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Abstract: Sepsis-associated muscle wasting (SAMW) is characterized by decreased muscle mass,
reduced muscle fiber size, and decreased muscle strength, resulting in persistent physical disability
accompanied by sepsis. Systemic inflammatory cytokines are the main cause of SAMW, which occurs
in 40–70% of patients with sepsis. The pathways associated with the ubiquitin–proteasome and
autophagy systems are particularly activated in the muscle tissues during sepsis and may lead to
muscle wasting. Additionally, expression of muscle atrophy-related genes Atrogin-1 and MuRF-1 are
seemingly increased via the ubiquitin–proteasome pathway. In clinical settings, electrical muscular
stimulation, physiotherapy, early mobilization, and nutritional support are used for patients with
sepsis to prevent or treat SAMW. However, there are no pharmacological treatments for SAMW, and
the underlying mechanisms are still unknown. Therefore, research is urgently required in this field.
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1. Introduction

Sepsis is a leading cause of mortality in intensive care units (ICUs) [1,2]. It is character-
ized by a very high mortality rate of 20–30%, which further increases to 40–50% following
complications, such as respiratory and circulatory failure [3]. Furthermore, sequelae remain
even after recovery, and there are many cases in which daily life becomes difficult. However,
sepsis has a variety of causes and severity, with many unknown aspects of its pathology.

Sepsis-associated muscle wasting (SAMW) is characterized by decreased muscle
mass, reduced muscle fiber size, and muscle strength loss, resulting in persistent physical
disability [4]. SAMW is associated with increased morbidity and mortality, and systemic
inflammation is reported to be the main cause [5,6]. It occurs in 40% of critically ill, ICU-
hospitalized patients and is associated with prolonged ventilator use, extended hospital stay,
increased mortality, and long-term functional disorders [7]. In particular, muscle wasting
in sepsis occurs early and rapidly during the first 10 days of ICU stay [8]. Furthermore,
many critically ill patients who survive are said to have a lower quality of life after hospital
discharge due to decreased physical function [9,10]. Thus, although improvement and
prevention of SAMW is an important issue, there are no pharmacological therapeutic drugs
for SAMW.

In the present review, we outline the pathophysiology, treatment options, and future
directions of SAMW.

2. Compliance with Ethics Guidelines

This study did not require the approval of an ethical committee because it is a review
based on previously published studies. No unpublished data are included.

Int. J. Mol. Sci. 2023, 24, 5040. https://doi.org/10.3390/ijms24055040 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24055040
https://doi.org/10.3390/ijms24055040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1072-7089
https://orcid.org/0000-0002-8779-1460
https://doi.org/10.3390/ijms24055040
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24055040?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 5040 2 of 14

3. Mechanisms and Pathophysiology
3.1. Physiological Role of Skeletal Muscle

The skeletal muscle is an important tissue that accounts for approximately 40% of the
total body weight; it is the largest tissue in the human body. Furthermore, skeletal muscle
is responsible for many functions in the human body, such as movement, maintaining
posture, breathing, and protecting internal organs. Skeletal muscle is composed of discrete
muscle fiber types defined by myosin heavy chain (MyHC) isoforms and metabolic activity:
type I (slow twitch) fibers with slow oxidative ability and type II (fast-twitch) fibers with
fast oxidative and glycolytic ability, with each having specific metabolisms and contraction
patterns [11].

Type I fibers have a rich capillary supply, a high number of mitochondria and aerobic
respiratory enzymes, and a high myoglobin concentration. In contrast, Type II fibers have
a low mitochondrial number, high ATP activity, and increased strength and shortening
speed on muscle. The proportion of type I and II fibers is variable according to the
condition of the human body. Thus, many researchers have investigated the ability of fiber
types to transition from slow to fast and vice versa. Of note, skeletal muscle serves as a
protein reservoir used in life-threatening situations, such as starvation and severe diseases,
including sepsis.

3.2. Mechanisms of Muscle Wasting

Muscle wasting occurs systemically as a physiological response to aging and many
systematic diseases, including trauma, burns, and sepsis; muscle atrophy occurs in specific
muscles with inactivity or denervation [12]. In skeletal muscle, three major pathways are
known to be involved in muscle wasting.

