
Citation: Torri, F.; Lopriore, P.;

Montano, V.; Siciliano, G.; Mancuso,

M.; Ricci, G. Pathophysiology and

Management of Fatigue in

Neuromuscular Diseases. Int. J. Mol.

Sci. 2023, 24, 5005. https://doi.org/

10.3390/ijms24055005

Academic Editor: Denis N. Silachev

Received: 18 January 2023

Revised: 24 February 2023

Accepted: 2 March 2023

Published: 5 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Pathophysiology and Management of Fatigue in
Neuromuscular Diseases
Francesca Torri, Piervito Lopriore , Vincenzo Montano, Gabriele Siciliano, Michelangelo Mancuso *
and Giulia Ricci

Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, 56126 Pisa, Italy
* Correspondence: michelangelo.mancuso@unipi.it

Abstract: Fatigue is a major determinant of quality of life and motor function in patients affected
by several neuromuscular diseases, each of them characterized by a peculiar physiopathology
and the involvement of numerous interplaying factors. This narrative review aims to provide an
overview on the pathophysiology of fatigue at a biochemical and molecular level with regard to
muscular dystrophies, metabolic myopathies, and primary mitochondrial disorders with a focus on
mitochondrial myopathies and spinal muscular atrophy, which, although fulfilling the definition of
rare diseases, as a group represent a representative ensemble of neuromuscular disorders that the
neurologist may encounter in clinical practice. The current use of clinical and instrumental tools for
fatigue assessment, and their significance, is discussed. A summary of therapeutic approaches to
address fatigue, encompassing pharmacological treatment and physical exercise, is also overviewed.
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1. Introduction

Fatigue stands out as one of the most common symptoms in many chronic diseases
such as cancer and multiple neurological disorders, including neuromuscular diseases.
It has been extensively described and studied in diseases of the central nervous system
(CNS) starting from multiple sclerosis and neurodegenerative diseases such as Parkinson’s
disease and cerebrovascular disorders [1–3]; nowadays, it is also increasingly evaluated
and investigated in disorders of the peripheral nervous system (PNS) such as chronic
neuropathies, motoneuron diseases, and neuromuscular junction (NMJ) disorders and
myopathies (Table 1). In this setting, fatigue becomes a further addition to other symptoms
and carries a potentially disabling weight in terms of patients’ quality of life, including in-
dependence, adherence to physiotherapy, and working and social interactions. While more
obvious and expected in NMJ disorders, some red flags such as the incapacity to recover
from fatigue in a certain amount of time or by sleep, or fatigue being disproportionate to
the task or also being present at rest [4–6] can be suggestive of a neuromuscular disorder,
whether isolated or accompanied by other clinical features.

Kluger et al. [7] proposed a taxonomy that separates the concept of fatigue into
two dimensions: (1) performance fatigability, meaning an objective measure of performance
decrease over a period of time of exertion; (2) perceived fatigue, which includes all the
subjective sensations that influence the homeostasis of the performer and is considered as a
complex entity involving the central and peripheral nervous system along with metabolic
alterations and, last but not least, psychological components. It is then evident that a
significant amount of overlap with other terms and conditions, such as weakness and
fatiguability, is present; hence, the distinction of these features and their assessment during
patients’ examination are crucial. Nonetheless, to provide a comprehensive understanding
of fatigue, several scenarios must be considered, with all of them being referrable under
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the same semantic category: fatigue can indeed manifest as a subjective feeling of tiredness
variably associated with physical exertion, or as the need to interrupt a motor task, feeling
unable to complete it, or applying maximum force to it.

Table 1. Neuromuscular diseases associated with fatigue.

Neuromuscular Diseases Associated with Fatigue

Neuromuscular junction diseases (Myasthenia Gravis, Congenital Myasthenic Syndromes)
Muscle Channelopathies

Charcot–Marie–Tooth disease (CMT)
Guillain–Barre’ syndrome (GBS)

Infectious diseases (poliomyelitis, Lyme disease, viral infections)
Chronic inflammatory demyelinating polyneuropathy (CIDP)

Muscular Dystrophies
Metabolic (glycogenoses, lipid storage myopathies)

Primary mitochondrial diseases
Inflammatory Myopathies

Motor neuron disease (Amyotrophic Lateral Sclerosis—ALS, Spinal Muscular Atrophy—SMA,
Spino-bulbar Muscular Atrophy—SBMA)

Overall, the origin of those symptoms can be found in alterations of the CNS—
a so-called “central fatigue”; of peripheral nerves, NMJ—peripheral fatigue; of muscles
themselves (proper muscle fatigue); each component of this complex chain interplays with
the others and multiple mechanisms can be involved as the underlying cause of fatigue.

Given its prevalence in neuromuscular disorders and its burden on normal life activi-
ties of patients, fatigue has been receiving growing attention with the development of more
general or disease-specific scales and questionnaires that are also compared to physical
performance in order to assess disease progression and efficacy of treatment. Determinants
of fatigue in each kind of neuromuscular disorder are variable and range from macroscopic
skeletal muscle or extramuscular changes to biochemical alterations in key points of cellular
metabolism and homeostasis.

This narrative review aims to provide an overview on the pathophysiology of fatigue
and its main determinants in some of the most common neuromuscular diseases such
as muscular dystrophies, metabolic and mitochondrial myopathies, and Spinal Muscular
Atrophy (SMA), and to underline the significance of fatigue as an outcome measure in
clinical practice and trials; finally, present management strategies of fatigue as a symptom
are discussed.

