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Abstract: Identification of genetic modulators of lysosomal enzyme activities and glycosphingolipids
(GSLs) may facilitate the development of therapeutics for diseases in which they participate, including
Lysosomal Storage Disorders (LSDs). To this end, we used a systems genetics approach: we measured
11 hepatic lysosomal enzymes and many of their natural substrates (GSLs), followed by modifier
gene mapping by GWAS and transcriptomics associations in a panel of inbred strains. Unexpectedly,
most GSLs showed no association between their levels and the enzyme activity that catabolizes them.
Genomic mapping identified 30 shared predicted modifier genes between the enzymes and GSLs,
which are clustered in three pathways and are associated with other diseases. Surprisingly, they are
regulated by ten common transcription factors, and their majority by miRNA-340p. In conclusion,
we have identified novel regulators of GSL metabolism, which may serve as therapeutic targets for
LSDs and may suggest the involvement of GSL metabolism in other pathologies.

Keywords: metabolism; lysosomal enzymes; glycosphingolipids; systems genetics; modifier genes

1. Introduction

Hydrolytic enzymes are abundant in lysosomes [1]. In a healthy cell, the biosynthesis
and catabolism of macromolecules are subject to regulatory mechanisms that maintain
cellular homeostasis [2]. The degradative processes in lysosomes are controlled by their
own enzymes [3,4]. Lysosomes play a central role in several biological processes, including
energy metabolism, signaling, plasma membrane repair, secretion, and others [3]. Loss-of-
function variants in genes encoding lysosomal proteins cause lysosomal storage disorders
(LSDs), a group of diseases characterized by intracellular buildup of partially degraded
material [5]. Growing evidence suggests that variants in lysosomal genes increase the risk
of developing Parkinson’s disease (PD) [6,7].

In the sphingolipidoses, a subset of LSDs, glycosphingolipids (GSLs) accumulate in
late endocytic organelles (late endosomes/lysosomes) and participate in their pathological
cascades [8]. Current treatments for LSDs include substrate reduction therapy (SRT),
which aims to reduce the rate of biosynthesis of stored substrates [5,9,10], and enzyme
replacement therapies (ERT) aimed at replacing a deficient enzyme [11,12]. Emerging
treatments include gene and cell therapies [13–15] and chaperones for improving enzyme
folding and trafficking [16]. Although there is a range of therapeutic options for LSDs,
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they have limitations, such as tissue accessibility [17], antibody-mediated reaction [18],
cost [19], and others. So far, therapies aimed at increasing enzyme activity or reducing lipid
levels by modulating a second (modifier) gene have not been studied. In this context, a
deeper understanding of the regulatory mechanisms that govern GSLs metabolism must
be uncovered to fully develop this approximation.

Genome-wide association studies (GWAS) in humans and systems genetics strategies,
which include gene mapping in model organisms, have identified genetic regulators of
physiological and pathophysiological processes [20–22]. The Hybrid Mouse Diversity
Panel (HMDP) has been a useful tool because genomes and tissue transcriptomes are freely
available, allowing the combination of modifier gene mapping by GWAS and pathway
analysis [23,24]. In this study, we have analyzed the activities of 11 lysosomal enzymes
and several of their natural substrates in 25 strains of the HMDP panel followed by gene
mapping and transcript integration. We identified a lack of correlation between most
enzyme activities and their mRNA levels. Similarly, most substrates had no association
between their levels and the enzyme activity that catabolizes them. Finally, we mapped pu-
tative modifier genes of each lysosomal enzyme and GSL by GWAS. We found associations
between the mRNA levels of many modifier genes and enzyme activities or GSL levels.
We clustered the putative modifiers in pathways and identified common and uncommon
genetic regulators between GSLs and lysosomal enzymes, including transcription factors
that regulate them. Our discoveries may help develop novel therapeutics for diseases with
altered lysosomal enzyme activities and GSLs.

2. Results
2.1. High Variability in the Hepatic Activity of Lysosomal Enzymes across Mouse Strains

We measured hepatic enzyme activity of β-hexosaminidase A and B (defective in
Tay-Sachs and Sandhoff disease, respectively), α-neuraminidase (defective in Sialido-
sis/Mucolipidosis Type I), α-galactosidase A and B (defective in Fabry and Schindler
disease), β-D-galactosidase (defective in GM1 Gangliosidosis), α-glucosidase (defective
in Pompe), chitotriosidase (elevated in Gaucher disease), α-L-fucosidase (defective in
fucosidosis), lysosomal acid phosphatase (elevated in patients with Gaucher), and Tartrate-
resistant acid phosphatase (TRAP; altered in Gaucher disease) by fluorimetry in liver
samples derived from 25 inbred mice strains using 4-methylumbelliferone (4-MU) based
artificial substrates. We observed significant variability in the average enzymatic activity
between the different strains (ANOVA p ≤ 0.05) (Figure 1). We did not find changes in
α-galactosidase A, lysosomal acid phosphatase, and TRAP activities across the tissues
analyzed (Figure 1d,j,k). We observed unique activity distribution patterns across the
strains for the other enzymes, suggesting specific modifiers for each enzyme.
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Figure 1. Hepatic variation in lysosomal enzyme activities across inbred strains. Enzyme activity 
are expressed as nmol/mg/hour. (a) Distribution of β-Hexosaminidase A. (b) β-Hexosaminidase B. 
(c) α-Neuraminidase. (d) α-galactosidase A. (e) α-galactosidase B. (f) β-D-galactosidase. (g) α-Glu-
cosidase. (h) Chitotriosidase. (i) α-L-Fucosidase. (j) Lysosomal acid phosphatase. (k) Tartrate-re-
sistant acid phosphatase, activity in the liver of 25 mouse inbred strains. Values are presented as 
median (n = 3–5 per strain). 

2.2. Lack of Correlation between the Enzyme Activity and Its mRNA Levels 
Advantages of using tissues derived from the HMDP panel of inbred mouse strains 

include the fact that their genomes are sequenced, and transcriptomic data are available. 
Thus, we analyzed potential correlations between the genes encoding lysosomal enzymes 
and their activities. Recently we described the natural variation of hepatic acid β-gluco-
cerebrosidase levels across many different mouse strains and included them in this anal-
ysis [20]. We did not identify significant correlations between enzyme activity and its tran-
script levels (Figure 2), with the only exception being Glb1, the gene encoding for β-D-

Figure 1. Hepatic variation in lysosomal enzyme activities across inbred strains. Enzyme activity are
expressed as nmol/mg/hour. (a) Distribution of β-Hexosaminidase A. (b) β-Hexosaminidase B. (c) α-
Neuraminidase. (d) α-galactosidase A. (e) α-galactosidase B. (f) β-D-galactosidase. (g) α-Glucosidase.
(h) Chitotriosidase. (i) α-L-Fucosidase. (j) Lysosomal acid phosphatase. (k) Tartrate-resistant acid
phosphatase, activity in the liver of 25 mouse inbred strains. Values are presented as median
(n = 3–5 per strain).

