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Abstract: We report on theoretical investigations of a methylammonium lead halide perovskite
system loaded with iron oxide and aluminum zinc oxide (ZnO:Al/MAPbI3/Fe2O3) as a potential
photocatalyst. When excited with visible light, this heterostructure is demonstrated to achieve a high
hydrogen production yield via a z-scheme photocatalysis mechanism. The Fe2O3:MAPbI3 hetero-
junction plays the role of an electron donor, favoring the hydrogen evolution reaction (HER), and
the ZnO:Al compound acts as a shield against ions, preventing the surface degradation of MAPbI3

during the reaction, hence improving the charge transfer in the electrolyte. Moreover, our find-
ings indicate that the ZnO:Al/MAPbI3/Fe2O3 heterostructure effectively enhances electrons/holes
separation and reduces their recombination, which drastically improves the photocatalytic activity.
Based on our calculations, our heterostructure yields a high hydrogen production rate, estimated
to be 265.05 µmol/g and 362.99 µmol/g, respectively, for a neutral pH and an acidic pH of 5. These
theoretical yield values are very promising and provide interesting inputs for the development of
stable halide perovskites known for their superlative photocatalytic properties.

Keywords: lead halide perovskite; heterostructure; z-scheme mechanism; photocatalysis; hydrogen
evolution reaction; density functional theory

1. Introduction

The increasing demand for energy and the deleterious environmental impact resulting
from the use of fossil fuels, has pushed policy makers and scientists to look for alterna-
tive, renewable energy solutions [1]. One of the most exciting research topics in the field
of energy harvesting, nowadays, is the use of solar energy to produce green hydrogen
(H2), considered a desirable energy vector [2–4]. The pioneering work of Fujishima and
Honda on solar-driven water splitting (WS) into H2 and oxygen (O2) using titanium oxide
(TiO2) as photocatalyst, has triggered researchers to investigate novel strategies to pro-
duce and store clean H2 [5–8]. The major challenge resides in developing an advanced
photocatalyst possessing various functional properties, such as a large surface area, a
high ion permeability, and having appropriate WS redox reaction energies [9,10]. For
several decades, various semiconductors and molecular assemblies have been reported
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to achieve very good photocatalytic WS; among them are Ta3N5, CdS, ZnS, ZnO, and
TiO2 [5–8,11–14]. In view of the solar energy utilization, and considering the surface over-
potential, an ideal photocatalyst should have a suitable bandgap of around 1.83 eV, and
exhibit band alignment with WS redox to better harvest the visible light and transform the
absorbed solar energy into H2 [15]. In the search for chemically stable and earth-abundant
visible-light-driven photocatalysts, hybrid organic-inorganic perovskites such as methy-
lammonium lead iodide perovskite, with the chemical formula CH3NH3PbI3 (MAPbI3),
have shown great absorption coefficients (104–105 cm−1) and interesting optical bandgaps
(1.74 eV), that allows the absorption of visible light within wavelengths ranging from
about 280 nm to 800 nm [16–19]. Additionally, MAPbI3 exhibits excellent electronic prop-
erties such as an ambipolar charge transport and long charge diffusion length (~25 µm in
MAPbI3 single crystals), and thus has advanced the conversion power efficiency of new-
generation solar cells to over 20% in the last 10 years [20]. These attractive properties have
enabled MAPbI3 to be a desirable candidate for the photocatalytic hydrogen-evolution re-
action (HER), where its catalytic activity and durability have been promoted significantly
since the pioneering work on MAPbI3 in 2016 [21,22]. Nevertheless, MAPbI3 materials
still suffers from instability in the presence of water [23]. Besides, the holes generated
in the MAPbI3 valence band are unable to move through the electrolyte because they do
not generate enough potential to produce OH− [24–26]. In this work, an encapsulated
MAPbI3 is investigated as a potential photocatalyst for HER using a ZnO:Al/MAPbI3/Fe2O3
heterojunction model, achieving the z-scheme photocatalysis mechanism and preventing
its degradation.