This review was not systematic and followed no specified protocol. We conducted our
search on the PubMed database using the following keywords: “fatigue”, neuromuscular
disease”, “metabolic myopathies”, “muscular dystrophies”, “mitochondrial diseases”, and
“spinal muscular atrophy”. No standards or protocols guided the review. Except the iconic
and historical articles, the most recent literature (last 10 years) was prioritized.

2. Pathophysiology of Fatigue
2.1. Muscular Dystrophies

Muscular dystrophies are hereditary degenerative disorders of skeletal muscle, some-
times accompanied by a multisystem involvement [8]. Fatigue is a frequent complaint in
muscular dystrophies [9]. In a myopathic patient, fatigue can present acutely, during or at
the end of effort, or as the impossibility to perform a motor task, mainly as a consequence of
an energetic exhaustion or the absence of a minimum level of muscle strength required; or as
a chronic, general condition, present also at rest and impacting on the patient’s capability to
even begin the motor task and maintain it. Both central and peripheral fatigue are involved
in muscular dystrophies: while central fatigue can be addressed to CNS involvement in the
pathology and psychosocial factors, peripheral fatigue can be either due to abnormalities in
the coupling of excitement–contraction in the muscle, the metabolic balance of substrates,
and vasodilation phenomena in response to exercise by nitric oxide (NO) and cellular
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damage [10,11]. From a clinical point of view, in fact, acute fatigue can derive from the
rupture of the sarcolemma after repetitive or eccentric exercise, which, if massive, can
also degenerate in a chronic exhaustion that may last for days after exertion; on the other
hand, several factors are involved in chronic fatigue, such as generally reduced mobility
driving additional muscle wasting or increased energy requirements from contractures,
deformities, and compensational strategies in walking, standing, and sitting. In particular
diseases, such as Myotonic Dystrophy type 1, an avoidant personality is frequently accom-
panied by reduced motivation, depression, and perceived fatigue. In addition, respiratory
involvement, very frequent in most muscular dystrophies, can impact through constant
poor blood oxygenation and sleep disturbances, leading to daytime sleepiness and fatigue;
this is also true for cardiological involvement, which is prominent in Dystrophinopathies,
Myotonic Dystrophies, and some Limb Girdle Muscular Dystrophies (LGMDs).

At a biological level, the sarcolemma of striated muscle fibers is composed of the
dystrophin–glycoprotein complex (DGC), which includes cytoskeletal proteins (dystrophin,
syntrophins), the dystroglycan complex, and the sarcoglycan (SG) complex, providing
mechanical linkage between the extracellular matrix and the cytoskeleton. The integrity of
this complex structure is necessary to avoid sarcolemma damage and rupture during mus-
cle contraction. LGMDs include four forms involving the four sarcoglycan glycoproteins,
named sarcoglycanopathies (LGMD2D, 2E, 2C, and 2F), leading to an increased damage
susceptibility of the sarcolemma. Also in dystrophinopathies, although at a different extent
in Duchenne muscular dystrophy (DMD) compared to Becker muscular dystrophy (BMD),
a similar damaging mechanism is present. The DGC also plays a role in molecular signaling,
for example, through neuronal nitric oxide synthase (nNOS), which is anchored at the
sarcolemma [12]. Nitric oxide (NO), formed by nNOS, is a molecule that regulates, among
others, muscle contraction, blood flow and oxygenation, and cellular development. In phys-
iological conditions, NO modulates sympathetic vasoconstriction. It has been hypothesized
that loss of nNOS, which is normally anchored to the sarcolemma, in muscular dystrophies
involving dystrophin and the DGC, may lower the amount of NO and its protective effect
against ischemia that verifies during contraction, leading to higher reactive-oxygen species
(ROS) and superoxides [13]. In early experiments on murine models, dystrophin loss was
demonstrated to impair the vasoconstrictor response [14], with dystrophin-deficient mdx
mice as well as nNOS null mice being unable to regulate muscle blood flow during exertion,
leading to muscle focal necrosis. Fanin et al. [11] analyzed muscle biopsies from 32 patients
with 7 forms of molecularly defined LGMD and 5 patients with DMD, providing evidence
for a role of nNOS in affecting the disease phenotype. Moreover, sarcolemmal nNOS
expression correlated with muscle fatigue and other clinical features, including dilated
cardiomyopathy. Similar data come from studies on sarcoglycan-deficient muscle, with
more pronounced NOs reduction in patients with complete SG complex deficiency (such
as beta-sarcoglycanopathy) [15]. Recently, a model of reproduced contractile phenotypes
from dystrophin-deficient myotubes using patient-derived iPSCs, with Electrical Field
Stimulation (EFS)-based training programs, was studied by Uchimura et al. [16]. In their
study, dystrophin does not appear as necessary to muscle fiber functional maturation, while
it is required for cells contraction, implying functional deterioration rather than cellular
damage, in contractile dysfunction. As one could speculate, inflammation could also be a
player in fatigue generation; nonetheless, trials in DMD and sarcoglycanopathy patients
with Deflazacort or Prednisone [17] did not find a correlation between the severe fatigue
perceived by patients and the level of inflammation, while pain, lack of muscle force, and
permanent weakness were related to fatigue. As for LGMDs and congenital myopathies,
Caveolin-3 [18], Myotilin, and Titin [19] also seem to be involved in molecular intracellular
signaling in vital processes such as cell regeneration and repair through nNOS.