2.2. Lack of Correlation between the Enzyme Activity and Its mRNA Levels

Advantages of using tissues derived from the HMDP panel of inbred mouse strains
include the fact that their genomes are sequenced, and transcriptomic data are avail-
able. Thus, we analyzed potential correlations between the genes encoding lysosomal
enzymes and their activities. Recently we described the natural variation of hepatic acid
β-glucocerebrosidase levels across many different mouse strains and included them in this
analysis [20]. We did not identify significant correlations between enzyme activity and
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its transcript levels (Figure 2), with the only exception being Glb1, the gene encoding for
β-D-galactosidase (r = 0.5775; p ≤ 0.002) (Figure 2c). These results indicate that mRNA
levels are a poor proxy for enzyme activities.
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nmol/mg/hour and mRNA levels, which were downloaded from repository GSE16780 UCLA Hy-
brid MDP Liver Affy HT M430A [24] are expressed as log2 transformed. r, correlation; p, p-value. 

2.3. High Variability in the Hepatic Glycosphingolipid Levels across Mouse Strains 
Next, we measured the levels of GSLs in livers of the inbred mice strains in which we 

had access to enough material for three biological replicates (23/25) by Normal Phase-
High-Performance Liquid Chromatography (NP-HPLC). We observed significant varia-
bility in GSLs among the strains, especially in total GSLs, GM3-Gc, GM2-Gc, GM1agc, 
GM3, Gb3, GM1a, GM1b, GD1b, and GD1a (Figure 3). For example, the levels of GM3-Gc 
were significantly increased (ANOVA p < 0.0001) in NOD/ShiLtJ compared with the other 
samples (Figure 3b). These results indicate that GSLs levels vary across strains. 

Figure 2. Correlation between expression levels and enzymatic activity in liver of mouse inbred
strains. Each dot represents a mouse strain. (a) β-Hexosaminidase A. (b) β-Hexosaminidase B. (c) β-
D-galactosidase. (d) α-galactosidase A. (e) α-galactosidase B. (f) α-Glucosidase. (g) α-L-Fucosidase.
(h) Acid-β-glucosidase. (i) Lysosomal acid phosphatase. (j) Tartrate-resistant acid phosphatase.
The Pearson’s correlation was performed using 23 strains of mice. Enzyme activities are expressed
as nmol/mg/hour and mRNA levels, which were downloaded from repository GSE16780 UCLA
Hybrid MDP Liver Affy HT M430A [24] are expressed as log2 transformed. r, correlation; p, p-value.

2.3. High Variability in the Hepatic Glycosphingolipid Levels across Mouse Strains

Next, we measured the levels of GSLs in livers of the inbred mice strains in which we
had access to enough material for three biological replicates (23/25) by Normal Phase-High-
Performance Liquid Chromatography (NP-HPLC). We observed significant variability
in GSLs among the strains, especially in total GSLs, GM3-Gc, GM2-Gc, GM1agc, GM3,
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Gb3, GM1a, GM1b, GD1b, and GD1a (Figure 3). For example, the levels of GM3-Gc were
significantly increased (ANOVA p < 0.0001) in NOD/ShiLtJ compared with the other
samples (Figure 3b). These results indicate that GSLs levels vary across strains.
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GM1agc + GA2 + GM3 + LacCer + Gb3 + GM1a + GM1b + GD1b + GD1a) levels. (b) GM3-Gc. (c) 
GM2-Gc. (d) GM1agc. (e) GA2. (f) GM3. (g) LacCer (Lac). (h) Gb3. (i) GM1a. (j) GM1b. (k) GD1b. (l) 
GD1a, in the liver of 23 mouse inbred strains. Values are presented as median (n = 3–5 per strain). 
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the GSLs pathway and four GSL transfer proteins. The analyzed gene list of the biosyn-
thetic pathway is presented in the Supplementary Table S1. The expression values were 
organized according to GSLs levels from lowest to highest and presented as a heatmap. 
The analysis showed significant correlations for Cgt (r = −0.4263; p = 0.042) with total GSLs 
(Figure 4a). For GM2-Gc with Cgt (r = −0.4582; p = 0.0279), Galgt1 (r = 0.6078; p = 0.0021), 
A4galt (r = 0.4903; p = 0.0176), Gltp (r = −0.454; p = 0.0296) (Figure 4b). GM3 levels correlated 
with Galgt1 (r = −0.579; p = 0.0038), Gltp (r = 0.4151; p = 0.0489) (Figure 4c). GM1a with 
Col4a3bp (r = 0.4458 p = 0.033) (Figure 4d). GM3-Gc is associated with Galgt1 (r = −0.9591, 
p ≤ 0.0001) and it was the most significant correlation (Figure 4e). GM1agc levels with 

Figure 3. Variation of glycosphingolipids (GSLs) levels in liver of mouse inbred strains. Distribution
of glycosphingolipids levels expressed as nmol/mg protein; (a) total GSLs (GM3-Gc + GM2-Gc +
GM1agc + GA2 + GM3 + LacCer + Gb3 + GM1a + GM1b + GD1b + GD1a) levels. (b) GM3-Gc.
(c) GM2-Gc. (d) GM1agc. (e) GA2. (f) GM3. (g) LacCer (Lac). (h) Gb3. (i) GM1a. (j) GM1b. (k) GD1b.
(l) GD1a, in the liver of 23 mouse inbred strains. Values are presented as median (n = 3–5 per strain).

2.4. Correlations between the GSLs and the mRNA Levels of the Biosynthetic Genes

A possibility is that GSL levels could correlate with their biosynthesis rate. Since
we started from frozen tissues, we could not test this directly. Instead, we utilized the
transcriptomic data available from the repository GSE16780 UCLA Hybrid MDP Liver
Affy HT M430A [24]. We found transcript probes for 21 mRNA of the 21 anabolic en-
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zymes of the GSLs pathway and four GSL transfer proteins. The analyzed gene list
of the biosynthetic pathway is presented in the Supplementary Table S1. The expres-
sion values were organized according to GSLs levels from lowest to highest and pre-
sented as a heatmap. The analysis showed significant correlations for Cgt (r = −0.4263;
p = 0.042) with total GSLs (Figure 4a). For GM2-Gc with Cgt (r = −0.4582; p = 0.0279),
Galgt1 (r = 0.6078; p = 0.0021), A4galt (r = 0.4903; p = 0.0176), Gltp (r = −0.454; p = 0.0296)
(Figure 4b). GM3 levels correlated with Galgt1 (r = −0.579; p = 0.0038), Gltp (r = 0.4151;
p = 0.0489) (Figure 4c). GM1a with Col4a3bp (r = 0.4458 p = 0.033) (Figure 4d). GM3-Gc is
associated with Galgt1 (r = −0.9591, p ≤ 0.0001) and it was the most significant correlation
(Figure 4e). GM1agc levels with Slc17a2 (r = 0.4163; p = 0.0482) (Figure 5f). Gb3 with
A4galt (r = 0.6011, p = 0.0024) (Figure 4g) and GM1b with Galgt1 (r = −0.5764; p = 0.004)
and St8sia5 (r = −0.4194, p = 0.0046) (Figure 4h). No significant correlations were found
between the majority of GSLs and biosynthetic genes (Supplementary Table S2); thus, we
analyzed potential correlations between GSL levels and the enzyme activity that catabolizes
them across the mouse panel.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 24 
 

 

Slc17a2 (r = 0.4163; p = 0.0482) (Figure 5f). Gb3 with A4galt (r = 0.6011, p = 0.0024) (Figure 
4g) and GM1b with Galgt1 (r = −0.5764; p = 0.004) and St8sia5 (r = −0.4194, p = 0.0046) 
(Figure 4h). No significant correlations were found between the majority of GSLs and bi-
osynthetic genes (Supplementary Table S2); thus, we analyzed potential correlations be-
tween GSL levels and the enzyme activity that catabolizes them across the mouse panel. 

