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Abstract: Wound healing is a complex process of overlapping phases with the primary aim of the
creation of new tissues and restoring their anatomical functions. Wound dressings are fabricated
to protect the wound and accelerate the healing process. Biomaterials used to design dressing of
wounds could be natural or synthetic as well as the combination of both materials. Polysaccharide
polymers have been used to fabricate wound dressings. The applications of biopolymers, such as
chitin, gelatin, pullulan, and chitosan, have greatly expanded in the biomedical field due to their
non-toxic, antibacterial, biocompatible, hemostatic, and nonimmunogenic properties. Most of these
polymers have been used in the form of foams, films, sponges, and fibers in drug carrier devices,
skin tissue scaffolds, and wound dressings. Currently, special focus has been directed towards
the fabrication of wound dressings based on synthesized hydrogels using natural polymers. The
high-water retention capacity of hydrogels makes them potent candidates for wound dressings as
they provide a moist environment in the wound and remove excess wound fluid, thereby accelerating
wound healing. The incorporation of pullulan with different, naturally occurring polymers, such
as chitosan, in wound dressings is currently attracting much attention due to the antimicrobial,
antioxidant and nonimmunogenic properties. Despite the valuable properties of pullulan, it also has
some limitations, such as poor mechanical properties and high cost. However, these properties are
improved by blending it with different polymers. Additionally, more investigations are required
to obtain pullulan derivatives with suitable properties in high quality wound dressings and tissue
engineering applications. This review summarizes the properties and wound dressing applications
of naturally occurring pullulan, then examines it in combination with other biocompatible polymers,
such chitosan and gelatin, and discusses the facile approaches for oxidative modification of pullulan.

Keywords: pullulan; chitosan; hydrogel; wound dressings; polysaccharides

1. Introduction

The wound healing process is a complex and dynamic process of overlapping phases,
and specific conditions are needed to support healing. The main goals of wound man-
agement are to provide a physical barrier against bacterial infections and to maintain an
optimum moist environment, allowing the healing process to be accelerated [1–3]. The
wound area must be covered with an ideal wound dressing in order to prevent the dress-
ing from failing to function [4]. An ideal wound dressing material should have several
specific properties, including: (a) biocompatibility; it is essential that the dressing not
create any toxicity in the wound environment; (b) high absorption capacity of exudate;
large amounts of wound fluids need to be removed, as wound exudates promote a high
risk of bacterial colonies and growth; (c) adequate water vapor permeation rate; an op-
timal moisture level should be maintained in the wound, as a high level of water vapor
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permeation rate dehydrates the wound too quick and can cause scars, while a low level
of water vapor permeation rate leads to excess exudates, thereby increasing the risk of
bacterial infections; (d) good physical barrier; bacterial penetration must be prevented;
(e) antimicrobial activity; microorganisms must not be able to grow under the dressing; and
(f) non adhesive properties; adhesiveness of the wound dressing is most likely to increase
the risk of further injuries upon removal [4–6]. Wound dressing materials are fabricated
from naturally derived or synthetic polymers, or from a combination of the two. Wound
covering materials are mostly produced as films, sponges, hydrocolloids, and hydrogels [7].
Until now, naturally derived polymers have received enormous attention in biomedical,
pharmaceutical, and medical applications due to their biocompatibility and biodegrad-
ability properties [8]. There are still research challenges to developing multifunctional
and cheap wound dressings through simple green synthesis approaches, as the dressings
should show biocompatible, biodegradable, mucoadhesive, hemostatic, and bactericidal
properties along with their main focus as wound dressings and drug delivery devices.
Of the various types of wound dressings that have been fabricated, polysaccharide types
have several advantages; for example, along with the above-mentioned properties, the
hydrophilic groups on their polymers create a three-dimensional crosslinked network.

Naturally occurring polymers are greatly employed in the design and fabrication of
wound dressing due to their similarity with the extracellular matrix (ECM) and nonim-
munogenic properties that are detected with synthetic polymers [9,10]. Polysaccharides are
a class of natural polymers made up of monosaccharide units and their derivatives [11].
Polysaccharides consisting of just one kind of monosaccharide unit are referred to as
homopolysaccharides or homoglycans, while those containing more different types of
monosaccharide units are called heteropolysaccharides or heteroglycans [12]. The main
advantages of polysaccharides are their chemical properties; these properties are similar
to heparin, providing the polymers with good hemocompatibility and making them less
costly, in general, than other polymers [13]. Studies have shown that polysaccharides act as
immunomodulatory materials to regulate inflammatory activities in wounds [14,15]. The
main goal of this review is to discuss the properties and preparation of wound dressings
from biopolymers that are based on polysaccharide pullulan which is incorporated with
other polymers, such as chitosan and gelatin, as well as the facile approach of pullulan
chemical modifications.

