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Abstract: Gut microbiota encompasses the set of microorganisms that colonize the gastrointestinal
tract with mutual relationships that are key for host homeostasis. Increasing evidence supports
cross intercommunication between the intestinal microbiome and the eubiosis–dysbiosis binomial,
indicating a networking role of gut bacteria as potential metabolic health surrogate markers. The
abundance and diversity of the fecal microbial community are already recognized to be associated
with several disorders, such as obesity, cardiometabolic events, gastrointestinal alterations, and
mental diseases, which suggests that intestinal microbes may be a valuable tool as causal or as
consequence biomarkers. In this context, the fecal microbiota could also be used as an adequate
and informative proxy of the nutritional composition of the food intake and about the adherence to
dietary patterns, such as the Mediterranean or Western diets, by displaying specific fecal microbiome
signatures. The aim of this review was to discuss the potential use of gut microbial composition
as a putative biomarker of food intake and to screen the sensitivity value of fecal microbiota in the
evaluation of dietary interventions as a reliable and precise alternative to subjective questionnaires.
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1. Introduction

Investigations about the influence of nutrition on human health are crucial to under-
stand the pivotal involvement of food intake consumption on the prevention, development,
and management of chronic diseases, such as obesity or type 2 diabetes [1–3]. In this
context, dietary intervention often needs to measure nutrient intake as well as to monitor
the adherence of patients to nutritional prescriptions, whose assessment or control may
provide reliability and precision in metabolic management. In nutritional practice, dietary
evaluation is usually performed via traditional methods: diet recall, diet diaries, or food fre-
quency questionnaires; these supply information about nutrient consumption [4]. Available
methods about food intake measurements are frequently implemented in dietetic appli-
cations, whose advantages include the relatively easy data collection and the possibility
of rapid verification of the adherence to nutritional interventions at low cost. However,
these methods present limitations related to the ability to accurately assess food intake.
Complementarily, in the last few years, there has been an increasing interest in the use of
blood and urinary determinations as food intake biomarkers [5], while fecal microbiota is
envisaged to have a role based on metagenomic approaches [6].

Indeed, modern dietary biomarkers involve measurable and quantifiable metabolic
determinations, which can be evaluated in different biological samples that also potentially
identify physiological processes related to food intake of a nutrient or dietary pattern,
reflecting a more precise dietetic assessment [7]. Additionally, multiple factors need to be
necessarily considered to establish an ideal biomarker of food intake, as concerns specificity,
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sensibility, and plausibility. Furthermore, a characteristic response over time and dose
after food intake is expected, as well as being reproducible with a specific food group.
Chemically, the biomarker should be stable in the selected matrix, during sample analysis
and along storage, and the analytical technique to identify must be inexpensive, as far
as possible. Moreover, factors related with the biomarker and analytical methods, such
a robustness and reliability, should be addressed during method validation, followed by
analytical performance parameters, such as limits of detection and quantification, precision,
and accuracy [8]. Although defining all factors related to an ideal biomarker is difficult, it
is highly recommended to fulfill as many viable conditions as possible before selecting a
potential candidate as a food intake biomarker.

Noteworthily, in the era of ‘omics’ technology, biomarkers that suitably estimate intake
foods or dietary patterns are scarce. The lack of effective and accurate biomarkers makes
it difficult to perform studies requiring this information and make it necessary to rely on
participant subjective recall, which often produces biases. Diet is an important driver—over
genetics and other environmental factors—shaping the human gut microbiota (GM). The
GM refers to the ecosystem of microorganisms (viruses, fungi, protozoa, archaea, and, in
greater proportion, the bacteria) that reside in symbiosis, both in the small intestine and in
the host colon [9]. Growing evidence in the scientific literature is employing GM baseline
information in integrative models to follow dietary interventions since some types of foods
serve as substrates for microbial growth, which modulates not only fecal composition but
reflects host homeostasis and indicates the early emergence of metabolic disruptions, such
as cardiovascular diseases [10] and liver steatosis and obesity [11], as well modulating the
immune system [12].

Considering that fecal samples are easy to collect and being a non-invasive method,
there is an important gap in the knowledge about the usefulness of the fecal microbiota to
generate nutritional biomarkers. Although there are pioneer findings highlighting the role
of the gut microbiome as a predictor of dietary response, there are few controlled studies
that specifically evaluate the potential use of GM composition as a biomarker of food
consumption. Furthermore, analysis of the GM has been focused on dysbiosis, which corre-
sponds to adverse qualitative and/or quantitative changes in intestinal microorganisms,
closely associated with pathological processes, or, less frequently, on eubiosis, related to the
balance between beneficed and pathogenic populations affecting intestinal health [13], but
not examining the role of fecal bacteria as a possible biomarker of food intake. Currently,
for fecal samples, composition of GM can be found out using novel techniques, such as
analysis of the length of the terminal restriction fragment directed to 16S rRNA (gene) [14]
and nanopore; although pyrosequencing and next-generation sequencing are the preferred
analytical methods, their analyses are challenging for routine clinical practice [15]. In this
regard, the aim of this review was to summarize the available scientific evidence concerning
gut bacteria associations with dietary intake and analyze the potential of GM composition
as a sensitive marker of food/nutrient consumption and dietary adherence assessment.

2. Traditional Methods for Food Intake Recording

Evaluating and monitoring food intake in individuals or populations is habitually
achieved by non-invasive practical methods involving diverse food registration tools from
face-to-face consultation or through digital instruments [4]. Food intake computing and
applicability cover both individual patient care as well as public health research, facili-
tating an understanding of the nutritional effects in health–disease mechanisms [16] and
contributing to design nutritional strategies to combat diseases associated with unhealthy
food intake and nutrition [17].

These methods usually require self-report, good recent memory, and available time
for data recording [4]. In addition, the interpersonal understanding variations on the
requested information, the motivation of the participants, and individual’s inherent culture
and data misinterpretation result in a challenge by exposing the methods to measurement
errors, reducing their reliability and reflection of reality [18]. Some traditional methods of
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assessing food consumption are food recall for the last 24 h, food frequency questionnaires,
and food diary stand out [4].