Myotonic dystrophy type 1 (DM1) is the one of the most common muscular dys-
trophies in adult patients and is caused by an unstable expansion of CTG repeats in the
DMPK gene; clinical features of DM1 include myotonia, mainly distal muscle weakness,
and multisystemic involvement, including respiratory function, the heart, and the CNS.
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Fatigue and daily sleepiness are some of the main complaints from patients with DM1, with
a multifactorial genesis of such symptoms, including obstructive sleep apneas, heart failure,
and CNS involvement. In a study by Angelini et al. [9] involving muscle biopsies and brain
MRI, the authors conclude that the muscle and brain are independently involved in DM1,
with a central component of fatigue due to cortical atrophy and white matter lesions, and a
peripheral component due to the atrophy of muscle fibers.

2.2. Metabolic Myopathies

Metabolic myopathies as a group, including muscle glycogenoses and lipid my-
opathies, share the impairment of the generation of energetic substrates in a sufficient
manner to sustain exercise [20]. In these conditions, muscle weakness and atrophy can
be present at variable extents, ranging from the sparing of muscular trophism to degen-
erative changes, while exercise intolerance, muscle pain, contractures—that need to be
distinguished from cramps, as they are electrically silent at EMG—and rhabdomyolysis
produced during or after exertion are common.

Glycogen storage disorders (GSD), or glycogenoses, are a vast family of inherited
autosomal recessive disorders, each one characterized by reduced or altered enzymatic
activity at a certain point of the glycolytic pathway; among them, acid alfa-glucosidase
deficiency (Pompe disease, GSD II), Cori disease (GSD III), Andersen disease (GSD IV),
myophosphorylase deficiency (McArdle disease, GSD V), phosphoglucomutase deficiency
(GSD XIV), phosphorylase B kinase deficiency (GSD VIII), phosphofructokinase deficiency
(Tarui disease, GSD VII), muscle phosphoglycerate mutase (GSD X) and kinase (GSD IX)
deficiencies, muscle B-enolase deficiency (GSD XIII), and muscle lactate dehydrogenase
deficiency (GSD XI) are the ones with a possible or prominent myopathic phenotype [21].
In this group, the most common forms in adults are Pompe disease, caused by biallelic
mutations in the GAA gene encoding for a lysosomal enzyme responsible for total hy-
drolysis of glycogen to glucose, and McArdle’s disease, caused by pathogenic variants in
the PYGM gene, encoding for the muscle-specific isoform of the glycogen phosphorylase
enzyme, which plays a pivotal role in the first step of glycogenolysis, that is, the release of
glucose-1-phosphate monomers in muscle fibers.

In these disorders, at a biochemical level, a variety of metabolic abnormalities are
involved in reduced exercise tolerance and fatigue. Dosing lactate blood levels during and
after effort (i.e., forearm ischemic test) show a fall of venous lactate levels during exercise in
patients with McArdle disease and phosphofructokinase deficiency, due to the nearly com-
plete metabolic block that characterizes these forms; in other muscle glycogenoses in which
enzymatic activity is somewhat preserved at a certain level, lactate production is present,
although not comparable with healthy subjects. Those processes lead to the absence of
the normal fall in pH, leading to alkalosis, which is particularly true in McArdle’s disease,
where one of the main affected pathways involves creatin kinase, resulting in higher AMP
and ammonia production and reduced ATP creation. In McArdle’s disease, the impaired
glycolytic process then might interfere with the membrane pump function and contribute
to the abnormal fatigue and sarcolemmal damage [22]. Furthermore, also altered oxidative
homeostasis has been proposed as a pathomechanism in muscle glycogenoses [23], thus
expanding the consequences of these diseases also to aerobic metabolism, not only anaero-
bic. In fact, blocked glycogenolysis lowers the production of 4-carbon tricarboxylic acid
(TCA) cycle intermediates (i.e., fumarate, malate, oxaloacetate), which slows the rate of
generation of reducing agents such as NADH and FADH2, resulting in the impairment of
energy production, and the reduced capacity of extracting oxygen from circulation results
in an increased transport of oxygen by vessels. The various diseases differ based on the
response to the presence of the extramuscular substrate: in the case of McArdle’s diseases,
this is blatantly exposed by the “second wind” phenomenon, in which the patients are
able to better sustain exertion after stopping and resuming exercise, which they performed
with reduced capacity at the beginning, due to the capability of muscle cells to uptake
glucose from the bloodstream and hepatic glycogen [24]. In Pompe disease, the enzymatic
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activity reduction results in impaired lysosomal degradation of glycogen, leading to the
accumulation in tissues and altered glucose availability as an energetic substrate. At a
molecular level, a variation in metabolome profile was demonstrated in KO mice models
for Pompe disease, with a decrease in glycolysis and a metabolic shift from carbohydrate
to lipids as an energy source [25]; similarly, the low glycolysis level in human primary
myoblasts from Pompe disease patients and the progressive lysosomal glycogen accumu-
lation in the tissue appear to fuel negative events such as altered autophagy and muscle
proteostasis, and increments in oxidative stress that seem to be only partially relieved
by Enzyme Replacement Therapy (ERT) [26]. Moreover, GSD II is often characterized by
respiratory muscles involvement including both the diaphragm and accessory muscles,
and sleep apneas are a common feature in late-onset patients; as seen before, poor blood
oxygenation during the night hours can give rise to daytime sleepiness and fatigue in
general. Moreover, in Pompe disease, the picture is further complicated by the presence
of CNS involvement in infantile and juvenile forms, with structural changes at cortical,
brainstem, and spinal cord levels, so an important central component of fatigue can be
taken into account [27,28].