2. Types of Wound Dressing Materials

Dressing materials are generally classified depending on their activity and material ori-
gin. They are grouped into artificial, biomaterial, traditional, passive, and bioactive wound
dressings [16]. Passive dressings offer physical barriers from the external surroundings and
stop wound bleeding [17]. Traditional wound dressings, such as gauze, cotton, bandages,
and gauze composites can absorb large volumes of wound fluids. However, traditional
dressings can easily adhere to wound tissues, causing further damage of newly formed
tissues and bleeding when removed. They also exhibit low vapor permeation properties.
Wound fluids leaking out of these dressings can result in microbial contamination of the
wound [18,19]. Biomaterial-based wound dressings can be categorized as allografts (skin
substitutes), xenografts, or tissue derivatives [19]. Allografts are available either freeze-
dried or newly supplied from donors. The application of an allograft is usually prevented
by immune responses that lead to rejection by the recipient; they also carry a high risk of
disease transmission and infection [20]. Moreover, allografts are quite expensive and have
relatively low shelf-life [21]. Artificial wound dressings are available as films, gels, foams,
and hydrocolloids [22,23]. Biopolymers are referred to as bioactive wound dressings; they
include chitosan, alginate, cellulose, and gelatin, and are mostly used for their intrinsic and
useful properties. Enhanced wound healing can be achieved by incorporating antibiotics,
antioxidant, nanoparticles, and growth factors in the wound dressing [24–27]. Table 1
summarizes the various forms of wound dressings.
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Table 1. Types of wound dressings.

Category Benefit Examples Reference

Passive wound dressing Mainly protect the wound
from the external surroundings Gauze, bandages and plasters [28]

Allografts (skin substitutes) Accelerate wound closure and replace the
skin function, thereby boosting healing

Allografts, tissue-engineered
derivatives, autografts [29]

Bioactive natural dressing Have antimicrobial, antioxidant,
bio-adhesive, and proliferative properties

Collagen, chitosan,
alginate, chitin [30]

Artificial materials Enhance wound healing and offer barriers
against bacterial infections

Sprays, hydrocolloids, films,
foams and gels [31]

3. Properties of an Ideal Wound Dressings

Hydrogels synthesized from polysaccharides are known to be effective candidates for
modern wound dressings. This is due to their large water-retention capacity, biocompati-
bility, non-toxicity, and biodegradability [32,33]. To date, several methods to design and
fabricate efficient and cost-effective dressing materials have been investigated. Research
has shown that wet dressings accelerated wound healing more than dry dressings. In the
moist wound site only, there was healing, growth of new tissues, and re-epithelialization,
with no occurrence of eschars or inflammation [34]. Hence, wet or moist wound dressings
are the most preferred candidates for skin tissue repair, and hydrogel wound dressings
are successful and effective because of their high-water content and permeability [35]. If a
single fabricated wound dressing could possess most of these properties, then the wound
healing process would be highly accelerated in a wet environment. With the increasing
demand, fabrication of high performance modern wound dressings has become the main
focus in research in the area of biomedical and pharmaceutical sciences, where hydrogels
have been shown to fulfill most of the criteria for effective wound treatment. Hydrogels
are a three-dimensional crosslinked network of hydrophilic polymeric materials [1] that
can retain large volumes of water and swell without being dissolved. Hydrogels highly
mimic the extracellular matrix of the skin, allowing them to be used extensively in biomed-
ical fields. Hydrogels as wound dressing materials do not just offer physical barriers
against microorganisms and absorb excess wound fluid; they can also effectively trap
small biomolecules and provide an optimum moist surrounding which supports wound
healing [32]. Properties of an ideal modern wound covering are shown in Table 2.

Table 2. Summary of the properties of ideal wound dressings.

Property Description

Maintain wound moisture Prevents wound from drying

Excellent gas transmission Allows the exchange of oxygen between the
wound and the environment

Superabsorbent capabilities Removes excess exudates

Protect against microbial contaminations Possesses antimicrobial properties

Eco-friendly Biodegradable

Excellent wound healing regulator
Reduces inflammation,

stimulates release of growth factors, tissue
regeneration, and prevents scaring

Provide mechanical protection Acts as a physical barrier to prevent further
damage to the wound

Stop bleeding Possesses excellent homeostatic properties
to prevent further blood loss
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Table 2. Cont.