The food recall of the last 24 h usually considers what the individual ingested the
day before or in the 24 h of non-consecutive and random days, but it is not feasible for
all populations because it is subjective and depends on recent memory. In addition, they
generally require the assessment of food preparation, amounts ingested, and time between
determinate meals, for example, which leads to a great intra- and interpersonal variability
on dietary intake [19].

On the other hand, food frequency questionnaires evaluate habitual intake over
a longer period (weeks, months) and deal with the frequency that a person consumes
food items (1–3×/week, for example), classifying them into categories, associated with
nutritional compounds. This tool can be qualitative, quantitative, or semi-quantitative, but,
as disadvantages, relies on personal cooperation, is extensive, and does not assess the exact
amount of nutrients ingested in a consistent manner [4].

In this context, the food diary comprises a gentle method, which depends on the partic-
ipant’s motivation, covers the registration of all foods, beverages, and dietary supplements
that an individual consumes within an established period, and can vary between days and
months. Preferably, data should be recorded based on measurement in grams or milliliters
of food portions, which leads to the need for prior training of the participants [17]. Together,
the current methods of estimating food consumption, despite some benefits, such as low
cost, practicality, and being non-invasive, have biases that compromise results’ value and
suitability, emphasizing the need for complementary methods that accurately estimate
nutrient intake, which can be detailed approaches using specific and validated metabolomic
or metagenomic strategies.

3. Fecal Bacteria as a Biomarker of Health and Disease

The human gut harbors communities of microorganisms, which play a crucial role in
physiological and metabolic functions [9]. These microbes form a very complex ecological
entity that interplay in many aspects with nutrition and health, such as transformation
and production of metabolites, enzymes and vitamins, and extraction of nutrients from
food [20]. The balance between beneficial versus pathogenic microorganisms, within intesti-
nal and immunological homeostasis, is known as eubiosis. In contrast, qualitative and/or
quantitative changes in microbial populations associated with loss of intestinal epithelium
integrity and local and systemic inflammatory process are considered as dysbiosis [13].
Dysbiosis can alter the normal beneficial contribution by the microbiota to the host, as well
as make the intestinal epithelium susceptible to pathogenic agents and molecules, leading
to the fragility of the intestinal epithelial barrier, which is associated with systemic chronic
inflammatory processes that favors the appearance of chronic non-communicable diseases
(Figure 1) [20].

The microbiome is sensitive to many factors that can disturb balance (including
infections, change in diet, and long-term use of antibiotics, stress, sleep disturbances,
etc.), making an individual predisposed to disease, and can influence metabolic health
through several interactions between the host and microbes [21], either mediated indirectly
(through the availability of diet-dependent metabolites) or directly (through modulation
of microbiome composition and post-biotic products) by diet [22]. However, the standard
definition of a basal or healthy level for bacterial taxa, as well as general microbiota markers,
is still evaluated based on abundance and richness (which are related to the total number
of bacterial species and their characteristics in a sample), alpha diversity (related to the
distribution of species abundances in a sample), and beta (which assesses the similarity
between microbial communities) where Chao and Shannon indices are widely used for
these purposes [23].
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3.1. Gut Microbiota in Obesity

Overweight is a growing global health problem associated with several clinical comor-
bidities and impaired quality of life, whose etiology is multifactorial [24], being character-
ized by an excessive accumulation of white adipose tissue and accompanied by endocrine
and inflammatory disturbances [25]. In recent years, GM has been associated with obesity
installation, not only in adults but also in children [26]. Some investigations have reported
the association of certain bacteria with obesity. In short, although some results show the
highest proportion of Firmicutes in relation to Bacteroidetes in obese individuals, these
findings are still controversial [27–29]. Similarly, there is a higher concentration of Lac-
tobacillus spp. and a low proportion of Bacteroides vulgatus, in addition to an association
between Staphylococcus spp. with the largest energy stock [30]. In contrast, Akkermansia
muciniphila is reduced in the microbiota of obese individuals [31], stressing that some of the
causal relationships or related consequences between obesity and fecal microbiota need to
be verified.

3.2. Gut Microbiota in Weight Loss Response

The association between GM and host metabolic health is close, where changes in
body weight have been shown to be accompanied by shifts in gut microorganism diversity
in adults [32] and adolescents [33]. As an example, the genus Akkermansia has been widely
associated with lean individuals and appears to be significantly more prevalent after weight
reduction [34].

A study by Korpela et al. [35], applying regression models, successfully predicted host
and microbiota responses to a weight control diet in obese patients, using the pretreatment
abundance of fecal microbiota (mainly Firmicutes) as predictors. Another study showed
that baseline GM was an important factor in determining diet-induced individual weight
loss, where the abundance of Blautia wexlerae and Bacteroides dorei were the strongest
predictors for weight loss [36]. Interestingly, a study by Christensen et al. [37] suggested
that adults following the same diet, depending on baseline abundance levels of the Prevotella
species in their gut, may lose more or less weight. In fact, these authors showed that adding
more daily dietary fiber, without any caloric restriction, can lead to more weight lowering
in individuals with a high abundance of Prevotella. In this line, similar results were obtained
in other publications from the same group, where individuals with a high abundance of
Prevotella lost more body fat after a new Nordic diet (rich in grains/fiber) than the standard
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Danish diet. Furthermore, fat loss was not observed in those with a low basal abundance
of Prevotella species following the new Nordic diet [38].

Indeed, different nutritional strategies are used to promote weight and body fat
reduction. However, the repercussions of the nutritional strategy can modify and benefit
the host microbiota in different ways, depending on whether the person is male or female.
This finding was observed in the study of Cuevas-Sierra et al. [39], which found, by
offering a calorie-restricted diet, moderately rich in proteins for 4 months to overweight
men and women, different responses concerning microbial abundance observed through
metabolomic evaluations, with a significant decrease in class Negativicutes and species
Dielma fastidiosa in men, while an increase was found in the species Phascolarctobacterium
succinatutens and Ruthenibacterium lactatiformans in women.