The first is the ubiquitin–proteasome system, which plays a key role in muscle
mass loss and is involved in the upregulation of ubiquitin-conjugating enzymes (E2) and
ubiquitin–protein ligases (E3). Muscle atrophy gene-1 (Atrogin-1; also known as MAFbx)
and muscle ring finger-1 (MuRF1) were the first muscle-specific ubiquitin ligases to be
discovered [13], and they are now key target genes for muscle wasting.

The second is the calpain system, which belongs to the calcium-dependent cysteine
protease family [14]. The calpain system is involved in myofibrillar protein consumption.
Furthermore, an in vivo study showed that the administration of calpain inhibitors reduced
muscle atrophy by 30% [15]. The calcium-activated calpains are considered modulator
proteases because their limited proteolytic activity alters the structure and function of the
target substrate.

The third is the autophagy system, a cell catabolic process that ensures the breakdown
and restoration of cellular components. Although autophagy has been found to play an
important role in maintaining muscle homeostasis and, in practice, may contribute to
muscle degeneration, it is a necessary mechanism for cell survival. Nevertheless, increased
autophagy activities have been reported to contribute to muscle loss under various condi-
tions, including cancerous cachexia, chemotherapy, disuse, fasting, denervation, and even
sepsis [16,17].

The mechanisms underlying muscle wasting, including these three pathways, have
not been fully elucidated, warranting further research.

3.3. Specific Mechanisms of SAMW

Muscular wasting is a major complication of sepsis and occurs in 40–70% of pa-
tients with sepsis [2]. The progression of muscle wasting greatly influences clinical
prognosis [18,19]. Inflammatory cytokines such as IL-6, TNF-α, IFN-γ, and IL-1β, whose
expression levels increase at the onset of sepsis, cause acute muscle wasting [12,20–23].
Among inflammatory cytokines, IL-6 has also been reported to directly affect myofib-
rils [24]. Inflammatory cytokines activate many signaling pathways involved in muscle
protein degradation or promote muscle atrophy-related gene expression. Additionally,
other factors can influence muscle wasting. For instance, the use of a ventilator accelerates
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muscle atrophy owing to the inactivity of the strength and mass of the diaphragm, which
is a crucial respiratory muscle [25].

Inflammatory cytokines suppress the activation of AMPK, which acts as an en-
ergy sensor, and activate mTOR and p70S6K, which are involved in protein synthesis
located downstream. However, inflammatory cytokines simultaneously activate the
JAK/STAT and PI3K/Akt pathways, which are involved in protein degradation in the
ubiquitin–proteasome system, activate the expression of the muscle atrophy-related genes
Atrogin-1 and MuRF1, and induce muscle atrophy. They are also known to activate the
p38MAPK/NF-kB transduction pathway, which is involved in the inhibition of skeletal
muscle differentiation and muscle protein degradation.

Thus, inflammatory cytokines activate a number of degradative pathways, which
result in protein degradation exceeding protein synthesis, leading to muscle wasting in
sepsis. The pathways of the ubiquitin–proteasome system and autophagy system are re-
ported to be particularly active during sepsis [26–29]. In particular, muscle atrophy-related
genes Atrogin-1 and MuRF-1 are seemingly increased via the ubiquitin–proteasome path-
way [30–32]. We have visually summarized the proposed mechanism of SAMW (Figure 1).
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Figure 1. Proposed molecular mechanisms underlying sepsis-related muscle wasting. Immune
cells release inflammatory cytokines and activate the ubiquitin–proteasome, calpain, and autophagy
signaling pathways. Protein degradation effects overwhelm protein synthesis, and muscle wasting
develops. Dotted lines indicate inhibition.

3.4. Pathophysiology of Muscle Changes in Patients with Sepsis

Histological changes in muscles are mainly evaluated by microscopy with tissue
staining, and the muscles may require an objective measure of the muscle fiber mean size,
size variation, and types of fibers. Thus, muscle fiber cross-sectional area (CSA) is used as a
standard technique for the evaluation of SAMW.