 
Figure 4. Correlations between GSLs and the mRNA levels of the GSL biosynthetic genes. (a) total 
GSL. (b) GM2-Gc. (c) GM3. (d) GM1a. (e) GM3-Gc. (f) GM1agc. (g) Gb3. (h) GM1b levels. Only the 
genes with significant p values with its trait using Pearson’s correlations (p ≤ 0.05) were plotted. 

Figure 4. Correlations between GSLs and the mRNA levels of the GSL biosynthetic genes. (a) total
GSL. (b) GM2-Gc. (c) GM3. (d) GM1a. (e) GM3-Gc. (f) GM1agc. (g) Gb3. (h) GM1b levels. Only the
genes with significant p values with its trait using Pearson’s correlations (p ≤ 0.05) were plotted.
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vs. GM2-Gc. (e) HexB vs. GA2. (f) ⍺-Gal B vs. Gb3. (g) Neu vs. GM3. (h) Neu vs. GM3-Gc. (i) β-D-
Gal vs. GM1a; r, Pearsons’ correlation; p, p-value. 

2.5. Lack of Correlation between Hepatic Lysosomal Enzyme Activity and Their Natural 
Substrates across Mouse Strains 

It is possible to speculate that the strains that present high activity of a particular 
enzyme should have reduced levels of its natural substrate because the enzyme catabo-
lizes it. Unexpectedly, for most enzymes, we did not find significant correlations between 
the GSL levels and the enzyme activity that degrades it (Figure 5), except for neuramini-
dase and GM3-Gc (r = −0.4706; p = 0.0234) (Figure 5g). These results suggest that for most 
strains, the rate of biosynthesis and/or uptake of GSLs varies along with the catabolic rates 
which most likely are genetically regulated. 

2.6. Identification of Putative Modifier Genes of Lysosomal Enzyme Activity and Sphingolipids 
Levels 

To identify genetic regulators, we conducted genome-wide association studies with 
a quality control analysis that considered the population structure of the HMDP panel 

Figure 5. Correlation of hepatic lysosomal enzyme activities and specific substrates levels. Each dot
represents a mouse strain. (a) HexA vs. GM2-Gc. (b) HexA vs. GA2. (c) α-Gal A vs. Gb3. (d) HexB vs.
GM2-Gc. (e) HexB vs. GA2. (f) α-Gal B vs. Gb3. (g) Neu vs. GM3. (h) Neu vs. GM3-Gc. (i) β-D-Gal
vs. GM1a; r, Pearsons’ correlation; p, p-value.

2.5. Lack of Correlation between Hepatic Lysosomal Enzyme Activity and Their Natural Substrates
across Mouse Strains

It is possible to speculate that the strains that present high activity of a particular
enzyme should have reduced levels of its natural substrate because the enzyme catabolizes
it. Unexpectedly, for most enzymes, we did not find significant correlations between the
GSL levels and the enzyme activity that degrades it (Figure 5), except for neuraminidase
and GM3-Gc (r = −0.4706; p = 0.0234) (Figure 5g). These results suggest that for most
strains, the rate of biosynthesis and/or uptake of GSLs varies along with the catabolic rates
which most likely are genetically regulated.
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2.6. Identification of Putative Modifier Genes of Lysosomal Enzyme Activity and
Sphingolipids Levels

To identify genetic regulators, we conducted genome-wide association studies with
a quality control analysis that considered the population structure of the HMDP panel
strains to reduce false associations [25,26]. We used enzyme activity levels as a trait and
included the β-glucosidase activity, which we reported previously in the same and a
few other strains [20]. For all the enzymes together, we identified 211 significant Single
Nucleotide Variants (SNVs) that passed the empiric threshold of significance p ≤ 4.1 × 10−6

(−log10P = 5.39), previously calculated by permutations [21,22,26], while the Bonferroni
threshold was p ≤ 3.9 × 10−7 [26]. These SNVs were located in different genomic regions
(exonic, intronic, UTR3, downstream, and intergenic) (Table 1, Supplementary Table S3)
in a total of 137 non-redundant genes. Similarly, we identified 3215 SNVs associated with
GSLs levels (1744 non-redundant genes) whose variants are located in different genomic
regions (Table 1, Supplementary Table S3). These analyses indicated that our strategy has
sufficient power to map putative modifier genes.

Table 1. Summary of the putative modifier genes of enzymatic activity and GSLs levels identified
by GWAS.

Trait Gene Region Chr Position Ref Alt p-Value SNV
p < 10−6

Non-Redundant
Genes

ly
so

so
m

al
en

zy
m

es

α-Galactosidase
A Stard4 intergenic 18 33494519 C T 2.88 × 10−6 1 1

α-Galactosidase
B Barhl2 intergenic 5 106880801 T C 4.10 × 10−7 1 1

GCase
Dmrtc2 UTR3 7 25662483 A G 7.46 × 10−7

2 2Arhgef1 UTR3 7 25711350 G T 7.46 × 10−7

α-Glucosidase
Tiam2 intergenic 17 3338741 T C 1.89 × 10−6

3 2Tfb1m intronic 17 3557483 G T 1.89 × 10−6

β-D-
Galactosidase

Lyplal1 intergenic 1 188026657 A G 9.09 × 10−9

88 70

4930433B08Rik intergenic 3 18512557 A G 2.32 × 10−8

Peak1 intronic 9 56165236 T C 2.32 × 10−8

Imp3 intergenic 9 56793621 A G 2.32 × 10−8

Scamp2 intronic 9 57409841 T C 2.32 × 10−8

Loxl1 intergenic 9 58188292 A G 2.32 × 10−8

1700072B07Rik intergenic 9 58256079 G A 2.32 × 10−8

Arih1 intergenic 9 59348484 C T 2.32 × 10−8

Pkm intronic 9 59506197 A T 2.32 × 10−8

Iqch intronic 9 63413504 A G 2.32 × 10−8

Chitotriosidase 1
Wdr89 intergenic 12 76773815 T C 2.45 × 10−8

8 3Syne2 intronic 12 76961077 T C 2.45 × 10−8

Chchd6 intergenic 6 89566833 A G 1.37 × 10−6

α-L-Fucosidase

Myom3 intergenic 4 135400588 C T 6.06 × 10−17

103 56

Vps45 intronic 3 95807768 C T 1.13 × 10−1

Hist2h2be downstream 3 96027761 G A 1.13 × 10−1

Tet2 intergenic 3 133254547 A C 1.13 × 10−1

Zfp46 UTR3 4 135847850 A G 1.13 × 10−1

Hnrnpr intergenic 4 135915162 C T 1.13 × 10−1

E2f2 UTR3 4 135750026 C T 8.13 × 10−9

Stkld1 intronic 2 26790736 A C 6.67 × 10−8

Xkr7 intergenic 2 152887679 G A 6.67 × 10−8

Ttpal intronic 2 163432431 A G 6.67 × 10−8

TRAP
Zfat intronic 15 68115989 A C 7.70 × 10−7

5 2Mir30d intergenic 15 68244382 C T 7.72 × 10−7
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Table 1. Cont.