These investigations show the role of GM as a biomarker of weight loss and suggest
the evaluation of fecal composition and metabolites as potential predictors of metabolic
responses and weight-lowering success, highlighting the need to establish models to
individualize slimming diets prescription based on the composition of basal GM.

3.3. Gut Microbiota in T2DM

Excess weight and dysbiosis are closely associated with the chronic low-degree in-
flammatory process, which affects the production of inflammatory cytokines (IL-6 and
TNF-α) and compromises the sensitivity and actions of hormones, such as insulin, con-
tributing to insulin resistance and the onset of Type 2 Diabetes Mellitus (T2DM) in the
longer term [40]. Among the findings reported after the analysis of the microbiota of
subjects with T2DM, the genera Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia,
and Roseburia are in smaller proportions, while the genera Ruminococcus, Fusobacterium, and
Blautia are positively associated with the disease [41].

3.4. Gut Microbiota in Cardiovascular Disease

Microbial metabolism of the intestine relates to cardiometabolic homeostasis in differ-
ent ways, where exacerbated production of metabolites, such as trimethylamine N-oxide
or short-chain fatty acids, and changes in bile acid metabolism pathways seem to con-
tribute negatively to cardiovascular health [42]. In this context, the abundant presence of
Porphyromonas gingivalis, Helicobacter pylori, and Chlamydia pneumoniae is associated with
atherosclerosis [43]. Likewise, this diseased population has an increased concentration of
the genera Collinsella, Roseburia, and Eubacterium and butyrate-producing bacteria [44]. In
addition, patients with atherosclerotic plaque have typical microbiome patterns with high
levels of Proteobacteria and low levels of Firmicutes [42].

3.5. Gut Microbiota in Intestinal Diseases and Colorectal Cancer

The etiology of IBD (intestinal bowel disease) is partly attributed to a dysregulated
immune response involving gut microbiome dysbiosis [45]. Multiple studies have doc-
umented differences in the composition of GM between patients with IBD and healthy
individuals, particularly regarding microbial diversity and relative abundance of spe-
cific bacteria. Some of these bacteria are Ruminococcus gnavus (enriched), Faecalibacterium
prausnitzii, and Prevotella copri (depleted) [46].

Additionally, the relative abundance of some taxa appears to correlate with established
markers of this disease. In this sense, specific bacterial species, such as F. prausnitzii and
Clostridium difficile (strongly accompanying dysbiosis, colitis, and severe diarrhea in hu-
mans), have been closely associated with IBD and proinflammatory responses, reinforcing
their clinical value as a potential bacterial biomarker of this disease, as assessed by the
presence of F. prausnitzii and Escherichia coli in 28 healthy controls, 45 patients with CD,
28 patients with UC, and 10 patients with IBS [47]. Additional findings from these patients
confirmed that F. prausnitzii was a specific indicator of IBD and was significantly lower [48].

Some further evidence indicates that GM plays a vital role in the initiation, progression,
and metastasis of colorectal cancer [49]. In the same way, the scientific literature has been
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expanding the knowledge about bacterial populations that, when in excess, are associated
with their development, highlighting the presence of Streptococcus bovis, Bacteroides fragilis
enterotoxigénicos, Fusobacterium nucleatum, Enterococcus faecalis, E. coli, and Peptostreptococcus
anaerobius as main pathogens [50].

3.6. Gut Microbiota in Mental Diseases

In the last few years, growing evidence has pointed towards the bidirectional gut
microbiota–brain axis playing a role in mental health [51–53]. The current scientific data
support an altered gut microbiome in subjects with mental disorders, such as depression
and anxiety, and point to some bacterial components as potential biomarkers related with
these diseases. Thus, in the Flemish Gut Flora Project, fecal Dialister and Coprococcus
spp. were markers of good mental health [54]. On the other hand, Heym et al. studied
40 participants from the general population in the UK and found that the fecal abundance
of Lactobacillus spp. was directly related to positive self-judgment but only indirectly to
cognitive depression and lower affective empathy [55].

Other studies have revealed the role of genera, such as Coprococcus, Bifidobacterium,
Lactobacillus, Roseburia, and Faecalibacterium, with lower levels of anxiety and depression [56].
In fact, Bacteroides, Escherichia, Shigella, and Streptococcus are associated with higher levels
of stress [57]. In addition, the genus Eggerthella (and, in general, the depletion of certain
anti-inflammatory butyrate-producing bacteria) appeared to be shared between major
depressive patients [58]. The study of Lucidi et al. [59] showed the potential role of
Pseudomonas aeruginosa as a possible biomarker for discriminating patients with affective
disorders from control individuals. Further, these authors found that the Lachnospiraceae
family might play a role in the onset of depression via affecting the inflammation levels in
the host.

4. Gut Microbiota and Food Intake

Dietary patterns are recognized to be involved in disease and health [50–62]. However,
the impact of different foods and dietary patterns on the modulation of the microbiota is not
yet clearly elucidated but is known to drive changes in GM [62], intestinal barrier functions,
and immune system competence [63,64]. The scientific literature shows that not only sex,
age, physical activity, and other lifestyle factors influence GM but that 3 days of dietary
interventions (composition and mealtime) are already able to induce changes in bacterial
composition and even alter the set of postbiotic molecules that microbes produce [65–67].
Thus, the diet is recognized as a key modifiable factor in the manipulation of the microbial
community, with a direct impact on the composition and maintenance of beneficial bacterial
populations through the continuous supply of dietary substrates [62]. In this context, recent
research found a microbiota pattern or signature associated with different dietary patterns,
and these results drive a new possibility to use GM not only as associated to diseases [68,69]
but also as a biomarker of dietary intake (Figure 2).

