarcinoma cells [35]. In the treatment of advanced
lung cancer, immunotherapy has achieved some success, but the problem of immunother-
apy resistance cannot be ignored [91,92]. Exosomal circZNF451 was upregulated in patients
with progressive disease compared with lung adenocarcinoma patients in partial remission
after PD1 blockade therapy and was associated with a poor clinical prognosis. Exosomal
circZNF451 was able to target RNA-binding protein FXR1 in macrophages and promote the
ubiquitination of FXR1 via the E3 ubiquitin ligase TRIM56, which in turn activated the ELF4-
IRF4 pathway, leading to M2 polarization and suppressive immune microenvironment in
macrophages. Exosomal circZNF451 inhibits anti-PD1 therapy in lung adenocarcinoma by
polarizing macrophages in complex with TRIM56 and FXR1 [93]. Thus, TRIM56 may serve
as a potential therapeutic target and a novel predictive marker for PD1 inhibitor resistance
in lung cancer.

4.1.4. Leukemia

DVL2 is a key regulator of Wnt signaling, which stabilizes β-catenin by cataboliz-
ing the APC/Axin/CK1α/GSK3β degradation complex [94]. DVL2 expression levels are
closely correlated with Wnt activity and tumor progression [31,95]. The TRIM56-mediated
degradation of DVL2 inactivates Wnt signaling and thus inhibits tumor development.
Nuclear paraspeckle assembly transcript 1 (NEAT1) localizes to the nucleus and is able to
inhibit AML stem cell self-renewal and leukemogenesis by activating Wnt signaling [36].
Alternative splicing (AS) often alters the function of proteins, which in turn affects tumor
development [96]. However, heterodimer NEAT1 is localized in the cytoplasm and is
able to interact with TRIM56 and DVL2 by enhancing TRIM56-mediated DVL2 degrada-
tion, thereby inactivating Wnt signaling [36]. Targeting DVL2 using TRIM56- or DVL2-
interacting NEAT1 truncators may be a potential strategy for the treatment of AML.

4.1.5. Hepatocellular Carcinoma

Yang et al. found that downregulated TRIM56 in hepatocellular carcinoma (HCC)
patient samples was strongly associated with pathological stage and prognosis [37]. TRIM56
negatively regulated key genes in Wnt signaling, β-catenin, c-Myc, RBM24, MMP-9, and
cyclin D1, as well as Wnt. Among them, RBM24 was shown to be a downstream target
gene of TRIM56. The overexpression of TRIM56 inhibited cell proliferation, whereas the
knockdown of TRIM56 had the opposite effect. TRIM56 inhibited HCC proliferation by
inactivating Wnt signaling and targeting RBM24 [37].
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Hepatocellular carcinoma has been associated with viral infections of type B and C [97].
TRIM56 can inhibit the replication of HBV [77]. In addition, TRIM56 was able to promote
the induction of TLR3-mediated chemokines after HCV infection [24].

4.2. Tumor Promotion
4.2.1. Glioma

TRIM56 expression is significantly increased in glioblastoma tissues and cell lines.
High TRIM56 expression is associated with a poor prognosis in glioma patients [29,30].
TRIM56 can downregulate the ubiquitination level of cIAP1, thereby reducing the degra-
dation of cIAP1 [30]. cIAP1 belongs to the inhibitors of apoptosis (IAP) family, which
regulates the cell cycle and tumor development [98]. Several studies have shown that
cIAP1 is highly expressed in various human cancers and plays a key oncogenic role [98,99].
In glioma, TRIM56 does not function as an E3 ligase but as a deubiquitinating enzyme
to stabilize the expression of apoptosis inhibitor cIAP1, thereby promoting glioma pro-
gression [30]. Recurrent glioblastoma is characterized by resistance to radiotherapy or
chemotherapy. TRIM56 increases FOXM1 protein levels and enhances FOXM1 by means
of deubiquitination. TRIM56 inhibits the radiosensitivity of human glioblastoma by regu-
lating FOXM1-mediated DNA repair. Targeting TRIM56 may be an effective approach to
reverse radioresistance in glioblastoma recurrence [29]. Interestingly, TRIM56 in gliomas
function as deubiquitinating enzymes rather than E3 ligases.

