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Abstract: The liver is frequently exposed to potentially toxic materials, and it is the primary site
of clearance of foreign agents, along with many innate and adaptive immune cells. Subsequently,
drug induced liver injury (DILI), which is caused by medications, herbs, and dietary supplements,
often occurs and has become an important issue in liver diseases. Reactive metabolites or drug–
protein complexes induce DILI via the activation of various innate and adaptive immune cells. There
has been a revolutionary development of treatment drugs for hepatocellular carcinoma (HCC) and
liver transplantation (LT), including immune checkpoint inhibitors (ICIs), that show high efficacy
in patients with advanced HCC. Along with the high efficacy of novel drugs, DILI has become a
pivotal issue in the use of new drugs, including ICIs. This review demonstrates the immunological
mechanism of DILI, including the innate and adaptive immune systems. Moreover, it aims to provide
drug treatment targets, describe the mechanisms of DILI, and detail the management of DILI caused
by drugs for HCC and LT.

Keywords: hepatocellular carcinoma; hepatotoxicity; immune checkpoint inhibitors; injury; tyrosine
kinase inhibitors; immunosuppressant; microenvironment; T cell; B cell; macrophage

1. Introduction

Drug-induced liver injury (DILI), an injury to the liver or biliary system caused by
medications, herbs, or dietary supplements, accounts for 50% of acute liver failure cases in
the United States [1,2]. DILI is classified as intrinsic (or direct) or idiosyncratic according to
its pathogenesis [3]. Intrinsic DILI, which is predictable and acute-onset, occurs in a dose-
dependent manner and can be reproduced in animal models [2,4]. However, idiosyncratic
DILI, the most frequent type, is unpredictable and not dose-related DILI, although a
minimum dose of 50 mg/day is usually required for its development [5].

The incidence of DILI varies by study design and cohort. Retrospective cohorts show
lower incidence rates of DILI than prospective studies. According to several prospective
studies, the annual incidence of DILI is approximately 13.9–19.1 per 100,000 inhabitants [6,7].
DILI can be influenced by multiple factors, such as age, sex, environmental exposure, and
genetics, including human leukocyte antigen (HLA) [8,9]. Its diagnosis is based on an
appropriate temporal relationship between drug intake and liver injury, along with the
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exclusion of other possible causes of liver damage, including viral infection and alcohol
consumption [2]. The Roussel Uclaf Causality Assessment Method (RUCAM) is the most
widely used assessment scale for DILI [10]. Moreover, according to elevated liver enzyme
levels, represented as the alanine aminotransferase (ALT)/alkaline phosphatase (ALP) ratio
(R), DILI patterns can be determined as follows: hepatocellular pattern (R ≥ 5), cholestatic
pattern (R ≤ 2), and mixed pattern (2 > R < 5) [2,11]. Recently, the updated RUCAM of
2016 was introduced to improve the diagnostic accuracy of DILI [12]. According to the
updated RUCAM, assessment of DILI is differently suggested according to the pattern of
DILI using ALT/ALP ratio (R) at first presentation. The updated RUCAM also presents a
check list of differential diagnosis of DILI and criteria for a positive result of DILI following
unintentional re-exposure [12]. The diagnosis of DILI can be confounded by several factors,
including comedication and concomitant diseases; therefore, causality assessment using
the updated RUCAM is important.

Recent studies have suggested that specific human leukocyte antigen (HLA) genotypes,
such as HLA-B*5701, are risk factors for the development of DILI in patients receiving
some drugs [13,14]. However, HLA genotypes cannot sufficiently explain the risk of DILI.
Moreover, microsomal cytochrome P450 (CYP) also play a role in the development of
DILI [14]. As CYP is involved in the metabolism of many drugs, various isoforms of CYP,
including CYP3A4, may be associated with the development of DILI [15]. Population-based
studies have also demonstrated that pre-existing liver disease, concomitant severe skin
reactions, and comedications, such as nonsteroidal anti-inflammatory drugs, are associated
with the development DILI [6,16]. Furthermore, ferroptosis can also be a potential factor in
the pathogenesis of DILI [17]. Ferroptosis, an iron-dependent form of cell death, reduces
cystine uptake causing the production of lethal reactive oxygen species, which can lead to
the development of DILI [18].