Trait Gene Region Chr Position Ref Alt p-Value SNV
p < 10−6

Non-Redundant
Genes

G
SL

s

GD1a
Ctnnbl1 intronic 2 157632357 T A 1.46 × 10−7

37 26Rap2b intergenic 3 61765728 A C 1.46 × 10−7

Arhgef26 intronic 3 62232093 C T 1.46 × 10−7

GA2

Dars intergenic 1 130350640 C T 1.09 × 10−11

190 103
Abca16 intronic 7 127596308 G A 1.09 × 10−11

E130201H02Rik intergenic 7 127763574 G A 1.09 × 10−11

Vwa3a intronic 7 127887001 G A 1.09 × 10−11

Eef2k intronic 7 127993389 A G 1.09 × 10−11

LacCer

Tgs1 intergenic 4 3571870 C G 1.38 × 10−12

1152 723

Dtnb intronic 12 3586440 C T 1.38 × 10−12

Lyn intronic 4 3673421 A G 1.38 × 10−12

Ghr intergenic 15 3696333 T C 1.38 × 10−12

1810055G02Rik intergenic 19 3731017 G A 1.38 × 10−12

Bambi intergenic 18 3826103 C A 1.38 × 10−12

Hnf4g intergenic 3 3989664 G T 1.38 × 10−12

Dnajc27 UTR3 12 4106955 G C 1.38 × 10−12

Mterf1b intergenic 5 4503200 A G 1.38 × 10−12

Impad1 intergenic 4 4885958 C G 1.38 × 10−12

GD1b
Ahctf1 intergenic 1 181812047 C A 1.03 × 10−8

23 17Psen2 intronic 1 182170093 C T 1.03 × 10−8

Fhit intronic 14 11843484 G A 1.03 × 10−8

GM3Gc

Cdk6 intergenic 5 3011917 T C 1.51 × 10−31

1811 995

Insr intergenic 8 3058687 C T 1.51 × 10−31

Eif4enif1 intronic 11 3143753 G A 1.51 × 10−31

Tiam2 intronic 17 3417745 T C 1.51 × 10−31

Ppp6r3 intronic 19 3539614 C T 1.51 × 10−31

Tfb1m intronic 17 3540913 C A 1.51 × 10−31

1700102H20Rik intergenic 17 3611518 G A 1.51 × 10−31

Pex1 intronic 5 3632859 T G 1.51 × 10−31

Ankib1 intronic 5 3711311 C T 1.51 × 10−31

Ankib1 intronic 5 3778272 C T 1.51 × 10−31

GM1b Hrasls intergenic 16 29161604 A C 2.71 × 10−6 2 1

2.7. Correlations between the Traits and the mRNA Levels of Putative Modifiers

To prioritize the putative modifier genes that could regulate each enzyme, we searched
for correlations between the transcript levels of putative modifier genes and their traits
(enzyme activity and GSL levels, respectively) (Figure 6). We found transcript probes
for 67 mRNA of the 137 putative modifiers of the enzymes. The expression values were
organized according to enzyme activity from lowest to highest and presented as a heatmap.
The analysis showed significant correlations in Fip1l1 (r = −0.4462; p = 0.0254) with α-L-
fucosidase (Figure 6a). For β-D-galactosidase with Lyplal1 (r = −0.702; p = <0.0001), Arrdc4
(r = 0.627; p = 0.0008), Pde2a (r = 0.5306; p = 0.0064), Glb1 (r = 0.5753; p = 0.0026), Bptf
(r = 0.5135; p = 0.0087), Oxr1 (r = −0.447; p = 0.0251) (Figure 6b). No significant correlations
were found for the other enzymes analyzed. We used SIFT to explore the impact of genetic
variants on the genes identified by GWAS (benign or deleterious changes) associated with
changes in enzyme activity [27], because the full genomes of the strains are known [28].
This strategy identified 308 predicted deleterious variants (Supplementary Table S4) in 43 of
the 67 genes whose functions are related to organelle biogenesis (Chchd6) [29], intracellular
signaling (Pde4dip) [30], and tissue development (Fam181b) [31], among others. These
results suggest that amino acid substitution could affect protein function and signaling
pathways leading to changes in enzyme activity.
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The same analysis was performed to identify putative modifiers of GSL levels
(Figure 6c–f). For 1744 non-redundant SNVs, we found expression values for 994 genes.
The analysis identified 45 significant correlations, of which 33 were correlated with GM3-Gc
levels, 10 genes with LacCer, and one gene with GD1b and GA2 (Figure 6c–f). Overall,
we recorded 4.9% (52/1061) of significant correlations distributed between the two traits.
We also explored the impact of genetic variants associated with changes in GSLs with
SIFT [27]. This strategy identified 515 deleterious variants predicted to disrupt the protein
structure (Supplementary Table S4) in 132 genes related to DNA methyltransferase activity
(Setdb1) [32] and synapse (Slitrk1) [33], among others.