Property Description

Adhesiveness Possesses easy and comfortable removal properties

Nonimmunogenic and biocompatible Is non-allergic and non-toxic to the body

Cost-effective and commercially available Improves patients’ compliance through
accessibility and affordability

4. Bioactive Polysaccharide-Based Hydrogels

Ideal wound dressing materials should actively intervene in wound healing. Natural
polysaccharides, such as chitosan and pullulan, have been used for preparing hydrogels in
various biomedical applications. Chitosan is popular in tissue engineering applications
due to its antimicrobial nature and biocompatibility [36]. Recently, pullulan has gained
tremendous attention because of its unique properties and has been used in the fields of
wound dressing and tissue engineering.

4.1. Chitosan

Chitosan is a naturally occurring homopolysaccharide and is the second most abun-
dant macromolecule after cellulose. It is made up of β-D-glucosamine and N-acetyl-β-D-
glucosamine units linked by 1,4-linkage, and its intrinsic properties, such as antimicrobial
activity, low immunogenicity, non-toxicity, and biodegradability, have generated interest
a great deal of interest [36]. These properties make chitosan a special material in wound
dressing, delivery devices, and many other biomedical applications [37,38]. It is mainly
obtained from the exoskeleton of crustaceans, such as waste from shellfish, shrimp, crabs,
and lobsters [39,40] through incomplete deacetylation of chitin. Chitosan consists of amino
and hydroxyl functional groups which permit it to react with other functionalized polymers
through the formation of physical or chemical bonds. It is an antibacterial, biodegradable,
and biocompatible polymer with high porosity and surface area, giving it wide applicability
in the development of wound dressing materials and skin tissue scaffolds. Moreover, the
presence of amino functional groups in the chitosan polymer facilitates the formation of
complexes that include anionic macromolecules and nanoparticles through reactions with
other cations. This formation produces devices or systems appropriate for the incorpora-
tion of drugs and various small bioactive molecules [41]. Low pH level (pH less than 6.5)
potentiates the antimicrobial activities of chitosan due to the cationic amino groups. Hence,
it can easily interact with anionic surfaces of bacterial cells, disrupting the bacterial cell
walls and creating leakage of intracellular materials [42]. However, with its low mechanical
strength and limited flexibility, chitosan cannot be employed alone in cutting-edge applica-
tions. Several approaches have been used to overcome the above-mentioned shortcomings,
improve its mechanical properties, and widen its applications, such as blending, crosslink-
ing and grafting with other polymers [43]. One common approach is to blend the free
carboxyl groups available in other polymers and their derivatives together with the posi-
tively charged amino groups of chitosan, thereby producing a polyelectrolyte complex with
improved mechanical stability and strength. Conversely, polymers containing aldehyde
groups are frequently used as potential crosslinkers since they easily react with polymers
containing amino groups through Schiff’s base reaction. Polysaccharides that can be easily
modified to aldehyde functional groups, include cellulose [44], starch [45,46], alginate [47],
dextran [48], carboxymethyl cellulose [49], xanthan gum [50], hyaluronic acid [51,52], and
pullulan [53].

4.2. Pullulan

Pullulan is one of the most fascinating polysaccharides of interest in the pharmaceu-
tical and biomedical fields. The formation of different coexisting glycosidic links means
that it possesses unique physical and chemical properties [54,55]. Pullulan is derived
from Aureobasidium pullulans, a polymorphic fungus [56], and its structure is composed of
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maltotriose units that are bonded to one another by α-1,6-glycosidic linkages, as shown in
Figure 1. It is a homopolysaccharide which is highly soluble in water, less toxic, biodegrad-
able, and nonimmunogenic [57]. The biopolymer is produced through a fermentation
process that uses simple sugars as feedstocks. Pullulan is quickly emerging as an important
source of polysaccharide and is gradually becoming economically competitive with other
polysaccharides, such as natural gums derived from marine algae and other plants. It is
easily modified to new derivatives of interest that possess different properties [53]. The
US Food and Drug Administration (FDA) has classified pullulan as Generally Regarded
as Safe (GRAS) [58]. Therefore, it is used by food industries (such as food processing
and packaging), cosmetic industries, and in biomedical applications [59–62]. Pullulan
exhibits significant antiviral, antitumor [63], and antibacterial activities [58,64,65], as well
as anticoagulant [66], antithrombotic, and anti-inflammatory properties [67]. Pullulan can
be used to incorporate silver nanoparticles, which are powerful antimicrobial agents [68],
antimicrobial nanomaterials, and essential oils [69–71]. However, considering the toxic
nature of metal nanoparticles, a green approach called biosynthesis of metal nanoparticles
has been employed. The biosynthesis of silver nanoparticles in pullulan solution is a
promising pathway due to its improved solubility, non-toxicity, and compatibility [58].
Nanocomposite films based on pullulan have been reported as fascinating antimicrobial
agents against various pathogens [58]. Hassan et al. developed a pullulan hydrogel film
incorporated with nisin, lauric alginate, and thymol. It demonstrated excellent properties
that can be used as an effective antimicrobial agent against pathogens such as Staphylococcus
aureus, E. coli, Listeria monocytogenes, and Salmonella spp. [71]. The nanocomposite films
could be used as wound dressing materials against wound infections that are caused by
multidrug resistance bacteria.
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5. Oxidative Modifications of Pullulan