Recently, PREDICT 1 (Personalized Responses to Dietary Composition Trial 1) [70]
was able to study the gut microbiome on a scale and complexity never seen before. Through
metagenomic sequencing (average of 8.8 ± 2.2 gigabases/sample), along with long-term
dietary data and hundreds of measurements of participants’ fasting and postprandial
blood markers, it was possible to identify a set of microbial species that are strongly and
consistently linked to cardiometabolic biomarkers and related to obesity and postprandial
responses, as well as to dietary patterns, approximating the analysis of the GM for precision
clinical practice [70] and consistent use as food intake as a biomarker. Indeed, dietary
patterns may display characteristic microbiome signatures depending on the composition
and nutrient distribution (Table 1).
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Table 1. Characteristics of gut microbiota according to modern dietary patterns.

Dietary Pattern Gut Microbiota Referencing

Mediterranean diet
↑ Bacteroidetes, Clostridium, Bifidobacterium, Lactobacillus

↑ SCFA and diversity of MO
↓ Proteobacterias, Bacillaceae

[71–73]

Plant-based diet

↑ Bacteroidetes, Prevotella spp., Xylanibacter,
Bifidobacterium spp., Lactobacillus spp., Ruminococcus spp.,

Eubacterium rectale, Roseburia spp.
↑ SCFA

↓ Firmicutes, Porphyromonadaceae, Erysipelotrichaceae

[38,74–77]

Western diet

↑ Firmicutes (Bacilli, Clostridiales), Erysipelotrichaceae,
Proteobacterias, Bacteroides thetaiotaomicron

↑ LPS
↓ Actinobacterias, Prevotellaceae, Rikenellaceae,

Bifidobacterium spp., Tenericutes
↓ Total count and abundance of bacterial species

[67,78–81]

Low-carb diet

↑ E. coli, Desulfovibrio spp., Parabacteroides, Bacteroidetes
↓ Firmicutes, Akkermancia, Eubacterium rectale, Dialister,

Ruminococcus gnavus, Clostridium.
↓ Total count and abundance of bacterial species

[65,82–84]

LPS: Lipopolysaccharides. MO: Microorganisms. spp.: Unidentified species. SCFA: short-chain fatty acids.
Low-carb diet: Low-carbohydrate diet.

4.1. Gut Microbiota and Dietary Patterns
4.1.1. Mediterranean Diet

The Mediterranean diet (MD) is characterized by daily consumption of whole grains/pulses
and cereals (fiber and carbohydrates), legumes, vegetables, and fruits; mono- and polyunsat-
urated fatty acids (extra virgin olive oil and oilseeds); bioactive and antioxidant compounds,
as flavonoids, phytosterols, terpenes, and polyphenols [85], in addition to discouraging
the consumption of excessive red meat and saturated fat and moderating the consumption
of dairy products [71], whose nutritional composition pattern partly mimics the Dietary
Approaches to Stopping Hypertension (DASH diet), which produces positive effects in the
prevention and control of cardiovascular and other metabolic diseases [72,86,87].

MD positively modulates the host microbiota, leading to different local and systemic re-
sponses, correlating with the re-establishment of eubiosis [88] concerning the Bacteroidetes
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and beneficial groups of Clostridium, with a detriment on the Proteobacteria phylum and
Bacillaceae family levels [89]. In 2018, Garcia-Mantrana [71] observed, in adults with a high
adherence to MD, that GM was composed of 77.31% ± 2.88 of Firmicutes, 15.86% ± 0.28
of Bacteroidetes, 3.13% ± 0.65 of Actinobacterias, 1.78% ± 1.22 of Verrucomicrobia, and
slightly less than 1% of Proteobacterias. In investigations conducted through the PRED-
IMED program (Prevención con Dieta Mediterránea) [87], it was found that adherence
to MD had a lower consumption of animal-protein-associated higher concentration of
Bacteroidetes. At the same time, participants who consumed more complex carbohydrates
and plant proteins produced higher amounts of volatile short-chain fatty acids [87].

The intake of oleic acid derived from extra virgin olive oil when consumed in ex-
cess may have an unfavorable effect on the bacterial diversity of GM [73]. However, MD
daily consumption, in adequate amounts for each individual, is associated with an in-
crease in lactic-acid-producing bacteria, mainly Bifidobacterium and Lactobacillus, leading
to reductions in inflammatory cytokine secretion (IL-6, IL-17A, TNF-α, IL-1β, COX-2,
LDC-LDC) [90] and the stimulation of butyrate production, with anti-inflammatory and
atheroprotective actions, defending colonocytes against oxidative stress [91].

The GM is favored by the consumption of another typical MD component, such as
omega-3 fatty acids, which has a repercussion in the balance of the proportion of Fir-
micutes:Bacteroidetes and increased bacteria of the family Lachnospiraceae and genus
Bifidobacterium, while controlling the presence of lipopolysaccharides and Enterobacte-
riaceae family, with potential anti-inflammatory effects [92]. In another way, the high
availability of polyunsaturated fatty acids acquired by the diet seems to inhibit some
bacterial populations, reducing the risk of obesity and inflammation [74].

The Roseburia spp. is an important member of the microbiota that metabolizes omega-
6 fatty acid and converts it into conjugated linoleic acid, which is recognized by immune
cells, enhancing the function of regulatory T cells [93]. Likewise, Lactiplantibacillus plantarum
is known for producing conjugated linolenic acid, eliciting an important impact on the
composition of the microbiota by stimulating the trophic presence of Ruminococcus and
Prevotella, leading to a reduced level of pro-inflammatory cytokines and increased IL-10
(anti-inflammatory) and nuclear peroxisome proliferator-activated receptor-γ (PPAR-γ) [93].