4.2.2. Breast Cancer

Breast cancer is the most common cancer in women worldwide [100,101]. The knock-
down of TRIM56 enhances the proliferation and metastasis of breast cancer cells. The
expression of TRIM56 is positively correlated with ERα and PR in breast cancer samples
and is associated with poor prognosis in patients treated with endocrine therapy. Approxi-
mately 60–70% of breast cancer patients are Erα-positive [102]. Estrogen-selective modula-
tors, such as tamoxifen, are emerging as effective agents for controlling ERα breast cancer
progression [103]. However, tamoxifen resistance develops during long-term treatment
and cancer progression [104]. TRIM56 catalyzes the formation of K63-linked polyubiquitin
chains of ERα, thereby prolonging the stability of the ERα protein [31]. Breast cancer prolif-
eration requires transduction via the ERα signaling pathway. Therefore, TRIM56-targeted
therapy may address treatment resistance, thereby inhibiting cancer cell proliferation.

4.2.3. Kaposi’s Sarcoma

Kaposi’s Sarcoma (KS) is a common AIDS-associated cancer caused by KS-associated
herpesvirus (KSHV) infection [105]. KSHV encodes viral FLICE inhibitory protein (vFLIP),
a viral oncogenic protein. vFLIP promotes cell migration, invasion, and angiogenesis by
downregulating the SAP18-HDAC1 complex. Specifically, vFLIP degrades SAP18 via the
ubiquitin–proteasome pathway by recruiting E3 ubiquitin ligase TRIM56, which ultimately
activates the NF-κB signaling pathway [32]. Interestingly, KSHV is closely associated with
the development of KS, primary exudative lymphoma (PEL), and other diseases [106]. More-
over, the deletion of the TRIM56 gene has been found in PEL patients [107]. The relationship
between TRIM56 and KSHV, and KSHV-related tumors needs to be further investigated.

4.3. Regulation of TRIM56 Expression in Tumors

TRIM56 is aberrantly expressed in a variety of tumors. TRIM56 was lowly expressed
in multiple myeloma [88], ovarian cancer [85], lung adenocarcinoma [35], and hepatocel-
lular carcinoma [37]. TRIM56 was highly expressed in glioma [29,30]. Furthermore, by
analyzing the data in the TCGA database, we found that the expression levels of TRIM56
were significantly low in lung squamous cell carcinoma, uterine corpus endometrial carci-
noma, and uterine carcinosarcoma, and significantly high in pancreatic adenocarcinoma,
glioblastoma, lower-grade glioma, and thymoma [108] (Figure 4). In addition to the above
tumors, TRIM56 was highly expressed in living patients with muscle-invasive bladder can-
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cer (MIBC) [109]. The function and regulatory mechanisms of TRIM56 in the above tumors
remain to be investigated. In addition, the upstream regulatory mechanisms of TRIM56
are not well understood. In ovarian cancer, PCBP1 inhibits TRIM56 translation [85]. In
multiple myeloma, mir-9 downregulates TRIM56 expression [89]. In lung adenocarcinoma,
mir-542 and mir-627 have the potential to inhibit TRIM56 expression [35].
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the TCGA database, we found that the expression levels of TRIM56 were significantly low in lung
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nosarcoma (UCS), and significantly high in pancreatic adenocarcinoma (PAAD), glioblastoma (GBM),
lower-grade glioma (LGG), and thymoma (THYM). Data were analyzed using GEPIA 2.0.

5. Concluding Remarks and Future Perspectives

This review summarizes the role of TRIM56 in antiviral processes and the develop-
ment of tumorigenesis. Elucidating the altered expression of TRIM56 and its potential
mechanisms in the pathophysiology of cancer and other diseases may provide insights
for the development of new and more effective therapeutic strategies. However, there are
still no reports on the clinical applications of TRIM56 in small-molecule therapy. A further
understanding of the crystal structure of TRIM56 and its ligand-binding complexes could
refine the structure-based design for the development of specific small molecules targeting
TRIM56, ultimately leading to therapeutic applications.

As an E3 ubiquitin ligase, TRIM56 catalyzes the ubiquitination modification of sub-
strates [23,26,31–33,36,61,77]. The fate of the substrate protein depends on the lysine used
to form the ubiquitin molecule of the heteropeptide bond. Different ubiquitination chain
lengths (monoubiquitination and polyubiquitination) and a wide variety of ubiquitination
chain types (linked by Met1, Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, and Lys63) play an
extremely important role in protein activity, protein–protein interactions, and protein sub-
cellular localization [39,110]. TRIM56 is able to catalyze the formation of K48, K63-linked,
or M1-linked ubiquitination [111]. In addition, biological roles of TRIM56 independent
of E3 ligases have been identified, including RNA binding and deubiquitinating enzyme
activity [29,30,46].