Regarding immunologic perspective, the liver is the primary site of the clearance
of foreign chemical agents; thus, it is exposed to many potentially toxic chemicals that
can cause hepatocyte damage via mitochondrial dysfunction and oxidative stress [19]. In
addition, the liver is an immune organ with abundant innate (e.g., neutrophils, natural killer
[NK] cells, and Kupffer cells) and adaptive (T cells and B cells) immune cells [20]. Although
the liver is an immunologically tolerant organ, immune responses, including innate and
adaptive immune cells, play pivotal roles in the development of DILI. Tyrosine kinase
inhibitors (TKIs), such as sorafenib, lenvatinib, and regorafenib, were developed to treat
advanced hepatocellular carcinoma (HCC). Moreover, recent studies have demonstrated
the high efficacy of immune checkpoint inhibitors (ICIs), including atezolizumab plus
bevacizumab, in HCC [21,22]. Along with the high efficacy of these novel drugs, DILI has
become a critical issue in ICI use.

In this review, we discuss the immunological perspective of the mechanism of DILI,
including the innate and adaptive immune systems (Figure 1). Moreover, we describe the
frequency, hepatobiliary manifestations, and mechanism of DILI in patients with HCC
treated with TKIs and ICIs. We also demonstrate the development of DILI in liver transplant
(LT) patients administered immunosuppressants (ISs).



Int. J. Mol. Sci. 2023, 24, 5002 3 of 18Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. Mechanisms of the development of drug-induced liver injury (DILI). Reactive metabolites 
or drug–protein complex causes ER and oxidative stress in hepatocytes. BSEP inhibition and mito-
chondrial damage also damage hepatocytes, leading to the secretion of DAMPs, including HMGB-
1, heat shock proteins, S100 proteins, and ATPs. DAMPs activate innate immune systems and stim-
ulate immune response. Activated innate immune systems (e.g., Kupffer cells, neutrophils, NK cells, 
NK T cells, and Mast cells) damage hepatocytes, recruit immune cells, and stimulate adaptive im-
mune response. Reactive metabolites or drug–protein complexes are presented by APCs, which lead 
to activation of adoptive immune response (e.g., T cells and B cells) along with the stimulation of 
APCs by DAMPs. Meanwhile, Treg cells decrease and fail to maintain immune tolerance. APC, an-
tigen presenting cells; ATPs, adenosine triphosphate; BSEP, bile salt export pump; DAMP, damage-
associated molecular patterns; ER, endoplasmic reticulum; HMGB, high-mobility group box; IFN, 
interferon; IL, interleukin; NK, natural killer; TNF, tumor necrosis factor; Treg, regulatory T cells. 

2. Immunological Perspective on DILI Mechanism 
2.1. Danger Hypothesis 

T cell-mediated liver injury is the cornerstone of DILI development [23]. The hapten 
hypothesis, which suggests that haptens make the proteins “foreign” and lead to their 
recognition and destruction by the immune system, was introduced to explain this im-
mune response [24]. However, this hypothesis is insufficient to support the strong im-
mune response in DILI. Subsequently, the danger hypothesis was proposed to redeem the 
hapten hypothesis. The generation of reactive metabolites or drug–protein complexes 
damages hepatocytes via several pathways, including oxidative stress, endoplasmic retic-
ulum (ER) stress, bile salt export pump (BSEP) inhibition, and mitochondrial damage 
[3,25]. Damaged hepatocytes release several damage-associated molecular patterns 
(DAMPs), such as high-mobility group box (HMGB)-1, heat shock proteins, S100 proteins, 
and ATPs, which play a pivotal role in the activation of antigen-presenting cells (APCs) 
by producing a second signal (interaction of CD28 with B7 molecules) [26]. This co-

Figure 1. Mechanisms of the development of drug-induced liver injury (DILI). Reactive metabolites
or drug–protein complex causes ER and oxidative stress in hepatocytes. BSEP inhibition and mito-
chondrial damage also damage hepatocytes, leading to the secretion of DAMPs, including HMGB-1,
heat shock proteins, S100 proteins, and ATPs. DAMPs activate innate immune systems and stimulate
immune response. Activated innate immune systems (e.g., Kupffer cells, neutrophils, NK cells, NK
T cells, and Mast cells) damage hepatocytes, recruit immune cells, and stimulate adaptive immune
response. Reactive metabolites or drug–protein complexes are presented by APCs, which lead to
activation of adoptive immune response (e.g., T cells and B cells) along with the stimulation of APCs
by DAMPs. Meanwhile, Treg cells decrease and fail to maintain immune tolerance. APC, antigen pre-
senting cells; ATPs, adenosine triphosphate; BSEP, bile salt export pump; DAMP, damage-associated
molecular patterns; ER, endoplasmic reticulum; HMGB, high-mobility group box; IFN, interferon; IL,
interleukin; NK, natural killer; TNF, tumor necrosis factor; Treg, regulatory T cells.