A previous randomized control trial reported a 26% decrease in CSA seven days
after the onset of sepsis, and the loss was improved by intensive physiotherapy [33]. In
a previous trial, CSA was associated with muscle strength, and it was found that the
amount of physiotherapy might lead to better muscle mass maintenance. Furthermore,
there are several other studies on the measurement and evaluation of CSA in critically ill
patients [34,35].
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In contrast, the CSA method can hardly distinguish the types of skeletal muscle fibers,
such as type I and type II. An enzyme histochemical staining for NADH-tetrazolium
reductase, myosin ATPase, and cytochrome C oxidase is required to classify type I and type
II. Only a few studies have focused on muscle fiber types in patients with sepsis [36–38].
An observational study revealed an average daily decrease in CSA of 4% for type II skeletal
muscle fibers and 3% for type I skeletal muscle fibers in the anterior tibialis muscle of
patients with sepsis [37]. Moreover, loss of the filamentous structure of myosin occurred
before the degradation of actin or cytoskeletal proteins and was associated with increased
expression of lysosomal enzymes and ubiquitin.

In another study with muscle biopsies of the vastus lateralis, CSA was significantly
reduced in type IIa and type IIb fibers in critically ill patients, including those with sep-
sis [38]. The changes in CSA of type II fibers are reduced already early in treatment in the
ICU. In addition, significantly lower transcript levels of MyHC isoforms were observed in
the muscle.

3.5. Effect of Lipopolysaccharides on Skeletal Muscle Cells

Lipopolysaccharides (LPS) bind to genes present on the surface of immune cells and
induce inflammatory reactions through the production of inflammatory cytokines via
intracellular signal transduction; LPS are also called endotoxins. The receptor for LPS is the
toll-like receptor 4 (TLR4). When bound to LPS, TLR4 is transported to CD14 on the plasma
membrane, which acts as a co-receptor for TLR4, and activates the expression of MyD88, a
cellular protein adapter. MyD88 activates the NF-kB signaling pathway, which promotes
protein degradation via the ubiquitin–proteasome system; thus, LPS administration induces
an inflammatory response. Myoblasts, particularly the C2C12 line, are often used as an
in vitro model in research focusing on muscle wasting. Previous research reported that
adding LPS to C2C12 myoblasts increases the mRNA levels of the inflammatory cytokines
TNF and IL-6 in a dose-dependent manner [39]. IL-6 has also been shown to decrease
myotube diameter in C2C12 cells, and the expression of Atrogin-1 and MuRF1 has been
reported to increase with IL-6 expression [24]. Moreover, the addition of LPS to C2C12
cells promoted the production of IL-1β, suggesting that IL-1β may be directly involved in
muscle fiber atrophy [40].

3.6. Effect of Cecum Ligation and Puncture on Experimental Animals

Sepsis models are often used in animal experiments by ligating the cecum and induc-
ing intraperitoneal infection with its contents to induce peritonitis in mice (cecum ligation
and puncture; CLP). Many studies on sepsis and muscle wasting have been reported in ex-
periments conducted using CLP model mice (Table 1) [24,41–51]. Among previous studies
(10/12, 83.3%) evaluated muscle wasting within a week after CLP. Morphological changes
of muscle wasting were seen from 2 to 24 days after the CLP procedure. Additionally,
morphological changes were mainly assessed by histological evaluation, and some studies
(4/12, 33.3%) included the results of weight in the muscles. Various muscles were found
to be wasting after CLP, including the tibialis anterior, gastrocnemius, soleus, extensor
digitorum longus, diaphragm, and heart muscle. Many studies (7/12, 58.3%) reported that
the tibialis anterior muscle was mainly wasted after CLP, indicating that the tibialis anterior
muscle is the most easily influenced muscle during sepsis and underlying sepsis-related
muscle wasting.
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Table 1. Characteristics of CLP studies for muscle wasting.

No. First Author,
Year Country Mouse/Rat Sepsis

Model

Evaluation
Days after
Onset of

Sepsis (Day)

Treatments/
Gene Knock

Out

Doses
of Treat-

ment

Timing
of Treat-

ment
Antibiotics

Muscle
Wasting in
the Control

Group

Muscle
Wasting in

the Treatment
Group

Weight of
Muscles
Changes

Grip
Strength Histology

Atrogin-1
Expression
in Muscles

in the
Treatment

Group

MuRF1
Expression
in Muscles

in the
Treatment

Group

Reference
No.