Although pullulan possesses valuable properties, it also has some drawbacks, such
as poor mechanical properties and high cost [55], which limit its applications in pharma-
ceutical and biomedical fields. Its valuable properties are therefore enhanced by blending
it with other polymers. However, pullulan structure consists of hydroxyl groups liable to
chemical modifications. The replacement of hydroxyl group with other functional groups,
such as aldehyde and carboxyl groups, can help enhance its performance by improving its
mechanical properties via physical or chemical bonds. However, chemically crosslinked
hydrogels often exhibit strong interactions and stable networks. Further functionalization
of pullulan not only helps to improve its physical and chemical properties, it also widens
its biomedical applications [72].

Pullulan can be easily modified to develop new derivatives of interest with different
structures and properties. Different approaches have been employed to obtain oxidized
derivatives of pullulan, such as periodate and TEMPO oxidations [73,74]. Periodate oxida-
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tion of the polymer was first reported by Bruneel et al. in 1993 [75]. Dialdehyde modified
pullulan is highly reactive, non-toxic, and more suitable as a crosslinking agent than the
commonly used glutaraldehyde crosslinker, which is toxic. TEMPO (2,2,6,6-Tetra methyl
piperidinyloxy) modification of pullulan was first reported in 1996 [76] when a large num-
ber of carboxyl groups on the homopolysaccharide were synthesized. The reaction has
been thoroughly investigated in terms of the properties of the solution [77] as the TEMPO-
modified pullulan can be efficiently applied both in the facile green synthesis of silver [78]
and in the formation of polyvinyl alcohol hydrogels to improve the network formation [79].

5.1. Pullulan Oxidation Using TEMPO

Duceac et al. reported the synthesis of 6-carboxypullulan by chemical oxidation of
pullulan with TEMPO. Five grams of pullulan were dissolved in a beaker containing
150 mL of distilled water and stirred for 2 h. Then, 0.12 g of TEMPO and 0.82 g of NaBr
were measured and added into the beaker which contained the pullulan solution and
were stirred vigorously at a speed of 800 rpm. Later, 100 mL of 8% NaClO solution was
poured into the reaction mixture. The pH of the reaction solution was maintained at 10
and carefully monitored in order to maintain an oxidative environment with optimal pH
level. The reaction was stopped after 4 h by adding ethylene glycol, and a large volume
of acetone was poured into the reaction mixture, which precipitated the oxidized product.
The obtained product was washed, dialyzed, and subsequently lyophilized [53].

5.2. Aldehyde Modification of Pullulan

Chemical oxidation of pullulan to dialdehyde has been reported using periodate.
Using distilled water, 1 % w/v of the pullulan solution was prepared at room temperature.
Then, 2.63 g of sodium periodate were added to the pullulan solution. Reaction was
allowed for 6 h at room temperature while the mixture was magnetically stirred. The
reaction mixture was sealed with aluminum foil to prevent light exposure. The aldehyde
modified pullulan, as shown in Figure 2, was precipitated using large amounts of acetone,
then dialyzed and freeze-dried [53].
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TEMPO and periodate oxidations of pullulan have been investigated to improve
the mechanical property and performance of pullulan on its own and in combination
with other polymers [80]. Aldehyde modified pullulan hydrogels and its composites
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with other polymers, such as gelatin, have been investigated to enhance the mechanical
strength of hydrogel formulations due to the crosslinking of aldehyde groups present in the
oxidized pullulan and the amino group in gelatin, which form a strong covalent bond [81].
Pullulan derivatives can also be used as hydrogels stabilizing agents on modification
through succinylation, urethane derivatization, and modification of cholesterol. Pullulan
derivatives can also promote antimicrobial activity. Succinyl pullulan crosslinked with
carboxymethyl chitosan has been investigated for its ability to boost antimicrobial activity
in the wound healing process [82].