2. Immunological Perspective on DILI Mechanism
2.1. Danger Hypothesis

T cell-mediated liver injury is the cornerstone of DILI development [23]. The hapten
hypothesis, which suggests that haptens make the proteins “foreign” and lead to their
recognition and destruction by the immune system, was introduced to explain this immune
response [24]. However, this hypothesis is insufficient to support the strong immune
response in DILI. Subsequently, the danger hypothesis was proposed to redeem the hapten
hypothesis. The generation of reactive metabolites or drug–protein complexes damages
hepatocytes via several pathways, including oxidative stress, endoplasmic reticulum (ER)
stress, bile salt export pump (BSEP) inhibition, and mitochondrial damage [3,25]. Damaged
hepatocytes release several damage-associated molecular patterns (DAMPs), such as high-
mobility group box (HMGB)-1, heat shock proteins, S100 proteins, and ATPs, which play a
pivotal role in the activation of antigen-presenting cells (APCs) by producing a second signal
(interaction of CD28 with B7 molecules) [26]. This co-stimulation often refers to a “danger
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signal” according to the danger hypothesis. Activated APCs lead to the activation of
adaptive immune responses, including CD4+, CD8+, and B cells, which cause idiosyncratic
DILI [26] (Figure 1).

2.2. Innate Immune Systems in DILI

As discussed above, reactive metabolites or drug–protein complexes can damage hep-
atocytes via ER and oxidative stress, inhibition of BSEP, and mitochondrial damage [3,25].
Damaged hepatocytes secrete DAMPs, including HMGB-1, heat shock proteins, S100 pro-
teins, and ATPs, which activate the innate immune system and stimulate the immune
response [27]. Activated innate immune systems (e.g., Kupffer cells, neutrophils, NK cells,
and NK T cells) damage hepatocytes, recruit immune cells, and stimulate adaptive immune
response during DILI (Figure 1) [28].

2.2.1. Kupffer Cells

Kupffer cells, resident macrophages in the liver, are important in DILI develop-
ment. They play key roles in phagocytosis, antigen presentation, and pro-inflammatory
cytokines [29]. Traditionally, Kupffer cells can be classified into two types as follows:
M1, Kupffer cells that secrete pro-inflammatory cytokines, such as interleukin (IL)-6
and tumor necrosis factor alpha (TNF-α); M2, Kupffer cells secreting potent immuno-
suppressive cytokines [30,31]. During DILI, Kupffer cells are activated by DAMPs and
release pro-inflammatory cytokines and reactive oxygen radicals, along with infiltrated
macrophages [32]. Kupffer cells also produce chemokine ligands to recruit monocyte-
derived macrophages to the liver during the early phase of inflammation [33]. Activated
Kupffer cells can exacerbate liver injury through these pathways.

2.2.2. Neutrophils

Neutrophils, the first-line responders to bacterial and fungal infections, are the most
abundant fraction of the innate immune cell group [34]. They defend against infection
via phagocytosis, degranulation, and extracellular trapping [35]. Granulocyte colony-
stimulating factor is a key regulator of neutrophil generation and maturation. The gut
microbiome and metabolites may also play a role in neutrophil function [36]. During infec-
tion and inflammation, neutrophils are recruited to the site of inflammation via cytokine
and chemokine production [34]. Neutrophils extravasate into the liver parenchyma via
chemotactic signal from hepatocytes and other extravasated neutrophils. Extravasated
neutrophils directly contact hepatocytes and trigger neutrophil activation. Eventually,
abnormally activated neutrophils promote oxidative stress, mitochondrial dysfunction,
and necrotic cell death, which can lead to acute liver injury during DILI [36]. Liver in-
jury can be exacerbated by oxidative stress, involving myeloperoxidase and proteolytic
enzymes [35,37].

2.2.3. NK Cells

NK cells, the key players in liver immunity, are abundant in the liver, constituting
30–50% of intrahepatic lymphocytes [38]. NK cells have cytotoxic functions and express
immunomodulatory cytokines, such as IL-1β, IL-2, IFN-γ, and TNF-α, which can be
categorized into subsets according to their characteristics, including cytokines and cytotoxic
capabilities [39,40]. These functions can also mediate DILI pathogenesis. The release of
cytotoxic granzymes and perforin along with the production of TNF-α and IFN-γ can
result in liver injury during DILI [41,42]. The IFN-γ production can mediate the infiltration
of immune cells and release of cytokines, which results in hepatocyte apoptosis during
DILI [42,43].