4.1.2. Plant-Based Diet

Plant-based diets include vegetarian and vegan patterns involving a low consumption
of animal proteins (from fish, eggs, and dairy products) or no animal food consumption,
respectively [83]. The abundant supply of fruits, vegetables, whole grains, pulses, seeds,
oils, and vegetable fats constitutes an important source of dietary fiber and bioactive com-
pounds [94]. The composition of GM among vegans and vegetarians may not differ, and
both include a higher composition of beneficial fecal bacteria when compared to omni-
vores [95]. Thus, research data show that plant-based diets are associated with high fecal
levels of species of genus Prevotella [41,96], which has anti-inflammatory properties [87]. In
a study by Filippo et al. [97], it was possible to verify that the GM of children from Burkina
Faso (Africa), who had a diet based on vegetables (rich in fiber and resistant starch), when
compared to children from Italy, who had a diet like the Western (low in fiber), elicited
relevant differences in bacterial phylum count: Actinobacteria and Bacteroidetes were more
represented in Africa than in Italian children (10.1% versus 6.7% and 57.7% versus 22.4%,
respectively), whereas Firmicutes and Proteobacteria were more abundant in Italian than
in African children (63.7% versus 27.3% and 6.7% versus 0.8%, respectively).

Moreover, in an experimental study with rodents, some effects of the plant-based
diet on GM were tested, where there was a significant increase in genus Bacteroides and
Alloprevotella, and a reduction in genus Porphyromonas and Erysipelothrix [76]. Similarly, diets
rich in complex carbohydrates, whole grains and wheat bran were associated with increased
Bifidobacterium spp. and Lactobacillus spp., which play a protective role in the intestinal
barrier by inhibiting the invasion and growth of pathogens [98]. Likewise, resistant starch
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and whole barley can also increase lactic acid bacteria (Ruminococcus spp., Eubacterium
rectale, Roseburia spp.), apparently benefiting the systemic health of the host [77].

Thus, plant-based diets and associated main food components affect the bacterial
composition and metabolic pathways of the GM positively, increasing symbiotic microor-
ganisms and favoring global health [99]. However, more studies are needed to determine
the impact of these diets on intestinal microbes since, nowadays, the use of chemicals to
favor the growth, maturation, and conservation of food can compromise putative benefits
on GM.

4.1.3. Western Diet

Western diet (WD) consumption represents a global health concern because it is related
to increasing rates of obesity and chronic non-communicable diseases, characterized by
high caloric density associated with frequent consumption of unhealthy fats (saturated
and trans), refined sugars, salt, alcohol, and other elements, such as dyes, preservatives,
and antimicrobials, and also with reduced consumption of fruits, vegetables, and legumes,
among other foods [78].

The adoption of this dietary pattern seems to have distinct repercussions on the
microbiota of men and women [42], although it is already associated with dysbiosis,
enterocytic dysfunctions, and increased intestinal permeability, in addition to the leakage
of toxic bacterial metabolites into the circulation, contributing to the development of low-
grade systemic inflammation [79]. When evaluating GM in consumers of WD, there is
a reduced overall count of microorganisms and a change in the abundance of bacterial
species. In general, the study of the Firmicutes to Bacteroidetes ratio has been linked to
Western diet consumption and obesity, which seems to be accompanied by an increased
abundance of class Erysipelotrichales and Bacilli [67].

In a meta-analysis performed by Jiao et al. [100], it was found that the relative abun-
dance of Actinobacteria is reduced and that there is an increase in Proteobacteria. Ad-
ditionally, the dominance of four bacterial classes (Bacteroidia, Clostridia, Bacilli, and
Erysipelotrichi) was observed, corresponding to 90% GM composition for a high-fat diet
(HFD). Likewise, a HFD is associated with reductions in some fecal populations, such as
Prevotellaceae, Rikenellaceae, and Bifidobacterium spp., which is negatively correlated with
the function of the intestinal barrier [101]. Interestingly, when assessing the fecal sample
of men and women in the Spanish population, with a high frequency of consumption
of ultra-processed foods (>5 servings/day), it was possible to demonstrate associations
between increases in Bifidobacterium and Actinobacteria with the consumption of pizza
and Actinobacteria with industrialized dairy in women. For men, it was reported that an
increase in Bacteroidetes correlated positively with processed meat [102]. Despite the find-
ings that support the negative impact of the WD on GM, the cause for which these changes
occur is still inconclusive, since studies are conducted with different types, amounts, and
proportions of fats, sugars, calories, and dietary fiber, impacting microbial health.

4.2. Gut Microbiota and Nutrient Intake
4.2.1. Carbohydrate and Dietary Fiber

Carbohydrates are a main group of macronutrients which yield energy, being chem-
ically categorized into non-fibrous polysaccharides, lignin, resistant starch, and non-
digestible oligosaccharides/dietary fibers (DFs) [103]. DFs are assigned according to
insoluble and soluble properties and are often abundant nutrients in both plant-based and
omnivorous diets, by consuming foods, such as cereals, roots and tubers, legumes, fruits,
and vegetables [104].

Soluble fibers elicit a prebiotic effect, being rapidly metabolized and fermented by
intestinal bacteria, significantly influencing the abundance and diversity of GM [105]. At the
same time, the undigestible oligosaccharides are resistant to digestion in the small intestine
and pass to the colon, where they are exposed to bacterial utilization being affected by
the type, number, and colonization of intestinal bacteria, with beneficial effects already



Int. J. Mol. Sci. 2023, 24, 4918 10 of 21

reported on Bifidobacterium and Lactobacillus levels, favoring the production of short-chain
fatty acids (acetate, butyrate, and propionate) [106] and inhibiting the growth of some
intestinal pathogens of the Enterobacteriaceae family (Salmonella spp., adherent-invasive
Escherichia coli), as reported [76].