2.8. Enrichment Analysis and Common Modifier Genes between Glycosphingolipids Levels and
Lysosomal Enzyme Activities

If there is an orchestrated regulation of GSL levels and the enzymes that degrade
them, it would be expected to observe enrichment in common pathways [34]. We therefore
utilized gProfiler [35] to perform enrichment analysis using the putative modifier genes
lists. For the modifier of enzyme activities, we found significantly associated pathways
such as cell periphery (p = 5.9 × 10−4), plasma membrane (p = 2.4 × 10−3), and integral
components of the plasma membrane (p = 2.6 × 10−2) (Figure 7b), which could be related
to endocytic processes necessary to deliver key molecules to the lysosome, including
the lysosomal enzymes that can be recycled from the extracellular space. Significant
biological processes analysis included regulation of cellular processes (p = 3.9 × 10−2)
(Figure 7d) (Supplementary Table S5). We did not find significant enrichment for the
molecular function category. For GSLs, we observed enrichment in terms like cytoplasm
(p = 3.5 × 10−28), cell junction (p = 7 × 10−21), synapse (p = 4.6 × 10−19), and 70 other
pathways related to cellular components (Figure 7a; Supplementary Table S5). Many of
these pathways require cellular membranes, where GSLs play a structural role. Significantly
enriched Gene Ontology (GO) terms included protein binding (p = 9.1 × 10−31), ion binding
(p = 8.8 × 10−14), binding (p = 2.3 × 10−13), ATP binding (p = 9.4 × 10−13), carbohydrate
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derivate binding (p = 1.8 × 10−1), and 27 other pathways related to molecular functions
(Supplementary Table S5). Biological processes terms revealed 328 pathways, including
system development (p = 4.3 × 10−39), anatomical structure development (5.6 × 10−38),
and multicellular organism development (p = 1.4 × 10−37). We searched for the overlap
between the cellular component domains of modifiers of enzyme activity and GSLs, which
resulted in three common pathways (GO:0071944—cell periphery, GO:0005886—plasma
membrane, and GO:0005887—integral component of plasma membrane) (Figure 7c) and
one pathway associated with biological processes (GO:0050794; regulation of cellular
process) (Supplementary Table S5).
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and GSLs may play a role in their pathophysiology and should be explored further (Table 
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To better understand the molecular regulation of these 30 genes, we analyzed the 
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no information for three of the 30 genes since they are putative (Rik) genes. The following 
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Figure 7. Enrichment analysis and common modifier genes between glycosphingolipids levels and
lysosomal enzyme activities. (a) Cellular component functional enrichment analysis for gene sets
(1744 non−redundant genes) of six substrate (GM3−Gc, GA2, Lac, GM1b, GD1b, GD1a), analyzed by
g:Profiler. We found 73 GO_CC associated. (b) Cellular component functional enrichment analysis for
gene sets (137 non−redundant genes) of eight enzymes (acid β−glucosidase, α−galactosidase
A, α−galactosidase B, α−glucosidase, β−D−galactosidase, chitotriosidase, α−L−fucosidase,
tartrate−resistant acid phosphatase). (c) Venn diagram with common GO terms cellular component
between two traits. (d) Common GO terms biological processes between two traits. (e) Common
genetic regulators between two traits. (f) Transcription factors that bind to the common genes.
(g) Cartoon with common genetic regulators that miR−340−5p can bind.

2.9. Common and Uncommon Modifiers between Hepatic Lysosomal Enzyme Activity and
Sphingolipids Levels

Common regulators of GSLs and enzymatic activities are relevant for understand-
ing GSL metabolism and may be attractive therapeutic targets for LSDs. Therefore, we
examined the overlap between them. We found 30 common and 1821 uncommon genes
(Figure 7e). We explored their functions and identified genes involved in mitochondrial
biogenesis and dynamics (Tfb1m, Timen135, Chchd6) [29,36,37], cell proliferation (Fstl5,
Fzd10, Arhgap18) [38–40], platelet function (Cdh6) [41], vesicular trafficking (Vps45) [42],
gene expression (Tfb1m, Zfat) [36,43], and regulating levels of the proto-oncogene MYC
(Pvt1) [44]. Many of the 30 genes have been linked to diseases, such as Pvt1, Tiam2, Fstl5,
Fzd10, Cdh6, Pvt1, Chchd6 in liver, colorectal, nasopharyngeal, and gastric cancer [45–50].
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Others participate in neurodegenerative conditions; PD, schizophrenia, and intellectual
disability (Tenm4, Pde4dip, Grid2, Arhgap18) [51,52]. These results suggest that lysosomal
enzymes and GSLs may play a role in their pathophysiology and should be explored further
(Table 2).

To better understand the molecular regulation of these 30 genes, we analyzed the
transcription factors that bind to their promoters and/or enhancers (Figure 7f). We found
no information for three of the 30 genes since they are putative (Rik) genes. The following
transcription factors can bind to the 27 genes for which we have information: REST, TBP,
CEBPB, EP300, POLR2A, FOS, DPF2, CTCF, RAD21, and SP1. Some of these transcription
factors are broad regulators of transcription, such as TBP and POLR2A, while others are
selective for specific processes, such as CTCF and RAD21. Considering all the promot-
ers/enhancers of the 27 shared genes, we identified a total of 533 transcription factors
that can bind them, although some only bind a few genes (Supplementary Table S6). We
also searched for potential shared microRNA (miRNA) regulators using miRTarBase, a
curated microRNA database [53]. We identified that miR-340-5p can bind to 11 of the
27 known common genes (Tusc1, Fam91a1, Zc3h12c, Adamts5, Tmem135, Tenm4, Grid2,
Csnk1g3, Cdh6, Fam181b, and Pde4dip; p = 2.2 × 10−2) (Figure 7g). This result suggests
that miRNA-340-5p regulates GSLs metabolism and may be involved in the pathogenesis
of LSDs and the disorders described in Table 2.

Table 2. Common genetic modifiers associated with enzyme activity and hepatic glycosphingolipid lev-
els in inbred mouse strains. The references related to this table are presented as supplementary material.

Gene Description Traits Related Functions Associated
Human Diseases

Previosly
Associated
with Traits

References

Enzyme p-Value
GWAS GSLs p-Value

GWAS

Tiam2
T cell lymphoma

invasion and
metastasis 2

α-Glucosidase 1.89 × 10−6 GM3-Gc 1.51 × 10−31 neuroplasticity liver cancer No [47,54]

Tfb1m
Dimethyladenosine

transferase 1,
mitochondrial

α-Glucosidase 1.89 × 10−7 GM3-Gc 1.51 × 10−31
promotion of
mitochondrial

biogenesis
deafness No [36,55]

Dok5 Insulin receptor
substrate 6

β-D-
galactosidase 1.43 × 10−7 Lac 1.38 × 10−12

osteoblast
differentiation,

insulin and IGF-1
signaling

cancer,
Alzheimer’s

disease
No [56–59]

4930433b08Rik RIKEN cDNA
4930433B08 gene

β-D-
galactosidase 2.32 × 10−8 Lac 1.38 × 10−12 - - - -

A830019l24Rik RIKEN cDNA
A830019L24 gene

β-D-
galactosidase 1.43 × 10−7 Lac 1.38 × 10−12 - - - -

Tmem135 Transmembrane
protein 135

β-D-
galactosidase 1.43 × 10−7 GM3-Gc 1.51 × 10−31

involved in
mitochondrial

dynamics
retinal diseases No [37,60]

Fam181b
Family with sequence

similarity 181,
member B

β-D-
galactosidase 1.43 × 10−7 GM3-Gc 1.51 × 10−31

increased expression
during mouse
development

- No [31]

Tenm4
Teneurin

transmembrane
protein 4

β-D-
galactosidase 1.43 × 10−7 GM3-Gc 1.51 × 10−31 cell maturation and

myelination in SNC

neuropsychiatric
disorders,

Parkinson’s
disease

No [51,61–
63]

Plk2
Serine/Threonine-

protein kinase
PLK2

α-L-Fucosidase 1.43 × 10−7 GM3-Gc 1.51 × 10−31
cell proliferation,
alpha-synuclein
phosphorylation

pulmonary fibrosis No [64,65]

Stk32a Serine/Threonine
kinase 32A α-L-Fucosidase 1.43 × 10−7 GM3-Gc 1.51 × 10−31 kinase activity lung cancer No [66,67]

Dpysl3 Dihydropyrimidinase
like 3 α-L-Fucosidase 1.43 × 10−7 GM3-Gc 1.51 × 10−31

cell migration,
cytoskeletal dynamics

and inflammation

gastric cancer,
amyotrophic

lateral sclerosis
No [68–70]