2.2.4. NK T Cells

NK T (NKT) cells are unique lymphocytes that have both T and NK cell properties in
their phenotype and function [44,45]. NKT cells, characterized by semi-variant T cell receptors
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(TCRs) and the major histocompatibility complex class I-like molecule CD1d, are pivotal in
immunity against pathogens, bridging innate and acquired immunity [46–48]. These cells can
be activated in both TCR-dependent and -independent manners and stimulate NKT cells to
release cytokines, including IFN-γ and IL-17, which can recruit neutrophils, macrophages
and activate adaptive immune responses, resulting in acute liver injury (DILI) [49,50].
However, studies have shown that NKT cells also have protective roles in liver injury and
cancer immunology [28,51]. Recent studies have also demonstrated the potential role of the
gut microbiome as a regulator of NKT cells, with further validation studies needed [51,52].

2.2.5. Mast Cells

Mast cells (MCs) originate from hematopoietic stem cells and play a role in the initi-
ating the response of the innate immune system [53,54]. MCDs are activated by DAMPs,
cytokines, and chemokines [55–57]. Activated MCs undergo degranulation and release
histamines and TNF, which activate the innate immune systems and exacerbate inflamma-
tion [58–60]. This process stimulates hepatic stellate cells, Kupffer cells, and pro-fibrogenic
signaling pathways, which aggravate liver damage and fibrosis [61,62]. Recent studies have
also demonstrated that activated MCs affect T cell activation and contribute to adaptive
immunity [63,64].

2.3. Adaptive Immune Systems in DILI

The adaptive immune response is stimulated by activated innate immune systems,
released DAMPs, and APCs presenting reactive metabolites or drug–protein complexes.
The adaptive immune response, a critical process in acute injuries, includes CD4+ and CD8+

T-cell responses and B cell-mediated humoral reactions [65]. During DILI, activated CD4+

and CD8+ T cell and B cells damage hepatocytes. Meanwhile, regulatory T (Treg) cells and
their functions are decreased, exacerbating liver injury in DILI [65] (Figure 1).

2.3.1. CD4+ and CD8+ T Cells

Among T cells, CD4+ and CD8+ T cells are the main T lymphocytes in adaptive
immune responses and are pivotal during liver injury [66]. The presentation of reactive
metabolites or drug-protein complexes by APCs along with signal 2 activates CD4+ Th0
cells, which triggers a subsequent adaptive immune response [25,67]. Among subsets of
CD4+ T cells, activated helper T (Th) 1 cells secrete IFN-γ, IL-2, and TNF-α and activate
CD8+ T cells during DILI [68,69]. Th2 cells, an important subset of CD4+ T cells, release
IL-4 and drive the proliferation and differentiation of B cells, which cause B cell-mediated
humoral reactions [70,71]. Infiltrated CD8+ T cells, a major cell killer in adaptive immunity,
have direct cytotoxic function and secrete granzymes, perforin, and cytokines, including
TNF-α, IL-17 which cause cell death during DILI [65,72]. Indeed, infiltration of cytotoxic T
cells (CTLs) may play an important role in fulminant drug-induced hepatic failure [73].

2.3.2. B Cells

B cells originate from hematopoietic stem cells in the bone marrow. After maturation,
B cells migrate from the peripheral blood into the spleen and germinal center [74]. As
in other liver diseases, B cells participate in immune response and hepatocyte damage
during DILI. B cells account for 8% of intrahepatic lymphocytes, which are activated and
mature into plasma cells [75]. Plasma cells produce antibodies against proteins and damage
hepatocytes during DILI [76]. During DILI, plasma cells can also produce autoantibodies
against native proteins, such as cytochrome P450, which exacerbates liver injury [77].

2.3.3. Treg Cells

Treg cells, accounting for 5–10% of CD4+ T cells, are crucial for maintaining immune
homeostasis and tolerance in liver disease and transplantation [78–80]. Treg cells secrete
IL-10 and TGF-β, suppressing the proliferation of CD4+ T and CD8+ T cells and secretion
of IFN-γ [81]. Moreover, Treg cells inhibit the proliferation of Th17 cells and release of
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IL-17 [82]. A recent study demonstrated that Treg cells can be modulated by the gut
microbiome in patients with autoimmune diseases, IBD, and transplantation, which might
be associated with the pathogenesis of these diseases [83–85]. Indeed, a decrease in Treg
cells induces an inflammatory response that leads to liver damage [86]. During DILI,
intrahepatic Treg numbers and Foxp3 expression decrease, exacerbating liver injury with a
decreased IL-10 level [87]. Increasing Treg cell numbers may alleviate liver injury via the
secretion of IL-10 and TGF-β, which might be a treatment target for DILI [88,89].