Moreover, modern dietary patterns are associated with a high intake of refined car-
bohydrates, such as fructose, mainly found in the form of corn syrup in beverages and
ultra- and processed foods, with a reduced consumption of dietary fiber. Together, these
changes negatively impact bacterial diversity and survival, leading to dysbiosis [80] and
non-alcoholic fatty liver disease [11]. In insufficient fiber consumption, intestinal bacteria re-
sort to glycoproteins of the mucus layer. However, only a few species can use this source of
nutrient (such as the species Bacteroides thetaiotaomicron), which reduces bacterial diversity
and associated potential benefits [81,107]. Additionally, there are some practices based on
nutritional strategies, such as a low-carbohydrate diet (low-carb diet), ketogenic, and low
FODMAPS (fermentable oligo-, di-, monosaccharides, and polyols), which are designed to
reduce dietary sources of carbohydrate and dietary fiber [82–84]. In general, low-carb diet
adherence leads to a reduction in the abundance and diversity of beneficial bacteria, with a
fall in Firmicutes (mean abundance: 5.53), Verrucomicrobia (mean abundance: 0.51), Eubac-
terium rectale, Dialister, Ruminococcus gnavus, and Clostridium accompanying an increase in
E. coli, Desulfovibrio spp., Parabacteroides, and Bacteroidetes (mean abundance: 5.29) [63].

4.2.2. Fat

Dietary fats are macronutrients that, in addition to providing energy, are essential for
some metabolic pathways, such as the transport of fat-soluble vitamins, cell membrane
composition, and hormonal synthesis [108]. Lipids can be found in the form of unsaturated
fat (mainly mono- and polyunsaturated), saturated, and produced by the food industry in
the form of trans fatty acids [109].

The high intake of saturated fats and omega-6 polyunsaturated fatty acids or small
amounts of omega-3 and an omega-6/omega-3 ratio of 20:1 has been related not only with
adverse metabolic consequences but also with changes in the GM [91]. Dysbiosis linked to
excess dietary fats is commonly associated with weight gain and has repercussions, such
as reduced total count of intestinal microorganisms, change in the abundance of bacterial
species, and progression of intestinal permeability [110]. Changes in GM depend on the
type of fatty acids ingested, where the intake of omega-3 is directly associated with an
increase in the abundance of Lactobacillus, while monounsaturated fatty acid and omega-6
consumptions are inversely related to Bifidobacterium content [111].

In addition, changes in microbiota composition induced by a high-fat diet in animal
and human models mainly favor an increase in the proportion of Firmicutes to Bacteroidetes
(73% and 21%, respectively) [79]. On the other hand, another study noted an increase in
dietary fat in the short term produced increases in Alistipes and Bacteroides [67]. Likewise, a
rise in the abundance of Proteobacteria phylum and a fall in the levels of Prevotellaceae and
Rikenellaceae family were also found, as well as a reduction in Bifidobacterium spp. after high
fat intake [100].

Indeed, the amount of fat in the diet is an important driver of microbial fecal oscilla-
tion, with direct relationships with the metabolic homeostasis of the host, thanks to the
unregulated modulation that fat exerts on the Reg3γ (regenerating islet-derived protein III
gamma), which consequently and negatively influences the abundance and endogenous
variation in bacterial species, leading to dysbiosis [112]. Intriguingly, some results are
inconsistent in relating different proportions and types of fat sources with changes in the
microbiota, which seems to be justified by the different amounts of dietary fiber offered
in the diets, a putative conflicting factor in the evaluation of the cause–effect relationship
between dietary fat and GM [113].
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4.2.3. Protein

Proteins are a macronutrient that supply important substrates, such as amino acids,
and often play a precursor role in the synthesis of enzymes, antibodies, and muscle deposit.
Animal or vegetable protein sources vary according to the composition of the peptide
chain and supply of amino acids (essential and non-essential). In this context, GM plays
an essential role in amino acid metabolism, both in the small intestine and in the gut [114],
where proteins are hydrolyzed by proteases and peptidases secreted by gut bacteria in the
intestinal lumen, which may be absorbed by enterocytes or fermented by bacterial species
in short-chain fatty acids, hydrogen sulfate, and ammonia [115].

Vegetable proteins often have low digestibility [116], while animal protein is more
easily degraded by aerobic microorganisms in the large intestine, with a lower incidence of
gastrointestinal effects [117]. In the small intestine, bacterial populations, such as Klebsiella
spp., Escherichia coli, Streptococcus spp. Succinivibrio dextrinosolvens, Mitsuokella spp., and
Anaerovibrio lipolytica, directly metabolize amino acids and can secrete various proteases and
peptidases [116,117]. Protein molecules and undigested peptides are fermented, resulting
in the production of microbial metabolites, such as short-chain fatty acids, ammonia,
polyamines, hydrogen sulfide, phenolic, and indolic compounds, which can be transported
to colonocytes and elicit beneficial or deleterious effects on epithelial cells, depending on
their concentrations in the lumen [118].

In the colon, bacterial genera Bacteroides and Clostridium, and phylum Proteobacteria,
which are potentially pathogenic, are related to protein substrates from animal sources,
particularly from red meat and dairy products [79], and produce toxic substrates, such as
ammonia and polyamines, which include nitrosamines and trimethylamine N-oxide [119],
implicated in cardiovascular disorders [120]. Thus, when the consumption of this type of
protein becomes excessive, it is necessary to reduce these potential pathogens and conse-
quently restore the microbial ecosystem through the change in dietary composition [121].
In contrast, plant proteins, especially from soybeans and peanuts, may play a positive role
in modulating beneficial bacterial composition in the intestine, increasing communities of
Bifidobacterium and reducing Enterobacteriaceae family and Clostridium perfringens in rats
after nitrogenous enrichment of the diet with 20% peanut protein [122].

4.2.4. Micronutrients: Vitamins and Minerals

Studies relating GM to a single micronutrient are rare, since the food itself is composed
of a set of nutrients [123]. However, experimental studies using the daily supplemen-
tation of isolated micronutrients demonstrated a crucial role in the regulation of energy
metabolism, growth, cell differentiation, and immune functions, including possible meth-
ods of interaction with fecal microbiota composition [124,125].