6. Applications of Pullulan-Based Biomaterials as Wound Dressings and Skin Tissue
Engineering Scaffolds

Currently, pullulan composites with different biopolymers, such as chitosan, chitin,
gelatin, and collagen, have gained considerable importance and have been used to develop
films, sponges, and hydrogels for wound dressings, skin tissue scaffolds, and drug delivery
devices. Considering the beneficial properties of pullulan and other polymers, such as
chitosan, synthesis of hydrogel composites using these polysaccharides will greatly enhance
wound healing.

Duceac et al. recently fabricated a chitosan-pullulan composite with tunable pore size
and targeted properties for drug delivery applications. The fabricated composite structures
consisted of a core of chitosan covered with different forms of modified pullulans, that is,
one contained carboxyl groups and the other contained aldehyde groups. The researchers
demonstrated that the two types of materials produced possessed different physical and
biological properties [53]. The chitosan-TEMPO oxidized pullulan beads were formed
by physical bonds, while the chitosan-periodate oxidized pullulan beads were produced
by chemical linkage. The researchers demonstrated that the two different composites
had high antibacterial activities. Hemocompatibility studies of the composites showed
mild coagulation as a result of low amount of free amino acid groups on the surface of
the chitosan composites; this occurred because the amino groups are involved in ionic or
covalent interactions with the carboxyl or aldehyde oxidized pullulan. The hemostatic
property of a material is a characteristic regarding the biological activity and its applications.
It is very important for fabricated wound dressings to show hemostatic actions. Their
findings showed that these composites could not only act as drug delivery devices but
also as modern wound dressings with excellent properties [53]. Figure 3 illustrates the two
chemical pathways of chitosan/oxidized pullulan hydrogel beads.
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In addition, they observed that TEMPO-oxidized beads (CPT) had the best bactericidal
activity, which could be explained by the higher antibiotic incorporation in their network.
The obtained results proved that drug incorporated beads exhibited antibacterial activity.
The hydrogel beads showed distinct inhibition area, which confirmed the drug release and
antibacterial activity against Staphylococcus aureus. The functionalized beads, CP and CPT,
had higher inhibition zones (14.33 mm and 18.66 mm, respectively), and chitosan beads
had the smallest inhibition zone (11 mm) (Figure 4). Their findings demonstrated that
surface functionalization of pullulan led to higher drug encapsulation efficiencies.
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Emam et al. synthesized polyvinylpyrrolidone (povidine)-bound iodine (PI) loaded
in pectin/carboxymethyl pullulan hydrogel. Carboxymethyl pullulan was first prepared
through etherification reaction in an alkaline pH of aqueous/organic solution. Pullulan was
suspended in isopropanol and 1M NaOH was added dropwise; it was then magnetically
stirred for 60 min, followed by the dropwise addition of monochloroacetic acid in the
reaction mixture at 70 ◦C for 5 h. Synthesized carboxymethyl pullulan was crosslinked
with pectin, with glutaraldehyde used as the crosslinker, to obtain pectin-carboxymethyl
pullulan hydrogel. Polyvinylpyrrolidone (povidine)-bound iodine (PI) acted as an antisep-
tic reagent against skin infections and wound healing. It was demonstrated that the release
of PI from the hydrogel matrix was highly efficient as a result of good swelling ability of
the composite network. The hydrogel could be used as a wound dressing for treating skin
injuries and as a drug delivery device [83]. Figure 5 illustrates the synthetic pathway of
pectin/carboxymethyl pullulan hydrogel.
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The antimicrobial activities of the synthesized pectin/carboxymethyl pullulan hydro-
gel were investigated, including the release of polyvinylpyrrolidone (povidine)-bound
iodine (PI), against two pathogens, Escherichia coli and Candida albicans. It was confirmed
that the biological activity of released PI from the hydrogel was highly effective. Studies
showed that the inhibition areas of released PI from the hydrogel samples were 19 mm
and 20 mm for Escherichia coli and Candida albicans, respectively (Figure 6) [83]. In addition,
the antimicrobial activity of pure PI was 25 mm for both pathogens. The low inhibition
zones of the released PI could be related to the concentration of PI in the released hydrogel
samples. However, the activity of PI was not affected after it was released, except the low
PI concentration, which led to decreased activity in the inhibition zone.
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Priya et al. synthesized 10% pullulan hydrogel with no crosslinkers and evaluated
its wound healing efficiency in daily topical administration. Their findings showed faster
healing of wounds when the hydrogel was administered topically. They explained that