3. DILI Caused by Drugs Treating HCC and LT
3.1. DILI Caused by Drugs Treating HCC

HCC remains a global burden, accounting for 800,000 deaths worldwide [90]. Despite
the development of screening protocols and surgical or locoregional treatments for early
HCC, diagnosis commonly occurs at the advanced stage [29]. Moreover, approximately half
of all patients with HCC experience systemic therapies in their treatment history [91]. In
the past decades, sorafenib, a TKI, has been used as the 1st line therapy for advanced HCC.
Several TKIs, including lenvatinib, regorafenib, and cabozantinib, have been developed
for the 1st and 2nd line treatment of advanced HCC [90]. Recently, immune checkpoint
inhibitors, including atezolizumab plus bevacizumab, have shown high efficacy in the
treatment of advanced HCC [21,22].

As described above, the liver contains various immune cell types, whose response
to ICIs is mostly affected by the tumor microenvironment (TME), which is composed
of Treg cells, tumor-associated macrophages (TAMs), cytotoxic T cells, myeloid-derived
suppressive cells (MDSCs), and neutrophils [92,93]. The crosslinking between tumor cells
and several immune cells causing an immuno-suppressive status has been a treatment
target for ICIs to restore the immune response to HCC [94]. During ICI treatment, liver
injury can be induced via direct or indirect immune pathways. In this section, we discuss
the target, frequency, mechanism, and treatment of DILI caused by drugs for HCC (Table 1).

3.1.1. Tyrosine Kinase Inhibitors

Several TKIs have been approved for treating advanced HCC (Table 1). Sorafenib
targets vascular endothelial growth factor receptor (VEGFR), platelet-derived growth
factor receptor (PDFGR), c-kit, and Raf, and it can inhibit cancer growth, progression,
angiogenesis, and metastasis [95]. Lenvatinib is another multi-kinase inhibitor targeting
VEGFR 1-3, PDFGR, fibroblast growth factor (FGF) receptors 1–3, RET, and KIT [96], and it
showed non-inferior survival to and better progression-free survival than sorafenib [97].
Regorafenib, approved for HCC patients after sorafenib failure, also targets VEGFR 1-3,
PDGFR, FGFR1-2, and RAF [98]. Cabozantinib has also been approved for sorafenib-
experienced patients with HCC and targets VEGFR 1-3, MET, and RET [99]. These TKIs
reinforce antitumor immunity by increasing dendritic cells (DCs), T-cell infiltration, and
PD-1 expression on T cells. Moreover, TKIs also decrease pro-tumor immunity, such as a
decrease in MDSCs, Treg cells, and M2 TAMs [100].

During treatment with TKIs, elevated serum aminotransferase levels are common
(~50%); however, severe hepatitis with values greater than five times the upper limit of
normal is rare [101]. However, several studies have reported that TKI-induced DILI is
associated with progressive liver injury and failure [102,103]. Along with DILI, hand–foot
syndrome and skin rash can be present in some patients who are administered TKIs, such as
sorafenib and regorafenib [101,104,105]. In liver histopathology, hepatocellular necrosis is
the most frequent manifestation of TKI-induced DILI, and immune-mediated hepatitis has
also developed, including sorafenib-induced DILI [104]. Although the specific mechanism
remains unclear, several TKIs, including sorafenib and regorafenib, are metabolized via the
CYP 3A4 pathway, which may be associated with the production of a toxic intermediate
(Figure 2) [101,105]. The direct effect of inhibition of cellular kinases, such as by lenvatinib
and cabozantinib, can be another suggested mechanism for TKI-induced DILI [106,107].
TKI can also induce oxidative stress and apoptotic pathway activations, which can lead
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to immune response activation and TKI-induced DILI [104,108]. Moreover, several signal
transduction pathways, including epidermal growth factor receptor and platelet-derived
growth factor receptor, which interact with TKI, play pivotal roles in regulating DILI and
are associated with TKI-induced DILI [109].

Table 1. Hepatobiliary manifestation and frequency of drug-induced liver injury caused by drugs for
treating hepatocellular carcinoma and liver transplantation.

Drugs Target for Drug Action Hepatobiliary Manifestation * Frequency

Hepatocellular carcinoma—Tyrosine Kinase inhibitors

Sorafenib Inhibits VEGFR, PDGFR, and Raf R-value ≥ 5 (hepatocellular injury)
LiverTox category: B Common

Lenvatinib Inhibits VEGFR, FGF, PDGFR, cKit, and
RET proto-oncogene

2 < R < 5 (mixed liver injury)
LiverTox category: D Common

Regorafenib Inhibits VEGFR, PDGF, RAF kinase,
and c-Kit

R-value ≥ 5 (hepatocellular injury)
LiverTox category: B Common

Cabozantinib Inhibits MET, VEGFR-2, and RET 2 < R < 5 (mixed liver injury)
LiverTox category: E uncommon