Lipid metabolic disorders can affect many tissues, among which the skeletal muscle
and heart are frequently involved. Lipid myopathies (LMs), in particular, are rare diseases
that, similarly to muscle glycogenoses, can present acutely or with a chronic course. Age at
onset and clinical features are extremely variable, but in many cases, fatigue and exercise
intolerance along with muscle weakness can be recognized [29]. Among them, Primary
carnitine Deficiency (PCD) and Multiple Acyl-Coenzyme A Dehydrogenase Deficiency
(MADD), in their adult, late-onset forms, are characterized by the presence of fatigue and
exercise intolerance as main symptoms. PCD is an autosomal recessive disease caused by
mutations in the SLC22A5 gene, encoding for the Organic Cation/Carnitine Transporter 2
(OCTN2) protein. When manifesting in infancy or childhood, clinical features are severe
and involve liver, skeletal, and cardiac muscle, with metabolic disturbances such as hy-
perammonemia and hypoketotic hypoglycemia, leading to hepatic encephalopathy. In
adult-onset forms, which stand at the end of the clinical spectrum, the main clinical fea-
tures include muscular weakness and fatigue [30]. Carnitine is necessary for the transport
of long-chain fatty acids into the mitochondrial matrix, in order to proceed to fatty acid
oxidation. Mutations impact on the transporter activity, with the residual level correlating
with disease severity.

MADD, also known as Glutaric Acidemia Type II, is an autosomal recessive genetic dis-
order caused by mutations in the Electron Transfer Flavoprotein (ETFA, ETFB) or Electron
Transfer Flavoprotein Dehydrogenase (ETFDH) genes, encoding for the α and β subunits
of Electron Transfer Flavoprotein (ETF) and Electron Transfer Flavoprotein-Ubiquinone
Oxidoreductase (ETF-QO) [31]. Mutations lead to impairment of the transfer of electrons
from acyl-CoA dehydrogenases, compromising the β-oxidation process of fatty acids [31].
In a minority of cases, other genes involved in riboflavin transport are affected. MADD
can present with a neonatal, severe form characterized by life-threatening metabolic im-
balances, hypotonia, and cardiomyopathy, or an adult-onset form, frequently associated
with mutations in the ETFDH gene, mainly expressed by exercise intolerance, myalgia, and
fatigue. Both in PCD and MADD, the presence of fatigue is then ascribed to the impairment
of the energetic production pathway involving fatty acids oxidation and alterations of
cellular oxidative stress levels.

2.3. Mitochondrial Myopathies

Perceived fatigue and exercise intolerance are hallmark symptoms of primary mi-
tochondrial diseases (PMDs) pointing out how mitochondrial dysfunction is a putative
biological mechanism for fatigue.

PMDs are genetic metabolic disorders characterized by defects in oxidative phospho-
rylation with an estimated prevalence of 1:4300 [32]. Their pathophysiology is complex
involving genetic mutations in both mitochondrial (mtDNA) and nuclear DNA with any
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inheritance pattern. PMDs are clinically heterogeneous, can occur at any age, and charac-
teristically involve multiple systems, typically affecting organs that are highly dependent
on aerobic metabolism [33]. Mitochondrial myopathies (PMMs) are a common mani-
festation of PMDs and are characterized by a predominant, but not exclusive, skeletal
muscle involvement [34]. Extrinsic ocular muscles are commonly affected, manifesting as
chronic progressive external ophthalmoplegia (PEO). Segmental muscles involvement may
be isolated or associated with PEO [35]. Myopathies may be combined with additional
“mitochondrial red flags” (such as sensorineural hearing loss, optic atrophy, peripheral
neuropathy, stroke-like episodes, seizures, ataxia, failure to thrive, developmental de-
lay/regression, cognitive decline, diabetes, short stature, cardiomyopathy, nephropathy,
hepatopathy) or be part of a component of specific mitochondrial syndromes (i.e., Kearns–
Sayre syndrome, MERRF) [32,33]. Clinical manifestations of mtDNA-related PMD depend
largely on the relative proportion between normal and mutant mtDNA variants (threshold
effect) [32]. The mutation load (heteroplasmy) at which muscle fibers’ oxidative capacity
becomes impaired is closer to 65% in patients harboring mtDNA point mutations and 50%
in those with large-scale mtDNA rearrangements (i.e., single deletion) [36].

Regardless of the phenotype, PMD patients experience exercise intolerance and fatigue
in about 20% and 60–70% of cases, respectively [37,38], correlating with disease severity,
with an increased risk of comorbid conditions such as depression, anxiety, and sleep disor-
ders and lower psychosocial functioning and quality of life [35]. Mitochondrial dysfunction
reduces muscle fibers’ oxygen extraction rates and their capacity to generate ATP, depletes
phosphocreatine pools, and boosts lactate and free radical generation, increasing muscle
dependence on anaerobic metabolism [35,38]. It has been shown that the increased levels of
lactate in PMMs during rest and exercise is related to differences in lactate release/uptake
rather than a global limitation in total lactate oxidation [38]. Moreover, the heavy reliance
on anaerobic glycolysis of oxidative defective muscle fibers causes a fast depletion of
glycogen storage, resulting in the recruitment of additional fibers for contraction, which,
in turn, induces premature fatigue. Interestingly, muscle fuel metabolism preferences
during exercise do not differ in PMM patients compared with healthy subjects [38]. At the
whole-body level, in PMMs patients, the mtDNA mutation load inversely correlates with
VO2max, which is the maximal rate of oxygen used for ATP production of the working
muscle, and directly correlates with ventilator response rate during exercise; moreover,
mitochondria have normal blood oxygen extraction rates at rest but are unable to increase
the extraction level during exercise, resulting in an arterialization of muscular venous blood
during fibers contraction. The limited oxygen extraction occurs along with an exaggerated
cardiac output and a paradoxical local hyperemic response possibly mediated by the local
release of ATP; this, in turn, overrides the vasoconstrictive effect of systemic norepinephrine
released during exercise (“functional sympatholysis”) [35,38].