the fast healing was due to the controlled release and availability of the therapeutic agent
at the wound site as well as the antioxidant and energy generating properties of pullulan.
Pullulan, being a biodegradable polysaccharide polymer, could also be a source of energy
for cells, such as fibroblasts, which are actively involved in the healing process. Furthermore,
the increases in the rate of wound closure and the decreases in the healing time with
pullulan treated wounds could result from its hydroscopic nature, which facilitated bacterial
dehydration, inactivated them, and reduced their surface area. Dehydration of wound fluid
may improve cells and tissues oxygenation, promoting wound healing. Their histological
examination demonstrated improved growth of fibroblasts and epithelialization in wounds
treated with pullulan [84]. This clearly supports pullulan as a potent material for wound
healing. Figure 7 shows that incision wounds treated with pullulan healed completely after
six days while povidine-iodine treated wounds healed after eleven days.
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Chen et al. fabricated a pullulan/collagen hydrogel with tunable, suitable biomechan-
ical properties and improved biocompatibility for wound treatment and regeneration. In
this study, they compared the efficacy of the synthesized hydrogel with two marketed
wound dressings, Promogran™ (55% collagen and 45% oxidized regenerated cellulose)
and Fibracol ® Plus (90% collagen and 10% alginate) [85]. They used a mouse excisional
wound model and dressed the wounds with the commercial dressings and the synthe-
sized pullulan/collagen dressing (TauTona wound dressing, TWD) alongside untreated
control wounds, then investigated the healing process. Their findings demonstrated that
pullulan/collagen hydrogel dressings enhanced collagen architecture and alignment and
accelerated healing in murine wounds after 14 days compared to the other commercial
dressings. The measurement of the wound area over time is presented in Figure 8. At
postoperative days, PODs 10 and 12, the area of the wound treated with the synthesized
hydrogel was significantly reduced compared to control wounds (Figure 8a). The sizes
of wounds treated with Promogran™ and Fibracol® Plus were not significantly different
from the pullulan/collagen dressing. The percentage of the wound sizes at PODs 10, as
illustrated in Figure 8b, demonstrated that the wounds treated with pullulan/collagen
dressing had smaller wound size than Promogran™ and Fibracol® Plus. They further
proved that pullulan/collagen treated wounds demonstrated a significant decrease in
macrophages, lymphocytes, and overall tissue response, which accelerated wound repair
compared to Promogran ™. Finally, their studies showed that stromal cells derived from
adipose tissues seeded in the developed hydrogel promoted healing in murine burn model,
reduced time of wound closure, decreased scaring and developed collagen network [85,86].
The pullulan/collagen hydrogel demonstrated clinical feasibility and ease of use. Recently,
pullulan/collagen hydrogel dressing has been manufactured by the TauTona group in
Redwood City, Canada, and has been referred to as TauTona wound dressing (TWD) [85].
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Nicholas et al. investigated the efficacy of pullulan/gelatin scaffolds on skin regenera-
tion. They fabricated a cost-effective pullulan/gelatin hydrogel with suitable mechanical
properties for skin substitutes and cells, such as fibroblasts and keratinocytes, that were
grown in the hydrogel. The excisional wounds treated with hydrogels exhibited less
macrophage infiltration, decreased inflammation, and improved angiogenesis after 14 days
of post mouse-skin biopsy compared to the control. Their findings suggested that the pul-
lulan/gelatin hydrogel could be suitable in skin wounds with a high level of inflammation,
such as chronic wounds and burns [87].

Biomedical sponges are soft and flexible materials with a highly interconnected porous
network. The high swelling rate of these scaffolds and fast hemostatic ability can make
them suitable for preventing the accumulation of unwanted wound fluids. In addition,
sponges with high water content provide a moist wound environment and protect it from
bacterial infection. Wang et al., developed succinyl pullulan/carboxymethyl chitosan
sponges as a potential wound dressing. Succinyl pullulan (pullulan-COOH) was prepared
by mixing succinic anhydride and an aqueous solution of pullulan. Succinyl pullulan
and carboxymethyl chitosan were mixed and crosslinked with 1-ethyl-3-(3-dimethylami
nopropyl)-carbodiimide/N-hydroxy succinimide (EDC/NHS) and the sponges were ob-
tained. The crosslinker introduced amide bonds between the carboxyl groups present in
pullulan-COOH and amino groups in carboxymethyl chitosan, which has been confirmed
to be non-toxic. They demonstrated that the sponges maintained a good, moist environ-
ment that significantly reduced the wound area. Histological evaluation revealed that
the sponges promoted proliferation of the fibroblast and improved epithelialization [82].
Further wound dressing materials based on pullulan are summarized in Table 3.