Hepatocellular carcinoma—Immune checkpoint inhibitors and VEGF(R) inhibitors

Atezolizumab plus
bevacizumab Inhibits PD-L1, and VEGF R-value ≥ 5 (hepatocellular injury)

LiverTox category: B 14%

Durvalumab plus
tremelimumab Inhibits PD-L1, and CTLA-4 R-value ≥ 5 (hepatocellular injury)

LiverTox category: B 20%

Nivolumab Inhibits PD-1 R-value ≥ 5 (hepatocellular injury)
LiverTox category: A 15%

Ramucirumab Inhibits VEGFR-2 Infrequent liver injury
LiverTox category: E Rare

Nivolumab plus
ipilimumab Inhibits PD-1, and CTLA-4 R-value ≥ 5 (hepatocellular injury)

LiverTox category: A 20%

Liver transplantation—Immunosuppressants

Cyclosporine Calcineurin inhibition R-value ≤ 2 (cholestatic liver injury)
LiverTox category: C 1–5%

Tacrolimus Calcineurin inhibition R-value ≥ 5 (hepatocellular injury)
LiverTox category: C 5–10%

Sirolimus/Everolimus mTOR inhibition 2 < R < 5 (mixed liver injury)
LiverTox category: E Rare

MMF Antimetabolite (inhibit inosine
monophosphate)

R-value ≥ 5 (hepatocellular injury)
LiverTox category: D Rare

* Hepatobiliary manifestations are demonstrated according to the R-value (ALT/ALP) of the RUCAM and
LiverTox category. LiverTox category A is well known cause of immune mediated liver injury; category B, likely
cause of clinically apparent liver injury; category C, probable rare cause of clinically apparent liver injury; category
D, possible cause of clinically apparent liver injury; category E, unproven but suspected rare cause of clinically
apparent liver injury. CTLA-4, cytotoxic T-lymphocyte-associated protein 4; FGF, fibroblast growth factor; MET,
hepatocyte growth factor receptor; mTOR, mammalian target of rapamycin; PD-1, programmed cell death 1;
PDGF, platelet derived growth factor; PD-L1, programmed cell death ligand 1; R, ratio; RET, rearranged during
transfection; VEGFR, vascular endothelial growth factors receptor.

Owing to the possibility of DILI, the Food and Drug Administration recommends
monitoring liver function with the use of some TKIs, including regorafenib. As TKI-induced
DILI usually recovers its discontinuation, appropriate monitoring and dose reduction or
temporary cessation can successfully control TKI-induced DILI [101,104].

3.1.2. Immune Check Point Inhibitors

Recently, several ICIs have been approved for HCC treatment. Atezolizumab (an anti-
PD-L1 antibody) plus bevacizumab (an anti-VEGF antibody) have changed the treatment
landscape and paved the way for the combination therapy, with ICIs showing better
overall survival than sorafenib [21]. Moreover, durvalumab (anti-PD-L1 antibody) and
tremelimumab (anti-CTLA-4 antibody) also demonstrated superior survival rates compared
with sorafenib [110]. In the second-line setting, pembrolizumab (anti-PD-1 antibody)
monotherapy and nivolumab (anti-PD-1 antibody) plus ipilimumab (anti-CTLA4 antibody)
have been approved for advanced-stage HCC [111,112] (Table 1).
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The combination of anti-VEGF drugs with ICIs changes the tumor endothelium, in-
creasing the infiltration of effector immune cells [113]. Moreover, combination therapy has
a synergistic effect of increasing antitumor immune cell responses and inhibiting immuno-
suppressive pathways [114]. Indeed, ICIs that inhibit PD-1 or PD-L1 restore the function
of effector CD8+ T cells [115]. CTLA-4 inhibitors activate naïve CD4+ and CD8+ T cells by
promoting the interaction between costimulatory signals (B7 with CD28) [116]. Moreover,
the addition of anti-VEGF drugs can show synergistic effects via several mechanisms,
such as normalization of the vessel, which can lead to improvement in drug delivery and
reduction in the immunomodulatory effect of VEGF on TAMs, MDSCs, Treg cells, and
effector T cells [117].
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cytokines and proliferation of CD8+ T cells. Moreover, early B cell changes may induce autoreactive
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ICI-induced DILI is an the immune-related adverse event, which is characterized
by elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT) lev-
els [117]. Although the pattern of ICI-induced DILI is heterogeneous, the hepatocellular
type is usually frequent [118]. Using the RUCAM model, ICI-induced DILI usually begins
8–12 weeks after ICI initiation, although ICI-induced DILI can occur at any time [119,120].
The incidence of ICI-induced DILI is known to be higher in patients treated with combi-
nation therapy (up to 18%) than in those treated with monotherapy (up to 9%) [120,121].
Moreover, as patients with HCC usually have chronic hepatitis or cirrhosis, the incidence
of ICI-induced DILI is more frequent than that in patients without liver cancer [122]. Ac-
cording to type and dose of ICIs, the incidence of ICI-induced DILI in any grade ranges
from 8% to 20% and is the highest in patients treated with the combination of anti-PD-1 and
anti-CTLA4 antibodies [111,123–125]. In the diagnosis of ICI-induced DILI, it is essential
to exclude other confounding factors, including co-medication, concomitant diseases, and
hepatic metastasis, as well as to evaluate the possibility of ICI-induced DILI based on
RUCAM [15,126]. Moreover, ICI-induced DILI should be differentiated from autoimmune
hepatitis (AIH) [127]. ICI-induced DILI usually has a negative or low titer of antinuclear
and anti-smooth muscle antibodies and does not have a female preponderance [120].