Interestingly, some vitamins are synthesized by GM (thiamine, riboflavin, niacin, bi-
otin, pantothenic acid, folate, or vitamin K) through the mediation of various intestinal
bacteria, such as the phyla Bacteroidetes, Fusobacteria, and Proteobacteria [126]. On an-
other side, sun exposure and vitamin D supplementation were associated with increased
Lachnobacterium and reduced Lactococcus in children aged 3 to 6 months [127]. Vitamin K
can be acquired through dietary sources and through bacterial fermentation, with the conse-
quent production of menaquinone [128]. Recently, it was observed, in a study with rodents,
that low intake of this vitamin is associated with changes in the microbial composition
of the intestine and that dietary supplementation of vitamin K leads to an increase in the
family Lachnospiraceae FCS020 and Ruminococcaceae UCG-009 in females and increase in
the genus Ruminococcus_1 in males, favoring bacterial diversity [129].

Furthermore, upon reaching the colon, some vitamins positively modulate GM. In 2019,
Choi et al. [130] analyzed the impact of different dosages of vitamin E on the composition
of GM and found that its deficiency is related to a proportion of 61% of Firmicutes, 36%
of Bacteroidetes, 0,5% of Verrucomicrobia, and 1.3% of Proteobacterias. Vitamins A, B2,
D, and beta-carotene lead to increased abundance of bacterial species; vitamins A, B2,
B3, C, and K maintain microbial diversity; vitamin D favors the richness and diversity of
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microorganisms and vitamin C leads to increased production of short-chain fatty acids.
Additionally, the impact of vitamins A and D is also reported on the modulation of the
intestinal immune response, with secondary repercussions on gastrointestinal health and
microbiome [131,132].

Regarding minerals, it has been evidenced that iron is a key element involved as a cofac-
tor in redox reactions, diverse metabolic pathways, and electron transport chain mechanisms
but also to influence the composition of the microbiota [132]. Thus, Constante et al. [133]
demonstrated, in mice, that a diet rich in heme iron favored the abundance of Proteobac-
teria and reduced the abundance of Firmicutes. Another trial with rodents reported that
excessive sodium intake is associated with reduced abundance of Lactobacillus spp. and the
genera Oscillibacter, Pseudoflavonifractor, Clostridium clusters XIVa, Johnsonella, and Rothia,
while greater abundance of Parasutterella spp. and Erwinia species, and the families Chris-
tensenellaceae, Corynebacteriaceae [134], Lachnospiraceae, and Ruminococcus [79]. In
particular, a reduction in Lactobacillus spp. associated with excess sodium consumption
increased Th17 cells and favored the expression of pro-inflammatory processes by altering
intestinal homeostasis and reflecting increased vulnerability to inflammatory insults [135].

4.2.5. Bioactive Compounds and Probiotics

Bioactive compounds (BCs) are characterized as chemical molecules acquired through
dietary or external supplements where, although not essential for survival or produced by
the human body, their intake confers benefits [136]. These compounds, with wide structural
diversity, are widely found in food sources in the plant kingdom [137]. BCs consist of
flavonoids, phenolic acids, stilbenes, lignans, and many others and, when ingested, a low
proportion is absorbed in the small intestine, while habitually, the largest amount remains
in the colon and is metabolized by gut bacteria [137].

The interaction between the consumption of BCs and GM is bidirectional: in one strand,
it was found that bacterial fermentation is an essential process that directly influences the
bioavailability and bioactivity of the BCs and, on the other hand, BCs may modulate the
composition of GM thanks to the action of their aromatic or other metabolites [138]. Dietary
polyphenols are widely studied bioactive components that increase both Bifidobacterium
spp. and Lactobacillus spp., providing cardiovascular protection, with antibacterial and
anti-inflammatory effects [75]. Similarly, in the study of Molan, Liu, and Plimmer [139],
humans that received carotenoids through the ingestion of blackcurrant (672 mg/day for
2 weeks) induced an increase in Bifidobacterium spp. and Lactobacillus spp. and a reduction
in Bacteroides spp. and Clostridium spp.

Further, in an experimental trial, rats receiving a high-fat diet and synthetic fruc-
tose were supplemented with pterostilbene (15 or 30 mg/kg), which showed increased
abundance of Akkermansia and Erysipelatoclostridium at the same time as a decrease in
Clostridium [140]. In studies with animals, there is a divergence of results due to method-
ological variability. Thus, the consumption of anthocyanin seems to reduce the phylum
Verrucomicrobia [141] while the consumption of polyphenols increases the concentrations
of Akkermansia muciniphila [142]. Furthermore, flavonoid consumption was associated with
a reduction in Firmicutes [143], while saponin intake increased this microorganism in fecal
samples [144].

Kefir is a fermented product produced by a culture of lactic acid bacteria (such as
Lactobacillus harbinensis, Lactobacillus paracasei, and Lactiplantibacillus plantarum), acetic, and
yeasts that exert probiotic activity [145], with an influence on tolerance to bile acids and
salts on adhesion of the intestinal mucosa and antimicrobial resistance, providing health
benefits [146]. However, when evaluating its impact on the composition of GM, there is
only an increase in the relative abundance of Lachnospiraceae A2 (Linear Discriminant
Analysis = 4.60) and reduced the relative abundance of the genus Clostridium and family
Clostridiaceae (Linear Discriminant Analysis = 4.25), which suggests the need for further
studies [147]. In summary, the intake of BC impacts GM diversity, with intestinal and
systemic repercussions [10,70,96,148]. Currently, there is industrial manipulation of a multi-
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tude of probiotic strains, which colonize, survive, and differentiate in the gut environment
according to the food stimuli. Thus, the intake of probiotic strains and their trophic action
are directly related to the type of nutrient and diet ingested [149]. However, depend-
ing on the component, the dose consumed, and the method of preparation, the inhered
repercussions on GM can be questionable and need further elucidation [150].