Table 3. Presents additional pullulan-based hydrogels wound dressings.

Application System Used Drug/Growth Enhancing
Factor(s) Cell Types Treated Reference

Wound healing Pullulan film - Rat skin cells [88]

Wound dressing Keratin/pullulan/PVA
hydrogel membrane Cefotaxime Incision on male SD rat skin cells [89]

Wound dressing and
antibacterial effect Carboxymethyl pullulan hydrogels Gentamicin In vitro drug release studies in

phosphate buffer saline solution [90]

Wound healing Hyaluronic/pullulan/
grafted-Pluronic F127 hydrogel Curcumin Female rat skin cells [91]

High oxidative stress
wound dressing Pullulan hydrogels Mesenchymal stromal cell

Anterior and posterior
full thickness transverse

incisions on skin cells
[92]

Wound dressing Pullulan/dopamine hydrogel - In vitro studies of sheep blood [93]

Wound healing Pullulan/chitosan
composite nanofibers Tannic acid NIH 3T3 mouse embryonic

fibroblast cells [94]

Wound dressing and
antioxidant effect

Pullulan/bacterial
cellulose hydrogel Vitamin C and E In vitro studies in phosphate

saline buffer [95]

Early cutaneous wound
healing

Pullulan/collagen composite
hydrogels - Full thickness skin cells incisions [96]

Wound dressing Collagen/pullulan hydrogel Polydatin Wistar rat skin cells [97]

Wound healing Cholesterol bearing
pullulan nanogels Prostaglandin E1 Full thickness defect

on rat dermal cells [98]

Wound dressing and drug
delivery system Pu-g-p(AA-co-IA) hydrogel film Ampicillin In vitro drug release study in

phosphate buffer saline solution [99]

Pu-g-p(AA-co-IA) = Pullulan grafted poly(acrylic acid-co-itaconic acid); PVA = Polyvinyl alcohol.

Over the past few years, pullulan has been reported to have applications in vascular
engineering, bone tissue engineering [100], and skin tissue repairs. Tissue engineering
is a recently growing field that assists in the regeneration and repair of injured tissues
and potentiates patients’ wound healing process. Hydrogel as a skin substitute greatly
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depends on the material from which it is developed. The non-toxic, nonimmunogenic, non-
mutagenic, and antioxidant properties of pullulan have shown it to be a suitable material for
skin regeneration applications. Pullulan methacrylate hydrogels have promising potentials
in the production of cell-laden microscale tissues to incorporate cells in a three-dimensional
environment [53,101]. Research has shown that cells encapsulated in pullulan methacrylate
hydrogel possessed excellent viability, proliferation, and accelerated the repair of wounds
in rats and mice [102]. Pullulan/collagen hydrogels can be used as skin scaffolds to
accelerate wound healing due to their excellent mechanical properties, such as porosity
and pore size [103,104]. These hydrogel scaffolds can easily replicate skin architecture and
promote encapsulation of stem cells and elements of wound healing for the restoration of
skin tissues.

Pullulan scaffolds have demonstrated potential antioxidant properties which can be of
great importance for skin regeneration. The antioxidant property protects the stromal cells
from oxidative damage [54]. Atila et al. reported a 3D electrospun pullulan-cellulose acetate
scaffold which had excellent cytocompatibility, as the cells could easily adhere, spread,
and grow on the hydrogel scaffolds. As such these scaffolds had great potential for skin
tissue engineering applications [105]. Pullulan significantly promoted cell proliferation and
enhanced cell adhesion. Therefore, pullulan and its composites could be potent materials
in skin tissue engineering applications.