1 Reed SA,
2012 US C57BL/

6 mouse CLP 7 - - - (−)
TA, GAS,

SOL muscle
wasting (+)

- - - - - - [41]

2 Morel J, 2017 France C57BL/
6 mouse CLP 7 - - - (−)

GAS,
Diaphragm

muscle
wasting (+)

- - - - - - [42]

3 Balboa E,
2018 US C57BL/

6 mouse CLP 7 - - - (−)
GAS, TA
muscle

wasting (+)
- - - - - - [43]

4 Yu X, 2018 China C57BL/
6 mouse CLP 1~7 Heme

Oxygenase-1
50

mg/kg

1 day
before
CLP

(−)

SOL muscle
wasting (+),
≥3 days

after CLP

SOL muscle
wasting (−),
≥3 days after

CLP

improved Not de-
scribed Improved Decreased Decreased [44]

5 Moarbes V,
2019 Canada C57BL/

6 mouse CLP 1~4 - - - (−)

TA,
Diaphragm

muscle
wasting (+)

- Not
described

Not de-
scribed - - - [45]

6 Wang J, 2020 China SD rats CLP 24 Testosterone
propionate

10
mg/kg

8 days
after
CLP

(−) EDL muscle
wasting (+)

EDL muscle
wasting (−)

Not
described

Not de-
scribed Improved Not

described
Not

described [46]

7 Kobayashi
M, 2021 Japan C57BL/

6 mouse CLP 14 Myostatin-
deficient - - (−)

TA, GAS,
SOL muscle
wasting (+)

TA, GAS, SOL
muscle

wasting (−)
Not

described
Not de-
scribed Improved Decreased Decreased [47]

8 Busch K,
2021 Germany

NLRP3
knock out

mouse
CLP 4 NLRP3

knock out - - (−)
Heart

muscle
wasting (+)

Heart muscle
wasting (−) improved Not de-

scribed Improved Not
described

Not
described [48]

9 Yang B, 2022 China C57BL/
6 mouse CLP 2 IL-6

knock out - - (−) EDL muscle
wasting (+)

EDL muscle
wasting (−)

Not
described Improved Improved Decreased Decreased [49]

10 Yin D, 2022 China SD rats CLP 3 Neuregulin-
1β

10
µg/kg

12 h
after
CLP

(−) TA muscle
wasting (+)

TA muscle
wasting (−)

Not
described

Not de-
scribed Improved Not

described
Not

described [50]

11 Jiang Y, 2022 China C57BL/
6 mouse CLP 5 Limb-

immobilization - with
CLP (−) TA muscle

wasting (+)
TA muscle
wasting (+) deteriorate Deteriorate Deteriorate Not

described
Not

described [51]

12 Zanders L,
2022 Germany IL6 knock

out mouse CLP 1~4 IL-6
knock out - - (−)

TA muscle
wasting (+),
morphologi-
cal changes
were seen in
4 days after

CLP

TA muscle
wasting (−),
morphologi-
cal changes
were seen in
4 days after

CLP

improved Not de-
scribed Improved Decreased Decreased [24]

CLP: Cecal ligation and puncture, US: United States of America, TA: Tibialis anterior, GAS: Gastrocnemius, SOL: Soleus, EDL: Extensor digitorum longus, SD: Sprague-Dawley,
NLRP3: NLR family pyrin domain containing 3.
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3.7. Differences between Disuse Muscle Atrophy and SAMW

Disuse muscle atrophy can be detected as early as 1 week after inactivity, whereas
SAMW can be detected as early as 2 days after onset; therefore, disuse muscle atrophy and
muscle atrophy resulting from sepsis may have different mechanisms [52–54]. Additionally,
type II fibers have been found to be affected more than type I fibers in SAMW, whereas
disuse of muscles more easily affects type I fibers [41,42]. Providing evidence that type II
fibers are easily affected in SAMW, it has been reported that mTOR, which controls the
muscle protein synthesis system, is suppressed in the skeletal muscle during the onset
of sepsis. However, the signal transduction may occur only in type II fibers [50,55,56].
The FoxO genes, activated by sepsis, are located upstream of MuRF1 and Atrogin-1 and
regulate downstream muscle atrophy-related genes (Table 1). It has also been reported that
FoxO-related muscle atrophy is mainly prominent in type II skeletal muscle fibers [41,57].

Furthermore, recoveries from disuse muscle atrophy and SAMW differ remarkably.
A previous study has reported that mTOR and its downstream muscle protein synthesis-
related genes are more activated than in controls at 12 to 24 h following re-loading after
disuse muscle atrophy [58]. Thus, recovery of muscle protein from disuse muscle atrophy
takes place in a relatively short period of time, whereas SAMW recovery takes a long time
and is less likely to return to before-sepsis conditions. This is because SAMW is not merely
a reduction in muscle protein but is deeply debilitating due to sustained activation of
protein degradation pathways, such as the ubiquitin–proteasome system [59].