2.4. Spinal Muscular Atrophy

Spinal muscular atrophy (SMA) is an autosomal recessive disease resulting from
homozygous mutations in the Survival Motorneuron 1 (SMN1) gene and the consequent
production of a non-functioning SMN protein [39]. In affected individuals, disease severity
is partially modulated by a variable expression of the SMN2 gene, depending on the
number of copies of the gene, with higher SMN2 copies generally associated with milder
phenotypes [40]. The SMN protein is present in all tissues [41], but the detrimental effect
of the mutation is predominant in lower motor neurons, leading to muscle weakness,
atrophy, and reduced motor function, across a phenotypical spectrum ranging from severe,
life-threatening conditions in the perinatal era to late-onset forms. Along with weakness,
fatigue is a common complaint in SMA patients. Apparently, motor neurons are not the
only structures of the nervous system affected in SMA; in fact, neuromuscular junction
(NMJ) abnormalities during development have been shown in SMA animal models [42]
and in SMA patients with repetitive stimulation, supporting the connection between
NMJ dysfunction and fatigue in this disease [43]. Moreover, skeletal muscle also shows



Int. J. Mol. Sci. 2023, 24, 5005 7 of 18

abnormalities such as mitochondrial depletion and altered biogenesis in relation to SMN
protein reduced expression [44]. A study by Montes et al. [45] focusing on the metabolic
function of muscle during exercise with near-infrared spectroscopy in SMA patients reports
decreased aerobic capacity to use oxygen for energetic metabolism as a failure in increasing
deoxygenated hemoglobin despite the workload increase. In addition, evaluating the Six
Minutes Walking Test (6MWT) and considering fatigue as a decrease in gait velocity from
the first to the last minute, the authors found a 17% speed reduction in more than 2/3 of the
patients, notwithstanding treatment with Nusinersen, while patients with neuromuscular
diseases other than SMA did not show similar levels of fatigue. The authors conclude that
SMA patients’ metabolism may be predominantly anaerobic, relying largely on glycolytic
pathways, compared to healthy controls, and address mitochondria dysfunction and
biogenesis downregulation—and the consequent NMJ and muscle impairment—to explain
such abnormalities [46], which may be a downstream effect of SMN depletion.

Considering the tight relationship between fatigue and mitochondria, it is not sur-
prising that abnormalities in mitochondrial biogenesis and function have been reported
in animal and human models of SMA. Various studies have proved the impairment of
mitochondrial respiration paralleled by reduced expression of nuclear and mitochondrial-
encoded subunits of the OXPHOS chain [47], along with increased ROS and oxidative
stress effects [48]; SMN1 and SMN2 transcription regulation is regulated in part by ROS,
as demonstrated in experiments with paraquat (an oxidative-stress-inducing factor) that
result in reduced SMN protein levels [49]. In addition, as the pivotal role of mitochondria
in the activation of the intrinsic apoptosis’ pathway is well recognized [50], disturbances of
molecular pathways involving Bcl-2 and p53 proteins have been demonstrated in SMA [51].
Finally, mitochondrial biogenesis appears to be impaired in SMA, if considering as a surro-
gate measure the amount of mtDNA and number of mitochondria, which has been reported
in patient’s muscle tissue [52] with a correlation with disease severity and phenotype.

These findings are consistent with evidence coming from real-life data on treatment
with Nusinersen, in which therapy reduces fatigue and increases walking distance at
6MWT [53]. Interestingly, recent data [43] show a failure in restoring NMJ function in adult
patients treated with Nusinersen; the authors suggest as a possible explanation to this
discrepancy that the intrathecally administered medication may not directly reach NMJ
and peripheral tissues. Additionally, growing evidence from patients treated with “SMN-
replacing” molecules show a residual degree of disease progression and only partially
relieves it, suggesting that SMN depletion may not be the only causative mechanism in SMA
to act against [54]. As newborn screening programs and treatment become increasingly
available for SMA, addressing the pathophysiology and management of fatigue and the
other ancillary symptoms that are not directly positively affected by SMN1-targeting medi-
cations becomes essential to optimize patients’ quality of life and overall health conditions.

A comprehensive overview on pathophysiological mechanisms involved in the gener-
ation of fatigue in the considered disorders is provided in Figure 1.
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Figure 1. Overview on pathophysiological mechanisms involved in fatigue and exercise intolerance
in neuromuscular disorders.

3. Fatigue Assessment and Utility as Outcome Measure

Assessment of both the perceived and performance-related dimensions of fatigue
is crucial, also considering that it may not be obvious to recognize a strong association
between the two, suggesting that many external factors (i.e., psychological, motivation, pain,
and sleep disturbances) may be involved in determining fatigue as a whole; consequently,
routine evaluations as well as clinical trials should include measuring tools capturing
both. In this perspective, especially in adult patients with slowly progressive conditions,
fatigue should be considered as an outcome measure, as it may vary at a different pace
compared to other parameters such as strength, speed, or abnormalities at muscle MRI.
In its subjective dimension, fatigue is commonly explored by self- or clinician-assessed
questionnaires. Clinical and laboratory assessment tools for fatigue in neuromuscular
diseases are summarized in Table 2.

Table 2. Overview of fatigue assessment tools in different neuromuscular diseases.

Tool Specific/Validated for

Patients reported outcome measures (PROMs)

Fatigue Severity Scale (FSS) Pompe Disease, SMA

Checklist Inventory Scale (CIS) OPMD, DM1

Pediatric Quality of Life Inventory (PedsQL) DMD, SMA

Multi-dimensional Fatigue Inventory (MFI) SMA

Functional outcome measures

6 Minutes Walking Test (6MWT)

Box and Block test SMA

9HPT SMA
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Table 2. Cont.