Prex1 PIP3 Dependent rac
exchange factor 1 α-L-Fucosidase 6.67 × 10−8 GM3-Gc 1.51 × 10−31

contributes to the
effector activity of
mouse neutrophils

prostate cancer No [71,72]

Fstl5 Follistatin-related
protein 5 α-L-Fucosidase 6.67 × 10−8 Lac 1.38 × 10−12 play a role in cell

proliferation
hepatocellular

carcinoma No [38,73]

Vps45
Vacuolar protein

sorting-associated
protein 45

α-L-Fucosidase 1.13 × 10−1 GM3-Gc 1.51 × 10−31
vesicle-mediated

protein trafficking
from the Golgi

neutrophil
disorders No [42,74]

Hist2h2be Histone cluster 2 H2B
family member E α-L-Fucosidase 1.13 × 10−1 GM3-Gc 1.51 × 10−31 is necessary for

proliferation breast cancer No [75]

Pde4dip Phosphodiesterase 4D
interacting protein α-L-Fucosidase 2.29 × 10−7 GM3-Gc 1.51 × 10−31

cAMP-dependent
pathway to Golgi

and/or centrosomes
schizophrenia No [52]

Tusc1 Tumor suppressor
candidate 1 α-L-Fucosidase 6.67 × 10−8 GM3-Gc 1.51 × 10−31

reduced cell
proliferation in vitro e

in vivo
glioblastoma No [76,77]

Fzd10 Frizzled class
receptor 10 α-L-Fucosidase 6.67 × 10−8 GM3-Gc 1.51 × 10−31

promotes cell
proliferation through

Wnt1
cancer No [39,48]
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Table 2. Cont.

Gene Description Traits Related Functions Associated
Human Diseases

Previosly
Associated
with Traits

References

Enzyme p-Value
GWAS GSLs p-Value

GWAS

Grid2
Glutamate ionotropic

receptor delta type
subunit 2

α-L-Fucosidase 6.67 × 10−8 Lac 1.38 × 10−12 receptor for
glutamate

neurodevelopmental
syndrome/
intellectual
disability

No [78]

Zc3h12c Zinc finger CCCH-type
containing 12C α-L-Fucosidase 1.64 × 10−6 GM3-Gc 1.51 × 10−31

RNA stability
associated with

inflammatory genes
psoriasis No [79,80]

Arhgap18 Rho GTPase activating
protein 18 α-L-Fucosidase 6.67 × 10−8 GM3-Gc 1.51 × 10−31

role in migration,
spreading and

controls stress fiber
formation

schizophrenia in
Chinese

population
No [40,81]

Cdh6 Cadherin 6 α-L-Fucosidase 1.34 × 10−6 Lac 1.38 × 10−12 inhibit platelet
aggregation cancer No [41,49]

Fam91a1
Family with sequence
similarity 91 member

A1
α-L-Fucosidase 6.67 × 10−8 GM3-Gc 1.51 × 10−31 WDR11 complex

(vesicular trafficking) adenocarcinoma No [82,83]

4933412e24Rik RIKEN cDNA
4933412E24 gene α-L-Fucosidase 6.67 × 10−8 Lac 1.38 × 10−12 - - - -

A1bg Alpha−1B-
Glycoprotein α-L-Fucosidase 6.67 × 10−8 GM3-Gc 1.51 × 10−31

cell dynamics and
acquired immune

response

cervical and
bladder

carcinogenesis
No [84–86]

Pvt1 Pvt1 Oncogene α-L-Fucosidase 6.67 × 10−8 GM3-Gc 1.51 × 10−31 promotes cell
proliferation cancer No [50,87]

Adamts5

ADAM
Metallopeptidase with
thrombospondin type 1

motif 5

α-L-Fucosidase 6.67 × 10−8 GM3-Gc 1.51 × 10−31
metalloproteinase

that remoldels
connective tissue

osteoarthritis No [88]

Csnk1g3 Casein kinase 1
gamma 3 α-L-Fucosidase 3.51 × 10−7 Lac 1.38 × 10−12 wnt signaling

pathway
breast, brain and

colon cancer No [89,90]

Chchd6
Coiled-coil-helix-
coiled-coil-helix

domain containing 6
Chitotriosidase 1.37 × 10−6 GA2 3.27 × 10−6

mitochondrial
membrane

morphology
cancer No [29]

Zfat Zinc finger protein
ZFAT TRAP 7.72 × 10−7 Lac 1.38 × 10−12 immune response hashimoto’s

disease No [43,91]

3. Discussion

In this study we searched for genetic modulators involved in the regulation of the
lysosomal enzyme activities and the levels of substrates related to GSLs, with the idea
of finding novel therapeutics targets for disorders in which they participate. By GWASs,
we identified common and uncommon genetic regulators, evaluated the associations
between modifier gene mRNA levels and each trait, and also clustered them in pathways.
We identified 30 shared putative modifiers and described the transcription factors that
are predicted to regulate them, and we noted that the miRNA340-5p can bind to 11 of
these genes.

Our first unexpected finding was that most lysosomal enzyme activities do not cor-
relate with their mRNA levels, nor with most of their substrate levels. Although enzyme
activity can decrease with age [92], we used sex and age-matched samples; thus, the
variation observed across strains was shown not to be due to any of these factors.

Another unexpected finding was that GM2-Gc levels correlate with the mRNA levels
of the Cgt gene, which encodes for the UDP-galactose ceramide galactosyltransferase (CGT).
CGT is a key enzyme for the biosynthesis of galactocerebrosides. Gangliosides, including
GM2 derivates, are built from glucosylceramide and not from the galacto series [93].
However, for most of the biosynthetic genes there were no associations between the amount
of lipids and the transcript levels of their anabolic pathways. Altogether, our results suggest
that the GSL biosynthesis rate and uptake differ across the mouse strains, suggesting the
existence of specific modifier genes for each trait.

Our third unexpected finding was that TFEB, the master transcriptional regulator of
lysosomal genes [94], did not appear in the list of modifiers of lysosomal enzymes. This may
be due to the fact that we screened for enzymatic activity instead of mRNA levels, and we
showed a lack of correlation between transcript levels and enzyme activity under physiolog-
ical conditions, at least for most enzymes. One exception was β-D-galactosidase, for which
we found a positive correlation between its transcript levels and activity. Furthermore,
the GWAS for this enzyme identified Glb1, the gene encoding for β-D-galactosidase, as a
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putative modifier of its activity, validating the power of discovery of our population-based
strategy [95].

Our study had some limitations: First, we quantified lysosomal traits from liver
homogenates that were not in living or isolated organelles, which may have diluted en-
zyme activity or promoted molecular interactions that might not occur in vivo because
of cellular compartmentalization. Second, we could not directly measure GSLs biosyn-
thesis and uptake because we started with mouse liver samples. Third, we used SNV
catalogs with imputation, which may lead to false associations, though with increased
mapping resolution.

Most of the enzymes we assayed are associated with LSDs [5,8]. For many LSDs,
no therapies are available, and the few currently available treatments have severe limita-
tions [5]. In this context, targeting a modifier gene could be a novel therapeutic approach.
For example, lack of β-D-galactosidase activity triggers GM1 gangliosidosis, a disease
with no approved therapies [96]. Our study identified the druggable Lypla1 and Pkm
genes as putative modifiers of β-D-galactosidase activity, which can be pharmacologically
modulated [97,98]. We found other druggable genes as well for several traits, and with
the current gene editing technologies virtually any gene can be targeted. The potential
modifying effects of these genes and compounds can be tested in LSDs disease models.