3.8. Muscle Wasting, Particularly Diaphragm Wasting in Sepsis

SAMW occurs in both skeletal muscles and the diaphragm, presenting specific electro-
physiologic and morphologic findings. However, the underlying mechanisms differ, and
here we mention some specific characteristics of muscle wasting in the diaphragm.

Mechanical ventilation is an important treatment option for a life-threatening event,
and many sepsis patients require mechanical ventilation for respiratory support. However,
ventilator-related diaphragm wasting is caused by excessive power of artificial breathing
and may lead to worse clinical outcomes. Although most patients can be weaned from the
ventilator, 30% of critically ill patients cannot avoid extended use of mechanical ventila-
tion [60]. A prior study has reported that approximately 50% of patients have decreased
diaphragm muscle thickness after intubation [61]. Both decreased and increased diaphragm
thickness in the early course of mechanical ventilation predicted prolonged ventilation.
Decreasing thickness of diaphragm was related to very low inspiratory effort, and increas-
ing thickness was related to excessive effort [62]. Furthermore, a prolonged period of
mechanical ventilation has been reported to be associated with an increased risk of death
and worse long-term outcomes. Fewer than half of patients could not survive beyond a
year, although a high proportion of patients could be discharged from the hospital [63].

4. Diagnostics

In clinical settings, SAMW has been diagnosed using anatomical evaluations and
functional tests. Anatomical evaluation is performed using muscle biopsy followed by
a histological exam, computed tomography (CT), magnetic resonance imaging (MRI),
and ultrasonography.

Muscle biopsy followed by histological evaluation is considered a highly accurate
method to diagnose myopathic changes of SAMW. However, the biopsy method can be
accompanied by some complications such as bleeding, pain, and nerve injury; therefore,
alternative diagnostic tools have been considered instead.

A CT scan is widely accepted as the gold standard method for skeletal muscle mass
quantification. An observational study using a CT scan reported on the measurement and
evaluation of the rectus femoris muscle in patients with sepsis [64]. The measurement was
confirmed at the vertebral level of L4 on the CT scan; the area of the psoas major muscle
was traced in 2 to 4 cuts, depending on the thickness of the CT slice. The technique was
also used in the rectus femoris muscle to assess muscle volume [64].
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MRI is also used for diagnoses of SAMW and, similar to CT, has a highly accurate
diagnostic value for muscle mass [65]. However, an MRI scan takes a long time, and
most metallic devices are contraindicated based on major concerns regarding the power-
ful magnetic field generated by MRI. Thus, patients who undergo MRI scan need to be
hemodynamically stable.

Ultrasonography is easy to use, with almost no complications, and therefore can
become a useful diagnostic option for SAMW. Recently, many studies focused on ultra-
sonography for evaluating mass volume in sepsis instead of MRI and CT imaging. The
authors of a study using ultrasonography measured muscle thickness of the rectus femoris
muscle over time after the admission of patients with sepsis [66]. The ultrasonography
method could reveal that rapid muscle wasting started early during hospitalization, and
muscle thickness continued to decrease from day 3 to day 10 [66]. Other studies using
ultrasound to measure rectus femoris muscle thickness reported a decrease in muscle
thickness of approximately 10% during the ICU stay [67] and a 1.45% decrease in the CSA
of the rectus femoris muscle per day [68]. In addition to muscle thickness, alterations in
muscle echotextures in the early stages of sepsis also have been reported [69]. Patients with
sepsis are generally not so easy to move to CT or MRI rooms because of the severity of
disease; therefore, ultrasonography is recommended for the diagnosis of SAMW.

Functional tests are also useful for evaluating SAMW because muscle volume does
not always correlate with muscle strength. Thus, handgrip strength, the medical research
council (MRC) scores, and the functional independence measure (FIM) are widely used for
assessing SAMW [70]. Regarding the MRC score, muscle strength is graded as follows in
12 skeletal muscle groups: 0, “no visible or palpable contraction;” 1, “visible or palpable
contraction without limb movement;” 2, “movement of the limb, but not against gravity;”
3, “movement against gravity;” 4, “movement against moderate resistance;” 5, “movement
against complete resistance (normal)” [71]. The total score ranges between 0 and 60, and the
sum score < 48 points indicates “muscle weakness.” The FIM consists of 18 items assessing
six areas of function, and each item is graded from 1 (total assistance needed) to 7 (total
independence) points. The final sum score ranges from 18 (lowest) to 126 (highest).