Tool Specific/Validated for

Cycle ergometry
VO2, VCO2, respiratory exchange ratio, heart rate,
minute ventilation, rating of perceived exertion
cardiac output, lactate level and bicarbonate buffering

Ergoreflex sensitivity PMDs

Plasma lactate during and post sub-maximal exercise PMDs

3.1. Patients Reported Outcome Measures (PROMs)

The Fatigue Severity Scale (FSS), one of the most widely used assessment tools, was
developed to measure subjective fatigue in patients with Multiple Sclerosis and Systemic
Lupus Erythematosus; it has then been applied to multiple chronic conditions, including
neurological and neuromuscular disorders. First published in 1989, the scale explores social,
cognitive, and physical consequences of fatigue through 9 items, ranked from “strongly
agree” to “strongly disagree” [55]. A study involving 225 adult Pompe disease patients
demonstrated a high prevalence of the symptom with higher mean levels of fatigue in PD
patients compared to healthy controls, without a clear correlation to sex, age, or disease
duration, while increased fatigue was found in patients with respiratory involvement or
using a wheelchair [56]; it is worth mentioning that in a study on ERT efficacy in LOPD
patients, a reduction in the feeling of fatigue and augmented energy were among the first
signs reported by patients [57], without a relationship with the motor improvement. The
scale was also validated in SMA patients, where it did not show correlations with strength
and motor endurance at 6MWT [58].

Another frequently employed scale in neuromuscular diseases and for clinical trials
is the Checklist Inventory Scale (CIS), a 20-item questionnaire designed to assess fatigue
severity, concentration, motivation, and physical activity, with high scores indicating high
levels of fatigue. The scale was used to evaluate fatigue in patients in many neuromuscular
disorders such as Oculopharyngeal Muscular Dystrophy (OPMD) [59], disclosing diffusely
severe fatigue in the study cohort, and DM1 [60].

The Pediatric Quality of Life Includenventory (PedsQL) Multidimensional Fatigue
Scale (MFS) is another commonly utilized tool exploring general fatigue, sleep-related
fatigue, and cognitive fatigue in pediatric patients with chronic illnesses, including cancer,
chronic kidney disease, and neuromuscular disorders. It was applied in DMD pediatric
patients [61] and appears to correlate with depressive symptoms and sleep disturbances; it
is also used in SMA [62]. The scale is particularly useful in children and adolescents with
chronic neuromuscular diseases as it permits the identification of modifiable factors (such
as sleep disorders and psychological issues) contributing to the symptom of fatigue.

The Multi-dimensional Fatigue Inventory (MFI) is another commonly used tool for
the characterization of phenomenology and severity of fatigue, which has been validated
for neuromuscular diseases such as ALS and SMA [63,64]. The scale investigates five do-
minions including general and physical fatigue, reduced activity, reduced motivation, and
mental fatigue, with higher scores obtained indicating higher levels of fatigue. Kuo et al. [65]
investigated fatigue in RYR1-related disorders with MFI and discovered a higher prevalence
of fatigue in patients compared to the general population. Recently, Binz et al. described
the use of MFI in a small group of adult SMA patients receiving Nusinersen treatment and
found an overall reduction in fatigue with therapy over time [66].

3.2. Functional Outcome Measures

As for motor measures, one of the most frequently employed tests is the 6MWT, in-
cluded also in many clinical trials for neuromuscular diseases such as DMD, SMA, and
PMMs. Montes et al. demonstrated the peculiar changes in 6MWT in diverse neuromuscu-
lar diseases and its discriminative power between weakness, considered as a reduction in
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total distance walked compared to the prediction, and fatigue, computed as a d”crement in
distance walked from the first to sixth minute. The authors includeded patients affected by
dystrophinopathies, SMA, mitochondrial disorders, and other energy-depletion syndromes.
The 6MWT appeared to optimally discriminate between conditions with predominant
fatiguability more than weakness, such as SMA and mitochondrial diseases, further sup-
porting the presence of varying and independent pathophysiologic mechanisms of fatigue
in several neuromuscular conditions [67]. In DMD, the 6MWT has been historically em-
ployed as a major outcome measure in natural history studies and clinical trials, from
steroids to AONs and small molecules [68,69], although more as a measure of weakness
than fatiguability: along with the aforementioned work by Montes, a study from 2020 on
55 treated DMD boys failed to recognize a significant decrement in distance from the first
minutes to the sixth, suggesting that 6MWT may not be a sensitive outcome measure to
consider in trials for DMD with regard to fatigue [70]. Still, fatigue remains one of the
main complaints of DMD patients; therefore, the need for motor scales able to capture
it seems to remain still unmet. In Pompe disease, the 6MWT is used in natural history
studies and to demonstrate efficacy of treatment with ERT, such as in the most recent trial
for Avalglucosidase alfa (COMET study) [71], showing an overall improvement of distance
and of motor endurance. The 6MWT is frequently used also in clinical practice and trials in
PMM, as it also correlates with the perceived exercise intolerance, pain severity, and fatigue.
6MWT slope has also been proposed as a derived measure of fatigability in PMM [34].
More recently, based on the Endurance Shuttle Walk Test developed by Revill et al. [72]
as a controlled paced walking test for chronic obstructive pulmonary disease, Bartels et al.
elaborated a version suitable for assessment of fatiguability in non-ambulatory SMA pa-
tients, named Endurance Shuttle Box and Block test and 9HPT [73]. The Box and Block
test measures upper limb fatiguability reproducing also daily life activities [74], while the
9HPT was validated in SMA 2 by Stam et al. [75].