Recently, Younas et al. developed a multifunctional pullulan microneedle patch loaded
with chitosan/fucoidan nanoparticles for differential release of moxifloxacin, lidocaine,
and thrombin. Chitosan and fucoidan were used to synthesize moxifloxacin nanoparticles
with a diameter of 258.0 ± 10.86 nm and surface charge 45.1 ± 3.9 mV. Lidocaine (LH),
thrombin (TH), and moxifloxacin nanoparticles (MOXNP) were then encapsulated in a 30%
(w/w) pullulan-based microneedle patch. Their findings demonstrated that the microneedle
patch achieved rapid hemostasis/analgesia and sustained antibacterial activity. The patch
facilitated the rapid release of thrombin and could offer efficient coagulation. Their results
proved that the pullulan microneedle patch was highly biocompatible with combined
hemostatic, analgesic, and prolonged antibacterial effects. Therefore, the multifunctional
patch based on polysaccharides (pullulan, chitosan, and fucoidan) can be used for high-
quality wound healing [106]. The researchers investigated the mechanical strength of the
pullulan-based microneedles and claimed that the microneedles both with and without
drug encapsulation exhibited outstanding mechanical properties. The blank microneedle
(MN) and the drug loaded sample had significant displacement at 2.27 N/needle and
2.73 N/needle, respectively (Figure 9). In addition, they reported that the combined
polysaccharides developed microneedle patch had high biocompatibility. Transdermal
drug delivery is a modern delivery system for therapeutic agents possessing systemic side
effects. Pullulan-based dissolving microneedles have been utilized for transdermal delivery
of small and large bioactive molecules [107].

The hemocompatibility of pullulan is one of the important criteria for its applications
in skin tissue engineering and wound management. Baron and co-workers fabricated a
hemostatic wound dressing based on dialdehyde pullulan and dopamine. The developed
multifunctional cryogels were prepared by a series of combinations of hemi(acetal) and
Schiff base interactions. The assessment of hemostatic effect was performed based on
the blood clotting index (BCI). They prepared three different samples of cryogels. The
first cryogel sample was based solely on dialdehyde oxidized pullulan (PO). The two
dialdehyde oxidized pullulan/dopamine cryogels were prepared based on the mechanism
of dopamine incorporation. The first oxidized pullulan/dopamine cryogel sample was
fabricated by in situ loading of dopamine followed by lyophilization (POD), and the second
oxidized pullulan/dopamine sample was obtained by post-incorporation of dopamine
(POD1). The obtained results demonstrated that BCI values of the oxidized pullulan (PO)
and oxidized pullulan/dopamine (POD1) hydrogel samples were <50 % (Figure 10) which
was attributed to better blood clotting ability of the hydrogels. In addition, they observed
lower blood clotting indices of the cryogels with increased oxidation of pullulan [108].
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Hence, hemostatic wound dressings can help to reduce blood loss in chronic and acute
wounds and fasten wound healing [93,97,108]. They further observed that periodate-
oxidation pullulan could form stable hydrogels due to the hemi(acetal) interactions, and
also that dopamine interacted with the aldehyde groups, resulting in improved mechanical
stability of the hydrogels networks. Therefore, hemostatic activity and mechanical stability
of pullulan-based hydrogels suggested that they can be promising materials for wound
dressings and skin tissue scaffolds.
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7. Conclusions

The choice of material is an important factor to be considered when designing an
ideal wound dressing. Natural polysaccharides are considered to be ideal wound dressing
materials due to their biocompatibility, biodegradability, and eco-friendly properties. Here,
we overviewed the chemical modifications and properties of wound dressing materials
based on natural homopolysaccharide pullulan and using other natural biopolymers, such
as chitosan and gelatin. We reviewed their applications in wound dressing and skin tissue
scaffolds, and their application as drug delivery devices. In the past few decades, pullulan
hydrogels have achieved enormous attention due to their special properties. The beneficial
properties of pullulan result from its glycosidic bond. It has therefore occupied a niche area
in biomedical and pharmaceutical fields. Pullulan and chitosan have unique properties;
they have high-water retention and are biocompatible, biodegradable, antimicrobial, and
non-toxic, among others. Such properties warrant further investigation of pullulan-based
hydrogels in combination with other biomaterials for the development of enhanced multi-
functional antimicrobial, antioxidant, anti-inflammatory, smart wound dressings, and drug
delivery devices. In contrast to its important biological and physicochemical properties,
pullulan has some drawbacks such, as poor mechanical properties and high cost. However,
these properties can be enhanced by combining pullulan with other polymers. In addition,
pullulan derivatives are still under investigation and have not yet been approved for com-
mercial use. Therefore, investigations are required to produce pullulan derivatives with
suitable properties to improve their applications in wound healing and tissue engineering.
Hence, more pullulan-based hydrogels wound dressings with excellent performance and
improved mechanical properties, and which are both multifunctional and cost-effective,
need to be developed in the near future.
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