MicroRNAs (miRNAs) may become a potential biomarker of SAMW although further
evidence is required. Innate and adaptive immunity associated miRNA regulates the TNF
and the TLR/NF-kB signaling pathway in sepsis [72]. A study reported that myo-miRNA
(c-miR-486) and inflammation-related miRNA (c-miR-146a) in plasma may serve as a
predictive biomarker of muscle wasting [73].

5. Risk Factors

There are some risk factors in SAMW. Sepsis patients often have decreased insulin
resistance and have shown hyperglycemia. Moreover, increased levels of insulin resistance
and hyperglycemia easily cause SAMW. Thus, sepsis patients often require insulin adminis-
tration, and insulin can activate mTOR1 which promotes muscle synthesis. Glucocorticoid
use is also one of the risk factors of SAMW. Muscle wasting due to glucocorticoids is trig-
gered by the activation of ubiquitin–proteasome system and the catabolic effect may differ
with sepsis severity. Avoiding use of glucocorticoid can prevent SAMW. Myostatin may be
associated with increasing SAMW, although checking serum myostatin levels is not popular
in current clinical settings. Myostatin is both produced and released by monocytes and
promote muscle wasting through the ubiquitin–proteasome system (Figure 1). Avoiding
those risk factors can be useful for preventing SAMW.

6. Treatments

There are no established pharmacological treatments for improving SAMW. Thus,
we present several physiological interventions that are clinically used for preventing or
improving SAMW.
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6.1. Electrical Muscular Stimulation

Electrical muscular stimulation (EMS) is commonly used as a part of strength training
in the fields of orthopedics and sports medicine; it uses electrical stimulation to force
muscle contraction. Passive electrical stimulation of inactive muscles and active electrical
stimulation of voluntary muscles can be used for task-specific rehabilitation [74]. It has
also been suggested that the early introduction of EMS may contribute to reducing muscle
atrophy in ICUs [75–77]. Nevertheless, previous studies on the effects of EMS in patients
with sepsis showed conflicting results [78,79]. Low-frequency (35 Hz) electrical stimulation
was ineffective in maintaining muscle mass, whereas high-frequency (100 Hz) electrical
stimulation increased muscle strength [78,79]; therefore, frequency of EMS may have a role
in preventing SAMW.

Animal experiments have suggested that EMS improves muscle mass and reduces
markers of muscle atrophy and apoptosis [80]. EMS is expected to effectively improve
disused muscle atrophy in patients hospitalized in the ICU, where muscle atrophy is
attributed to long-term bedridden conditions and progresses with the transition from type
I to type II muscle fibers [41,42].

However, muscle atrophy resulting from sepsis causes significant atrophy of fast-
twitch fibers, requiring specific and effective fast-twitch fiber stimulation. Recruitment of
more motor units is required for the recovery of fast-twitch fibers.

6.2. Physiotherapy and Mobilization

Physiotherapy and early mobilization during ICU care are known to be effective in
reducing functional decline due to many diseases [81]. It has been reported that physio-
therapy has an improvement effect regarding the following three points.

The first is bedrest conditioning. Many studies have shown that long-term bedrest
causes many physiological changes and ailments [82]. Additionally, muscle atrophy pro-
gresses at a very high rate since sepsis itself promotes protein degradation and inhibits
protein synthesis. The second is the suppression of the activation of mechanisms leading to
sarcopenia. It has been suggested that sepsis and sarcopenia have the common risk factor
of aging [83], and although sarcopenia usually progresses with aging, it is also known to
be accelerated and exacerbated by diseases. The third is an increase in lung and tissue
aerobic capacity. Several studies have reported that physical therapy and early mobiliza-
tion interventions ameliorate the above-mentioned issues related to ICU care. In previous
studies, physiotherapy and early mobilization were shown to reduce the number of days
on a ventilator [77,81], shorten the duration of hospital stay [84], and improve functional
capacity at hospital discharge [85–87]. Furthermore, physiotherapy within 90 days of
hospitalization is associated with the risk of death 10 years later [88].