Several mechanisms have been proposed to explain ICI-induced DILI development
(Table 2 and Figure 2). The first is the reduction and depletion of Treg cells, which are
essential immune cells for maintaining tolerance induced by ICI treatment, especially in
CTLA-4 blockades [128,129]. The depletion of Treg cells subsequently induces the reduction
of anti-inflammatory cytokines and proliferation of CD8+ T cells [130,131]. Moreover, early
B cell changes, including elevation of the CD21lo subtype, may induce autoreactive B cells,
leading to ICI-induced DILI [132]. Representative histopathologic features of ICI-induced
DILI are shown in Figure 2. Liver histopathology showed moderate portal inflammation
with CD3+, CD4+, and CD8+ T cell infiltration along with periportal hepatocytic necrosis
(Figure 3A–D). Predominant infiltration of histiocytes (CD68+ cells) was identified, along
with mild infiltration of CD38+ cells, suggesting the presence of plasma cells (Figure 3E,F).
ICI-induced DILI usually presents with lympho-histiocytic infiltration with lobular hepati-
tis, whereas AIH presents with interface hepatitis with plasma cell infiltration [120]. The gut
microbiome may contribute to the development of immune-related adverse events (irAEs),
especially immune-related colitis [133]. Gut microbial composition and their changes are
associated with various liver disease and may influence the response to cancer immunother-
apy [134–136]. In this context, the gut microbiota may be a biomarker for predicting irAEs
including DILI. Further studies are needed to elucidate the specific pathogenic mechanisms
underlying ICI-induced DILI.

ICI-induced DILI is asymptomatic in most cases; however, skin reactions (rashes) can
occur in some patients [137]. Skin reactions are frequent irAEs after ICI treatment [138].
Moreover, irAEs frequently involve the gastrointestinal tract and endocrine organs, includ-
ing the thyroid and lung [138]. The severity of ICI-induced DILI is classified according
to the Common Terminology Criteria for Adverse Events (CTCAE) of the National Can-
cer Institute (Table 2) [139]. From grade 2, ICI-induced DILI is treated by stopping ICI
along with corticosteroid [140,141]. In grade 2 DILI, 0.5–1 mg/kg/day of prednisolone is
recommended, and in grades 3 and 4, the dose rises to 1–2 mg/kg/day of IV methylpred-
nisolone [142]. High dose ursodeoxycholic acid (UDCA) can also be added for patients
with cholestasis [118]. In patients with refractory to corticosteroids, mycophenolate mofetil
(MMF), azathioprine, or tacrolimus have been used to improve liver function tests [142–144].
Although the time to resolution of ICI-induced DILI varies, patients with ICI-induced DILI
usually recover within two weeks [145]. Reinduction of ICI after DILI can be applied to
patients with grade 2 and 3 DILI, whereas patients with grade 4 DILI must permanently
discontinue ICI [146]. Corticosteroids can increase the risk of bacterial infection; therefore,
strict evaluation and diagnosis of ICI-induced DILI using the updated RUCAM are needed
before the commencement of corticosteroid therapy [12,147]. Moreover, further studies are
required to identify and validate predictors for ICI-induced DILI development.
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Table 2. Mechanism and treatment of drug-induced liver injury caused by immune checkpoint
inhibitor use.

Immune Cells Mechanism Refs.