The innate immune response is the first line of host defense and is characterized
by the production of IFN-I and ISGs to limit viral infection and transmission [112–114].
Many studies have shown that TRIM56 plays a key role in the precise coordination of
key signaling molecules and their associated pathways. Here, we discuss the current
mechanisms regarding the involvement of TRIM56 in the regulation of TLRs, the cGAS-
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STING pathway, and downstream ISGs [23,26,61]. Whether TRIM56 regulates the RLRs
pathway remains to be further investigated. In addition, TRIM56 is able to regulate innate
antiviral signaling in a ubiquitination-independent manner, and the specific mechanisms
of regulation remain to be explored.

The C-terminal region of TRIM56 mediates protein–protein or protein–RNA inter-
actions between TRIM56 and cellular viral proteins/RNAs and can inhibit viral RNA
replication. In addition, the E3 ligase activity of TRIM56 may regulate post-translational
modifications of viral proteins and/or host factors to inhibit the replication of positive-
stranded RNA viruses. Although TRIM56 is widely expressed in many tissues, the highest
expression levels of the protein were detected in the lung and stomach [47]. The presence
of pathogenic microorganisms in the respiratory and gastrointestinal tracts, which are
continuously exposed to the external environment, may account for the differences in tissue
distribution [115].

TRIM56 has been reported to exert oncogenic or tumorigenic potential in solid tumors
and hematological cancers [116,117]. The importance of exploring the function of TRIM56
in various malignancies comes not only from the understanding of the key mechanisms of
tumor development but also from the important translational potential. In recent years,
TRIM family proteins have made some progress in targeted cancer therapy, such as TRIM8-
targeted approaches for chemotherapy-resistant colorectal cancer and TRIM24-targeted
regimens for glioblastoma [118,119]. TRIM56 can affect tumor cell proliferation, apoptosis,
and metastasis by regulating downstream molecules [29–37]. However, the effect of TRIM56
on tumor immunity is still unknown. TRIM56 can modulate the innate immune response
and promote the production of type I IFNs and ISGs [23–27,65]. Notably, the innate immune
response plays an important role in cancer immune escape [120,121]. Therefore, exploring
the effect of TRIM56 on tumor immune response is a future research direction.
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MATH Meprin and TRAF-homologous structural domain
ARF ADP-ribosylation factor family structural domain
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TM Transmembrane region
IFN Interferon
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cGAS Cyclic GMP-AMP synthase
STING Stimulator interferon genes HECT: homologous to E6AP C-terminus
DVL2 Dishevelled-2
SAP18 Sin3A associated protein 18
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TAK1 TGF-β-activated kinase 1
PAMPs Pathogen-associated molecular patterns
PRRs Pattern recognition receptors
RIG-I Retinoic-acid inducible gene-I
RLRs RIG-I-like receptors
ISGs Interferon-stimulated genes
IFN-I Type I IFN
MyD88 Myeloid differentiation factor 88
IRAK1/4 IL-1 receptor-associated kinase 1/4
TRAF6 TNF receptor-associated factor 6
TAB2 TAK1/MAP3K7 binding protein 2
IκKα/β/γ IκB kinase α/β/γ
TRIF Toll-IL-1 receptor (TIR) domain-containing adaptor inducing IFN-β
cGAMP Cyclic GMP-AMP
ER Endoplasmic reticulum
HSV-1 Herpes simplex virus-1
UBXN3B Ubiquitin regulatory X domain-containing proteins 3B
VSV Vesicular stomatitis virus
NEMO NF-κB essential modifier
HCV Hepatitis C virus
N(pro) N-terminal protease
BVDV Bovine viral diarrhea virus
IRF3 Interferon regulatory factor 3
YFV Yellow fever virus
DENV2 Dengue virus serotype 2
HCoV Human coronavirus
ZIKV Zika virus
PEDV Porcine epidemic diarrhea virus
HIV Human immunodeficiency virus
COVID-19 Coronavirus Disease 2019
EMCV Encephalomyocarditis virus
HBV Hepatitis B virus
EMT Epithelial-to-mesenchymal transition
PCBP1 Poly r(c)-binding protein 1
MM Multiple myeloma
IL Interleukin
TNF Tumor necrosis factor
NEAT1 Nuclear paraspeckle assembly transcript 1
HCC Hepatocellular carcinoma
IAPs Inhibitors of apoptosis
KS Kaposi’s sarcoma
KSHV KS-associated herpesvirus
vFLIP Viral FLICE inhibitory protein
PEL Primary exudative lymphoma
MIBC Muscle-invasive bladder cancer
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