3.3. Cycle ergometry, Ergoreflex Sensitivity, and Laboratory Measures

A useful tool in mitochondrial myopathies to assess exercise intolerance is cycle
ergometry with measurements of VO2, VCO2, respiratory exchange ratio, heart rate, minute
ventilation, rating of perceived exertion, and cardiac output. In PMMs, cardiopulmonary
exercise testing shows a reduced VO2 peak and an early lactic acidosis [76]. Although the
absolute values of blood lactate are not always higher than those of the normal population,
the higher rate of lactate accumulation and bicarbonate buffering is responsible of abnormal
values of respiratory exchange ratio [76]. PMM patients show increased cardiac output
relative to VO2 level and ventilation. A linear correlation between peak VO2 and peak
systemic arteriovenous O2 difference indicates that muscular oxidative capacity is limited
by mitochondrial oxygen extraction rate [76]. Cardiopulmonary testing can also serve as a
differential diagnosis tool, as different metabolic myopathies and mitochondrial diseases
show different gas exchange and metabolite profiles in terms of V.V.O2 and lactic acid
buffering by bicarbonate; conversely, disturbances of lipid metabolism do not show major
abnormalities [76].

Ergoreflex sensitivity is another measure of fatigue in PMD patients. The ergoreflex
is a neuromuscular reflex that regulates ventilation and the sympathetic response during
exercise; its sensitivity can be quantified as the percentage of the ventilatory response to
exercise maintained by post-handgrip regional circulatory occlusion compared to recovery
without arm regional circulatory occlusion. Ergoreflex sensitivity is markedly enhanced in
PMD patients compared with controls and correlates with several parameters of exercise
performance and autonomic function [77,78]. PMD patients have a low anaerobic threshold,
and lactic acidosis, even at rest, has been used as a pivotal biomarker for PMD diagnosis.
However, several studies demonstrated its poor diagnostic sensitivity [32,79]. In any case,
plasma lactate sampling during sub-maximal exercise and post maximal exercise represent
a standardized method for exercise intolerance measurement in PMDs. During exercise,
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higher levels of lactate related to O2 utilization closely correlated with muscle oxidative
defects [80].

4. Management and Treatment of Fatigue

Given the multifaceted nature of fatigue, its management may include several ap-
proaches working in parallel, from resolution of sleep disturbances to psychological inter-
vention to pharmacological therapy directed to pathogenic factors and exercise therapy.
Focusing on the main aforementioned determinants of fatigue, some experimental or
already existing approaches are worth mentioning.

4.1. Pharmacological Treatment
4.1.1. Muscular Dystrophies

In muscular dystrophies, muscular atrophy and motor deconditioning must be avoided
at the maximum possible extent in order to preserve functional tissue and increase motor
endurance. Supplements are commonly prescribed with variable results and controver-
sial evidence [81]; for instance, carnitine is a well-known cellular metabolism supporter
involved in fatty acid transport into mitochondria leading to ATP production and is fre-
quently administered in myopathies. Nonetheless, clear scientific evidence for efficacy in
improving exercise in a healthy population and muscle diseases is lacking [82]. Creatine is
an anabolic compound that has been investigated in a series of chronic and acute condi-
tions; its efficacy in improving muscle strength, the subjective feeling of energy, and activity
in dystrophinopathies have been explored and confirmed by a series of studies [83–86];
Uchimura et al. [16], in their cellular model of contractile DMD myotubes, also demon-
strated a partial rescue in contraction decline by administration of creatine. Different results
come from studies on Myotonic Dystrophy type 1 and 2 that failed to demonstrate an
improvement in physical function. On a more speculative side, based on the interaction
between the cyclic Guanosine monophosphate (cGMP) pathway regulated by NO and
nucleotide phosphodiesterase PDE5, a trial has been conducted with sildenafil, a PDE5
inhibitor, to improve cardiomyopathy, unfortunately without success [87]. The central role
of NO in maintaining microcirculation and oxidative stress balance and its misregulation
shared by dystrophinopathies, LGMDs, and others, nonetheless, underline its promising
role as a modifiable factor to target.

4.1.2. Metabolic Myopathies

Pompe Disease has witnessed the availability of an effective treatment through Enzyme
Replacement Therapy (ERT) since the first approval by the FDA in 2006; the efficacy of ERT
on strength and fatigue has been explored in several studies [88]; conversely, ERT shows a
moderate effect in stabilizing ventilatory function [88,89].

In McArdle’s disease, given the substrate dependence for motor performance, one of
the most common approaches involves dietary intervention with carbohydrate supple-
mentation; nevertheless, a systematic review from 2014 did not succeed in identifying a
clearly effective treatment in spite of low-quality evidence on the beneficial effect with
supplements such as creatine, oral sucrose, ramipril, and a carbohydrate-enriched diet [90].