6.3. Nutritional Support

Patients hospitalized in the ICU experience accelerated systemic protein degradation.
Clinical research has suggested that nutritional therapy plays a major role in disease
outcomes and improvement [89,90]. Some advocate that high protein intake (1.5–2.5 g/kg
per day) for critically ill patients contributes to improving some clinical outcomes compared
with conventional protein intake (~0.8 g/kg per day) [91,92].

Several studies have focused on muscle fiber type shifts and nutrition. First, type II
fibers are said to undergo significant muscle protein degradation during starvation owing
to malnutrition [93]. At the onset of sepsis, a starvation response by autophagy occurs in
the body, indicating that muscular atrophy resulting from sepsis causes significant type II
fiber atrophy. Type II fibers use sugars such as glycogen as an energy source, and consumed
glycogen takes approximately 24–48 h to be resynthesized. High carbohydrate intake may
increase the recovery rate from type II fibers loss via rapid glycogen synthesis [94].

Leucine, an essential amino acid, has also been reported to provide nutritional support
for muscle synthesis. Leucine is the main component of muscle fibers, and its function
is to increase insulin secretion, helping muscle cells uptake glucose as an energy source.
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By promoting insulin secretion, leucine increases endurance and explosive power during
exercise, promoting muscle growth, repair, and strength after exercise [95].

Since the underlying mechanisms of the disease differ between patients, these nutri-
tional therapies cannot be applied uniformly to all patients. We should provide nutrition
for patients with sepsis, considering the patient’s condition and nutritional balance.

6.4. Pharmacological Intervention and Future Directions

Currently, EMS, physiotherapy, early mobilization, and nutrition support are con-
ducted for preventing and treating SAMW in clinical practice; however, no drug therapy
has been found. A new treatment method for SAMW using pharmacological therapy has
been eagerly anticipated.

Hibernations have some organ protective effects, although the cellular and molecular
basis of mammalian hibernation remains poorly understood. The proportions of monoun-
saturated fatty acids in the muscles of hibernating animals are higher during hibernation,
suggesting an increased ability to utilize fat tissues for energy [96]. To prevent muscle
atrophy, hibernating animals increase the reabsorption rate of urea from their urine, which
decreases the necessity to use amino acids by degrading protein from skeletal muscles [97].
Some mammals also retain the hibernation gene, referred to as the hibernation-specific
protein; it has been reported that this protein is produced in the liver and acts on the brain
during hibernation [98]. Hibernation-specific proteins work to overcome the winter months
and starvation by switching to a low metabolic state [99,100]. Hibernation is character-
ized by a dormant period lasting from several days to several weeks, depending on the
species, in which the basal metabolic rate drops to 2–4% of normal conditions, and the body
temperature is maintained at a few degrees above ambient temperature [101,102]. Such
hypothermia and hypometabolism lead to irreversible cell membrane damage and loss of
cellular ionic homeostasis in critical organs, such as the brain and heart in humans and
most mammals, which do not retain hibernation genes and cannot withstand prolonged
hypothermia and hypoxia. In contrast, drug-induced hibernation, “artificial hibernation,”
may maintain homeostasis of the human body by adjusting doses of the drug and keeping
moderate hypothermia.

The hibernation effect could become a treatment option for SAMW through the above-
suggested mechanisms. A drug-induced hibernation effect, namely “artificial hibernation,”
may prevent and treat SAMW.

We have shown a summary flow chart of SAMW (Figure 2).
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7. Conclusions

Muscle wasting resulting from sepsis develops in 40–70% of patients with sepsis; it
is a clinically important complication that greatly affects the exacerbation, recovery, and
prognosis of sepsis. Muscle proteins throughout the body deplete rapidly during the
initial stage of sepsis. EMS, physiotherapy, early mobilization, and nutritional support
are clinically used for the purpose of preventing or treating SAMW. Future research for
treatment focused on SAMW is warranted.
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studies and discussed the content. All authors have read and agreed to the published version of
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rides; TLR: toll-like receptor; CLP: cecum ligation and puncture; CT: computed tomography;
MRI: magnetic resonance imaging; MRC: medical research council; FIM: functional inde-
pendence measure; EMS: electrical muscular stimulation.
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