A hallmark of the sphingolipidoses is the intracellular buildup of GSLs, so strategies
aimed at reducing their levels could lead us to novel therapies [5,8]. GSLs comprise a
ceramide moiety with one or more sugar residues linked to it [99]. An approved therapy
for Gaucher and Niemann-Pick disease type C is Miglustat [100,101], a small molecule
inhibitor of GSL biosynthesis, thus reducing their levels. Our GSLs GWAS identified more
than 50 genes previously associated with sphingolipid metabolism, which served as a
positive control, including B3gnt5, Cln8, Hexb, Pnpla1, St8sia1, and Cgt. B3gnt5 regulates
GSLs metabolism and lung tumorigenesis [102]. Our study also identified Lipc as a modifier
of GM3-Gc levels, which has been previously associated with elevated serum levels of
liver enzymes (alkaline phosphatase and γ-glutamyl transferase) [103], suggesting a new
connection between GM3-Gc and liver damage. Variants in LIPC, CPS1, PABPC4, CITED2,
TRPS1, and MVK are associated with changes in plasma lipoprotein levels [104], connecting
novel traits to GSLs metabolism.

Lysosomal leakage has been associated with Alzheimers’ [105], cancer, and inflamma-
tion among other conditions [106]. Recently, the phosphoinositide signaling pathway was
implicated in lysosomal repair [107]. Many genes of this pathway appear in our discovery
list (Osbpl9, Osbpl6, Pde4dip, Pde2a, Pde1a, Pde7a, Pde7b, Pde4d, Pde8b, Pld5, Pik3r1, Pip4k2a,
Pip5k1a, Pip5k1b, Pi4kb, Pdpk1, Atg4c, Atg10), suggesting that integrity of the lysosomal com-
partment is key to the proper functioning of enzymes and/or that these enzymes and lipids
participate in lysosomal repair. Furthermore, this novel lysosomal repair pathway may
facilitate the development of novel therapeutics for these diseases with lysosomal leakage.

Defects in the 30 shared genes are related to several pathologies, such as vision abnor-
malities (TMEM135) [60], cancer (CDH6 [49], FZD10 [48], TIAM2 [47]), neuropsychiatric
disorders (Tenm4 [51], Pde4dip [52], Grid2 [78]), deafness (TFB1M) [55], neutrophil disorders
(VPS45) [74] and others. Lysosomal enzymes and GSLs have been widely studied in cancer
and neurodegenerative diseases [46,108–111]; however, their role in the other identified
conditions should be explored.

Although not binding the complete list of shared genes, we identified some tran-
scription factors previously known to be involved in lipid metabolism and autophagy-
lysosomal functions (PPARγ, SREBF1, HNF1A, YY1, EGR1, SP1 and TFE3, E2F1, CREB1,
MYC) [112–121], and many more that have not been previously linked to GSL metabolism.
We also identified miR-340-5p as a putative regulator of many common modifier genes.
Changes in miR-340-5p are linked to preeclampsia, neuroinflammation [122–126], adipocyte
differentiation [127], as well as obesity and diabetes [128]. GSL metabolism plays a crucial
role in the two last-mentioned disorders, and inhibitors of their biosynthesis have shown
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promising results in animal models of these conditions, validating the relevance of our
strategy [129,130].

In conclusion, we described putative regulators of hepatic lysosomal enzymes and
GSLs, many of them druggable and associated with diseases where alterations in GSL
metabolism have not been previously described and should be assessed. We expect our
findings may facilitate the development of novel therapeutics for conditions with alterations
in these traits.

4. Materials and Methods
4.1. Mouse Tissues

We used 8 weeks-old mice livers derived from 25 inbred mouse strains, which were
kindly donated by Dr. Aldons Lusis (University of California, Los Angeles, CA, USA).
(i) 129X1/SvJ, (ii) A/J, (iii) AKR/J, (iv) BALB/cJ, (v) BTBR T<+> tf/J, (vi) BUB/BnJ, (vii)
C57BL/6J, (viii) C58/J, (ix) CAST/EiJ, (x) CBA/J, (xi) CE/J, (xii) DBA/2J, (xiii) KK/HlJ, (xiv)
LG/J, (xv) LP/J, (xvi) MA/MyJ, (xvii) NOD/ShiLtJ, (xviii) NON/ShiLtJ, (xix) NZB/BlNJ,
(xx) NZW/LacJ, (xxi) PL/J, (xxii) RIIIS/J, (xxiii) SEA/GnJ, (xxiv) SM/J, (xxv) SWR/J.
Tissues were homogenized and adjusted to 50 mg tissue/mL in deionized water with a
Potter-Elvehjem tissue homogenizer (Omni International, Kennesaw, GA, USA). Three or
more livers per mouse strain were used to quantify traits (Supplementary Table S7).

4.2. Enzyme Activity Assays

Lysosomal hydrolase activities were determined using an artificial fluorescent sub-
strate based on 4-methylumbelliferone (4-MU) [131]. For α-glucosidase, 1.47 mM 4-MU α-
D-glucopyranoside (Sigma, Dorset, UK) in 100 mM citric acid/100 mM sodium phosphate,
0.1% TritonX-100, pH 4.0 was used as substrate [132]. The substrate for α-galactosidase A
and B activities was 5 mM 4-MU α-D-galactopyranoside (Santa Cruz, CA, USA) with and
without 250 mM N-acetyl-galactosamine (Sigma, Dorset, UK) in 100 mM citric acid/100 mM
tri-sodium citrate, 0.1% TritonX-100, pH 4.0 [133,134]. For measuring β-hexosaminidase
A and B activity, 3 mM 4-MU N-acetyl-β-D-glucosaminide (BioChemika, Dorset, UK) in
100 mM citric acid/100 mM sodium phosphate, 0.1% TritonX-100, pH 4.5 was used as sub-
strate. Heat inactivation assay for β-hexosaminidase A was carried out at 50 ◦C for 3 h [135].
For β-galactosidase activity, 1 mM 4-MU β-D-galactose (Sigma, Dorset, UK) in 200 mM
sodium acetate buffer, 100 mM NaCl, 0.1% TritonX-100, pH 4.3 was used as substrate [136].
The substrate for neuraminidase activity was 0.4 mM 4-MU α-D-N-acetylneuraminic acid
(Sigma, Dorset, UK) in 0.1 M acetate buffer, 0.1% TritonX-100, pH 4.6 [137,138]. For chi-
totriosidase activity, 0.013 mM 4-MU chitotrioside (Sigma, Dorset, UK) in 100 mM citric
acid/200 mM sodium phosphate, 0.1% TritonX-100, pH 5.2 was used as substrate [139,140].
For total acid phosphatase activity, 5 mM 4-MU phosphate (Sigma, Dorset, UK) with 40 mM
NaCl in 200 mM citric acid/200 mM sodium phosphate, 0.1% TritonX-100, pH 4.5 was
used as substrate. For tartrate-resistant acid phosphatase (TRAP) activity, 5 mM 4-MU
phosphate (Sigma, Dorset, UK) with 40 mM Na Tartrate in 200 mM citric acid/200 mM
sodium phosphate, 0.1% TritonX-100, pH 4.5 was used as substrate. The difference between
total acid phosphatase activity and TRAP corresponded to lysosomal acid phosphatase
(Lys AP) activity [141,142]. The substrate for α-L-fucosidase activity was 60 nM 4-MU
α-L-fucopyranoside (Sigma, Dorset, UK) in 200 mM citric acid/200 mM sodium citrate,
0.1% TritonX-100, pH 5.0 [143,144]. We determined the acid-β-glucosidase activity in the
same tissues in a previous publication [20], and further analyses were performed here
based on the published activity. Liver homogenates were diluted with the buffer corre-
sponding to each enzymatic determination. Three cycles of freezing (liquid nitrogen) and
thawing were performed on the samples. Three biological replicates of the diluted liver
extracts were incubated with the corresponding substrate at 37 ◦C for 30 min (or 1 h for
α-neuraminidase, β-D-galactosidase, and chitotriosidase). Cold 0.5 M Na2CO3 (pH 10.7)
was added to stop the reaction. Fluorescence intensity in samples was measured in a
Synergy HT plate reader (BioTek, Winooski, VT, USA) at 360/460 nm. Protein concentration
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was measured using a BCA protein assay kit (Thermo Fisher Scientific, New Jersey, NJ
USA). Fluorescence values were normalized to protein concentration. A 4-MU standard
curve was constructed to calculate specific activity, and the final value was adjusted to one
hour of enzymatic reaction.