In PCD, both infantile and adult forms are treated by L-carnitine intravenous or oral
supplementation. L-carnitine may also act through an antioxidant action in lowering fatigue
and improving muscle strength [91]. Avoiding fasting and frequent meals also reduce the
risk of hypoglycemia and metabolic imbalance that are frequent in this disorder. Several
supplements have been anecdotally tried in lipid myopathies including PCD, MADD, and
Neutral Lipid Storage Disorders (NLSD). MADD shows a certain degree of response to
riboflavin [92]. Other compounds, such as CoQ10 and fenofibrates, have been reportedly
tried in single patients with positive results [93–95].
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4.1.3. Mitochondrial Myopathies

In PMDs, treatment has been mostly focused on symptomatic management and sup-
portive measures, such as treatment of catabolic stress and infections, exercise, and the use
of a combination of vitamins and supplements (often referred to as “mito-cocktails”) [32].
A randomized clinical trial in 30 patients with PMDs showed a minor effect of Coenzyme
Q10 on cycle exercise aerobic capacity and post-exercise blood lactate, even though it did
not affect other variables such as strength or resting blood lactate [96]. Many molecules
and compounds are under study in PMMs targeting, among others, fatigue and exercise
tolerance: Elamipretide, a tetrapeptide that associates with cardiolipin, maintaining mi-
tochondrial morphology, metabolic activity, and acting as an antioxidant, was assessed
in a phase III, randomized, double-blind, placebo-controlled clinical trial (MMPOWER)
for PMM patients. A course of 24 weeks of elamipretide administration did not meet
the primary endpoints (6MWT and patient-reported fatigue score). However, a post hoc
subgrouping analysis revealed a treatment effect based on the 6MWT in the nuclear DNA
mutation subgroup. A new clinical trial is currently running to further investigate elamipre-
tide in this subgroup of patients [97]. Furthermore, elamipretide was also tested in a phase
II, randomized, double-blind, placebo-controlled crossover study with an open-label follow-
up in patients with Barth syndrome (TAZPOWER). Barth syndrome is a PMD characterized
by dilated cardiomyopathy, skeletal myopathy, neutropenia, and short stature. During the
first 12 weeks, the study failed to meet its primary endpoints (6MWT and patient-reported
fatigue scores improving), which were significantly improved at the open-label follow-up
(36 weeks). Moreover, echocardiographic assessments indicated an improvement in cardiac
function at the open-label follow-up [98]. Omaveloxolone, a semi-synthetic triterpenoid
that potentiates NRF2 action on mitochondrial biogenesis, was assessed in a phase II,
randomized, double-blind, placebo-controlled study (MOTOR trial) for PMM patients.
Overall, 12 weeks of treatment with omaveloxolone were well tolerated. Although no
significant differences in primary and secondary outcomes were observed (peak cycling
exercise workload and 6MWT), treatment reduced heart rate and lactate levels during
submaximal exercise, indicating improved mitochondrial bioenergetics and submaximal
exercise tolerance [99,100]. NAD+ (nicotinamide adenine dinucleotide) is a cofactor for
SIRT1, which activates mitochondrial biogenesis via PGC-1α. NAD+/NADH ratio control
is also essential for intramitochondrial metabolic homeostasis. NAD+ deficiency was docu-
mented in PMM patients, and supplementation with NAD+ precursors had been shown to
increase mitochondrial biogenesis and ameliorate the mitochondrial myopathy phenotype
in animal models. Recently, an open-label study of niacin (nicotinic acid) in PMM patients
was conducted. Overall, muscle strength and mitochondrial biogenesis increased in all
subjects, and blood and muscle NAD+ reached control levels [101].

4.1.4. Spinal Muscular Atrophy

Similarly to Pompe Disease, the natural history of SMA has been radically changed
by the advent of SMN-replacing therapies, Nusinersen and Risdiplam, and, more recently,
gene therapy [102]. Olexosime, a novel candidate treatment for SMA, was the first proposed
to act on mitochondrial membrane permeability and proved effective on improving cellular
survival. Unfortunately, after promising results in the phase II clinical trial showing positive
effects on motor function compared to the placebo, the phase III trial was stopped as a
consequence of unsatisfying long-term efficacy [103]. Nonetheless, given the multifactorial
pathogenesis of weakness and decreased motor endurance in SMA, including mitochondrial
dysfunction, this experience provides hints on the importance of working on molecules
targeting also other factors than SMN expression, in order to provide patients with a
comprehensive therapeutic strategy.

4.2. Physical Therapy

Finally, physical therapy and exercise remain fundamental components of global care
of patients with neuromuscular disease, providing well-established benefits also on fatigue;



Int. J. Mol. Sci. 2023, 24, 5005 13 of 18

obvious reasons for that are the preservation of muscular mass and maintenance of a certain
level of activity along with prevention or treatment of joint contractures and altered posture.
On a biochemical side, in a recent review, Grassi et al. [104] discussed evidence on the
efficacy of moderate—also at home—training in metabolic and mitochondrial myopathies,
which seem to exert a positive effect on exercise endurance and blood O2 peripheral
extraction from muscle tissue estimated by near-infrared spectroscopy, although not on a
global level of activity.

Several studies of animal models and human patients affected by PMMs demonstrated
a beneficial effect of endurance exercise. In particular, training increases muscular mito-
chondrial content, stimulating biogenesis via PGC-1α activation and other mechanisms,
improving antioxidant and OXPHOS enzyme activity, maximal oxygen uptake, and muscle
strength, and decreasing rest and post-exercise blood lactate level [105,106]. Therefore,
aerobic training could efficiently improve mitochondrial oxidative activity in muscles and
quality of life of patients with PMDs.

5. Conclusions

Fatigue and exercise tolerance are core, although frequently overlooked, determinants
of quality of life for patients affected by neuromuscular diseases. Their prevalence and
significance, moreover, skyrocket in consideration of improved life expectancy and inde-
pendence of patients. As growing knowledge on the pathophysiology of the different
conditions permits the better understanding of the various components of central and pe-
ripheral fatigue, at a physiological and molecular level, an increasing number of therapeutic
strategies are being approached with multiple targets, in parallel with more “traditional” or
directed to primarily pathogenic factors (as in Pompe Disease, mitochondrial myopathies
and SMA). Overall, this prompts the need to carefully assess both subjective fatigue and
motor endurance in clinical practice, to better characterize diseases’ natural history, and in
clinical trials as a useful outcome measure.
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