Treg cells Reduction in Treg cells and anti-inflammatory cytokines [107,108]

Th1 cells Increase in Th1 cells and pro-inflammatory cytokines causing activation of CTLs
and macrophages [107–110]

CTLs Stimulate proliferation of CD8+ T cells [107–110]

B cells Ealy B cell changes including the elevation of CD21lo subtype may induce the
autoreactive B cells

[111]

Grade of DILI Definition Management [116]

Grade 1 Asymptomatic, T.bil > 1.5×ULN, AST
or ALT > 1–3×ULN Monitoring, continue ICI [116–119]

Grade 2 Asymptomatic, T.bil > 1.5–3×ULN,
AST or ALT > 3–5×ULN

Discontinue ICI, start 0.5–1.0 mg/kg/day
of prednisolone with a taper, consider
restart after recovering from DILI

[116–119]

Grade 3
Symptomatic, Fibrosis, Compensated
cirrhosis, T.bil > 3–10×ULN, AST or
ALT > 5–20×ULN

Discontinue ICI, 1–2 mg/kg/day of IV
methylprednisolone with a taper, consider
liver biopsy, consider restart after
recovering from DILI

[116–119]

Grade 4

Decompensated symptom (ascites,
encephalopathy, coagulopathy),
T.bil > 10×ULN, AST or
ALT > 20×ULN

Permanently discontinue ICI,
1–2 mg/kg/of IV methylprednisolone with
a taper, consider liver biopsy

[116–119]

Grade 5 Death due to DILI [116]

AST, aspartate transaminase; ALT, alanine transaminase; CTLs, cytotoxic T lymphocytes; DILI, drug induced liver
injury; ICI, immune checkpoint inhibitors; T.bil, total bilirubin; Th, helper T; Treg, regulatory T; ULN, upper limit
of normal.
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3.2. DILI Casued by Drugs for Treating LT
Immunosuppressants

LT patients generally require life-long ISs due to the risk of graft rejection after
LT [148,149]. The most used ISs are calcineurin inhibitors, mycophenolate mofetil (MMF),
and the mammalian target of rapamycin inhibitors (mTORi) [150]. Of the calcineurin
inhibitors, cyclosporine inhibits the activation of T cells by binding cyclophilin, whereas
tacrolimus binds to intracellular proteins and inhibits calcineurin phosphatase activity [150].
Subsequently, the nuclear factors of activated T cells cannot move to the nucleus, which
shuts down the production of IL-2, leading to a decrease in T-cell response [151]. MMF,
another type of ISs, inhibits the formation of guanosine monophosphate by blocking ino-
sine monophosphate dehydrogenase and suppressing T-cell proliferation [152,153]. The
mechanism of action of mTORi, including sirolimus and everolimus, includes the inhibition
of serine/threonine kinase activity, a family of phosphatidylinositol-3 kinases (PI3K), which
inhibits the PI3K/Akt/mTOR signaling pathway, the transduction signal of IL-2 receptors,
and T-cell proliferation [154,155] (Table 1).

Significant elevation of liver function, including AST and ALT, is not frequent with
calcineurin inhibitors and mTORi [156,157]. Generally, the abnormalities in liver function
tests caused by calcineurin inhibitors and mTORi are asymptomatic [158]. Mechanis-
mically, calcineurin inhibitors and mTORi are mainly metabolized by the cytochrome
P450 system (CYP 3A4), which may be associated with DILI. Liver injury can be caused
by direct hepatotoxicity or activation of immune cells induced by its metabolites [156,157].
Only a small portion of patients receiving MMF treatment experience elevation in serum
liver function [159]. MMF is not usually metabolized by cytochrome P450 enzymes, and
MMF-induced DILI may be associated with mitochondrial damage and its immunogenic
metabolites [160]. As IS-induced DILI is generally mild and self-limiting, dose reduction or
pausing ISs can resolve DILI.

4. Conclusions

The liver contains many innate and adaptive immune cells and, during the develop-
ment of DILI, reactive metabolites or drug–protein complexes initiate innate and adaptive
immune responses, including neutrophils, Kupffer cells, NK cells, CD4+ T cells, CD8+ T
cells, and B cells. Multiple activated immune cells damage hepatocytes, leading to DILI.
Meanwhile, Treg cells and their functions are suppressed, exacerbating DILI. Understand-
ing the underlying mechanism of DILI may provide clues for future treatment targets
for DILI.

The TME, composed of Treg cells, TAMs, cytotoxic T cells, MDSCs, and neutrophils,
affects HCC development and responses to TKIs and ICIs. Recently approved ICIs target
PD-1/PD-L1 and CTLA-4 to restore the immune response in HCC. An activated immune
response can cause irAEs, including DILI, via direct and indirect pathways. DILI caused by
TKIs and ICIs is usually asymptomatic and recovers after drug discontinuation. ISs used in
LT patients infrequently cause DILI and require regular tests to monitor of liver function.
According to the degree of DILI, appropriate treatment with corticosteroids may be needed
in severe cases. Along with advances in the treatment of HCC and LT, it is mandatory that
future studies elucidate the specific mechanism and appropriate management of DILI.
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