4.3. Glycosphingolipids Levels Quantification

The GSLs were extracted and measured by Normal Phase-High-Performance Liquid
Chromatography (NP-HPLC) following published methods [145]. Briefly, the aqueous tis-
sue extract was homogenized in chloroform/methanol (C:M) (1:2 v/v) and kept overnight at
4 ◦C. Then, the extracts mixture was centrifuged at 3000 rpm for 10 min at room temperature.
We added 0.5 mL of PBS and 0.5 mL of chloroform to the supernatant followed by a 3000-
rpm centrifugation for 10 min at room temperature. The lower phase was carefully removed
and dried under a stream of nitrogen gas (N2) in a heating block (42 ◦C), resuspended
in 40 µL C:M 1:3 v/v and mixed with the upper phase. Afterwards, glycosphingolipids-
derived oligosaccharides were purified from the samples using C18 columns (Telos, Kinesis,
UK) previously pre-equilibrated with 1.25 mL methanol (four times) and 1.25 mL deionized
water (three times). We loaded the mixed phase (lower/upper) onto a column and rinsed
the sample tube with 1 × 1 mL of deionized water. Then, the C18 column was washed with
4 × 1.25 mL deionized water and eluted it with 1 × 1 mL (C:M) (98:2 v/v), 2 × 1 mL (C:M)
(1:3 v/v), 1 × 1 mL methanol. The eluates were dried under N2 current and digested with a
recombinant Endoglycoceramidase I (rEGCaseI) (GenScript, Oxford, UK) in buffer 50 mM
sodium acetate, pH 5.0, 0.6% TritonX-100 (4 µL enzyme + 86 µL buffer) at 37 ◦C for 16 h.
The released glycans were labeled with 310 µL of labelling mix (30 mg/mL anthranilic
acid (2AA) and 45 mg/mL sodium cyanoborohydride) in 4% sodium acetate, 2% boric
acid in methanol, and heated at 80 ◦C. Then, we cooled the samples and mixed them with
3 × 1 mL acetonitrile: deionized water (97:3) (v/v) and added them to a Discovery DPA-
6S-SPE tube (Supelco, PA, USA), pre-equilibrated with 1 × 1 mL acetonitrile, 2 × 1 mL
deionized water, and 3 × 1 mL acetonitrile. The columns were cleaned with 3 × 1 mL
acetonitrile: deionized water (95:5) (v/v), and the tubes were washed with 2 × 1 mL ace-
tonitrile: deionized water (95:5) (v/v) and eluted in 0.6 mL deionized water. We took
60 µL from 0.6 mL sample eluted, added 140 µL acetonitrile, and injected 50 µL of this
mix (deionized water: acetonitrile) (30:70) (v/v) onto NP-HPLC (Waters Alliance 2695
separations module and multi-fluorescent detector set at Ex 360/Em 425 nm). To calculate
molar quantities from peaks in the chromatogram, we included a calibration standard
containing 2.5 pmol 2AA-labelled chitotriose (Ludger, Oxford, UK) for each NP-HPLC
run [145]. The chromatographic data were processed using Waters Empower software 3
(Waters, Milford, MA, USA). Fluorescence values by sample were normalized to protein
content using a BCA Assay kit (Merck KGaA, Darmstadt, Germany).

4.4. Genome-Wide Association Studies (GWAS)

We used the genotype of each strain, and the enzymatic activity or substrate as trait,
and its kinship matrix to perform the GWAS using The Efficient Mixed Model Association
(EMMA) v.1.1.230 in the R package [26,146]. We used PLINK to remove SNVs in linkage
disequilibrium to avoid false associations [25], considering an R2 = 0.25, leaving 127,285
independent variants out of the initial four million variants downloaded from the mouse
HapMap reference panel (http://mouse.cs.ucla.edu/mousehapmap/full.html, accessed
on 28 September 2020) [147].

4.5. Gene Expression Array and Heat Maps

For gene expression correlations, we obtained inbred mouse hepatic transcript data
from the repository GSE16780 UCLA Hybrid MDP Liver Affy HTM430A [24]. The mRNA
levels in the repository were expressed as log2 transformed and were calculated from the
Affimetrix chip with the robust multiarray average (RMA) method. To plot the heatmaps,

http://mouse.cs.ucla.edu/mousehapmap/full.html
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we used Morpheus software (https://software.broadinstitute.org/morpheus, accessed on
15 February 2022).

4.6. Functional Impact of Genomic Variants

The functional impact of genomic variants was assessed using the Sorting Intoler-
ant From Tolerant (SIFT) software (https://sift.bii.a-star.edu.sg/www/SIFT_dbSNP.html,
accessed on 12 July 2022) [27].

4.7. Enrichment Analysis

We used gProfiler [35] with the default settings to perform the pathway enrichment
analyses.

4.8. Identification of Transcription Factors

We consulted the GeneHancer (GH) database, a catalogue of genome-wide enhancer-
to-gene and promoter-to-gene associations, through GeneCards® (https://www.genecards.
org/Guide/GeneCard, accessed on 6 September 2022) [148]. Only transcription factors
with a significative GH Score were considered.

4.9. Statistics

We used Student’s t-test, ANOVA with Bonferroni correction, and Pearson corre-
lation. All tests were two-tailed. The significance was considered to be p < 0.05. We
used an R package [146] and Prism v9.1.0 (GraphPad software, San Diego, CA, USA) for
these analyses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24054915/s1.
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