5. Fecal Microbiota as a Marker of Food Intake: Current Situation and Future Challenges

Interest in devising biomarkers of food and nutrient intake has been advancing rapidly
in recent years, which has been driven by practical needs in proposing new methods
for assessing and monitoring food intake. Understanding relationships will allow for
the detection of dietary changes from their initial moment, which facilitates an early
nutritional intervention, contributing to the prevention of chronic non-communicable
diseases associated with food imbalances as well as the evaluation of dietary adherence
during clinical treatments.

Metagenomic studies are playing an important role in the identification of biomarkers
of food intake and represent a precise approach that reflects the physiological function
driven by food intake. Healthy eating is associated with body homeostasis in all systems,
which is based on the complex interaction between biochemical and physiological pathways
at different cellular levels that are responsible for maintaining health, including GM.

Currently, robust nutritional intake biomarkers are scarce, impacting the delay con-
cerning advances around nutritional and dietary assessment. However, it is already known
that GM is directly modulated by the composition of the diet and that the isolated con-
sumption of certain nutrients or food groups stimulates the growth of specific bacterial
taxa, which, interestingly, suggests that the composition of intestinal bacteria is a potential
mirror of food consumption.

The gastrointestinal tract is extensive and has distinct bacterial populations throughout
anatomize portions, where the collection of fecal samples is an eventually practical, fast,
and non-invasive method for the evaluation of the composition of bacterial species and
their metabolites. Therefore, GM seems to be a viable tool for dietary assessment (Table 2).

Table 2. Selected gut microbiota according to dietary pattern/nutrient intake.

Selected of Gut
Microbiota

Diettary Patterns/Nutrient Intake Referencing
Increase Decrease

Bacteroidetes

Mediterranean diet
Plant-based diet
Low-Carb diet
Soluble fiber

Vitamin A, B complex, C D, E, K
Excess of animal protein

Western diet
Excess of saturated fat [63,71,76,89,103]

Bifidobacterium spp.

Mediterranean diet
Plant-based diet
Insoluble fiber

Omega-3
Vegetable protein

Polyphenols
Vitamin A, B complex, C D, E

Western diet
Omega-6

Excess of saturated fat
[90,97,100,104,105,107,111,122]

Lactobacillus spp.

Mediterranean diet
Plant-based diet
Insoluble fiber

Omega-3
Omega-6

Polyphenols

Excess of sodium
Excess of saturated fat [75,94,139,145]

Prevotella spp.
Plant-based diet

Omega-6
Vitamin A, B complex, C D, E

Western diet
Excess of saturated fat [41,94,97,100,102]
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Table 2. Cont.

Selected of Gut
Microbiota

Diettary Patterns/Nutrient Intake Referencing
Increase Decrease

Ruminococcus spp.

Plant-based diet
Omega-6
Vitamin K

Excess of sodium

Low carb diet
Excess of saturated fat [63,77,79,94,129]

Akkermansia
muciniphila

Mediterranean diet
Plant-based diet

Polyphenols
Vitamin A, B complex, C D, E

Low carb diet
Excess of saturated fat [140,142]

Clostridium spp. Mediterranean diet
Excess of animal protein

Vegetable protein
Excess of sodium

Polyphenols
[62,89,135,139,140]

Firmicutes spp. Western diet

Plant-based diet
Low carb diet
Polyphenols
Heme iron

[62,67,76,92,133,143]

Roseburia spp.
Plant-based diet

Omega-6
Vitamin K

- [77,93,129]

Proteobacteria

Western diet
Excess of animal protein

Excess of sodium
Heme iron

Mediterranean diet
Plant-based diet [78,79,133,134]

Enterobacteria
Western diet

Excess of animal protein
Excess of saturated fat

Mediterranean diet
Plant-based diet
Insoluble fiber

Omega-3

[92,97,120]

spp.: Unidentified species. Low-carb diet: Low-carbohydrate diet.

Dietary patterns have an impact on GM (Table 1) and, among the different patterns,
it is observed that those consisting of high dietary fiber and bioactive components intake
are controlled in animal and dairy protein and reduced in ultra-processed consumption,
such as the Mediterranean and vegetable diets, associated with greater abundance and
diversity of bacterial groups, positively affecting lipid metabolism, inflammatory state,
liver, intestinal function, and immune control through different metabolic pathways and
epigenetic interactions.

On the other hand, the scarcity of dietary fiber, micronutrient deficiency, and the exac-
erbated consumption of refined sugars, saturated fats, and sodium negatively modulate
this ecosystem, reducing bacterial diversity and loss of epithelial integrity in the intes-
tine, which is associated with dysregulation of inflammation, body adiposity, increased
expression of inflammatory cytokines, and the emergence of chronic non-communicable
diseases, such as obesity and metabolic syndrome [12]. In addition, species, such as Bifi-
dobacterium spp., Lactobacillus spp., and Akkermancia muciniphila, are already associated with
host health [21,28,31] and, conversely, Bacteroidetes and Ruminococcus spp. show the unfa-
vorable conditions at the core of metabolism and inflammatory state [42,61], emphasizing
the direct relationship between diet and the composition of GM.

The heterogeneity between individuals/groups (sex, age, genetics, lifestyle, and oth-
ers) and dietary variations among different populations, in addition to access to appropriate
methodologies, constitutes a practical limitation in this area of study. However, as future
perspectives, considering the number of data and valuable information that can be ex-
tracted from both GM and diet, the technological advancement, and the understanding
of the cause/consequence relationships between gut bacterial species and diet should
be considered.

In this context, the relationship between food consumption and health status/ disease
brings with it a new aspect of evaluation, where GM plays a central role. Thus, the study
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of bacterial composition (abundance/diversity), derived metabolites, and dynamics and
their association with food intake emerges as a promising prediction tool of the “omics era”
(Figure 3). This new view can facilitate the understanding of the repercussions of eating
different dietary patterns and nutrients on metabolic health and inflammatory status and
allows for the development of personalized and accurate nutritional strategies through GM
modulation, with injected on personalized precision nutrition.
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