2. Results and Discussion

Metal Halides, generalized by the chemical formula of ABX3 (A = CH3NH3, CHN2H4, . . .;
B = Sn, Pb, . . .; X = I, Br, . . .), have versatile and unique properties that widen their range of
applications. Particularly, MAPbI3

(
MA = methylammonium or CH3NH3

)
perovskites

have emerged as among the best performing photoanode materials due to their high
absorption, their suitable bandgap of 1.73 eV for bulk MAPbI3, and their low production
cost [27]. However, the position of their valence band (VB) relative to the redox potential of
water oxidation still hinders their performance for H2 photocatalytic production. In such
materials, electrons in the VB are excited to the conduction band (CB) by light irradiation
with an energy equivalent to or larger than the material’s bandgap, subsequently electron-
hole pairs are formed. These latter contribute directly to the reactions of reducing protons
to generate H2 and oxidize H2O to produce O2, respectively. To facilitate the WS reaction,
the bottom of the CB and the top of the VB must be respectively lower and higher than
the reduction/oxidation potentials of H+/H2: 0 V vs. normal hydrogen electrode (NHE)
and O2/H2O (1.23 V vs. NHE) at neutral pH, respectively [28]. In the following, we will
attempt to engineer the band edge potentials of MAPbI3 by coupling both side surfaces
with Fe2O3 and ZnO:Al, respectively, while keeping its band gap within the visible region
(Figure 1).

It is worth noting that, designing efficient z-scheme devices requires clarifying the
interfacial properties and being able to discern the physics behind the competing mecha-
nisms. While the theory of semiconductor electrolyte interfaces has been well developed, it
has not been rigorously expanded to accommodate double semiconductors and co-catalysts
on their z-scheme surfaces [29]. In addition to exploring the improvement of the mecha-
nism of H2 generation using an MAPbI3 based photocatalyst, one can notice that coping
with its surface degradation, and finding a mechanism for generating holes to activate the
oxidation process through the z-scheme [30], could help to build an efficient photocatalyst,
as reported experimentally [31,32].
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Figure 1. Calculated energy band structures of (a) freestanding ZnO:Al, MAPbI3, and Fe2O3, and (b) 
the Fe2O3/MAPbI3/ZnO:Al heterostructure based on GGA-PBE. The Fermi level is set to be 0 eV and 
denoted by a black line. 
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nisms. While the theory of semiconductor electrolyte interfaces has been well developed, 
it has not been rigorously expanded to accommodate double semiconductors and co-cat-
alysts on their z-scheme surfaces [29]. In addition to exploring the improvement of the 
mechanism of H2 generation using an MAPbIଷ based photocatalyst, one can notice that 
coping with its surface degradation, and finding a mechanism for generating holes to ac-
tivate the oxidation process through the z-scheme [30], could help to build an efficient 
photocatalyst, as reported experimentally [31,32]. 

2.1. MAPbI3 (003)/Fe2O3 (110) z-Scheme Photocatalyst 
As mentioned above, one of the major challenges with MAPbIଷ in photocatalysis is 

that the edge position of its valence band (1.15 V) is lower than the oxidation energy of 
the water oxidation redox potential (1.23 V). For MAPbIଷ compounds, the holes do not 
have enough energy to achieve this process, hence we first simulate the composition of MAPbIଷ coupled with FeଶOଷ to obtain the sufficient bandgap for WS, as the oxidation 
(1.23 V) and reduction (0 V) potentials of MAPbIଷ (001)/FeଶOଷ (110) are within the desired 
reduction (0 V vs. NHE at neutral pH) and oxidation (1.23 V vs. NHE at neutral pH) WS 
potentials. The introduction of FeଶOଷ allows us to obtain a z-scheme composition leading 
to an increased light absorption, with a rise in the formation of electron-hole pairs, which 
in turn increases the number of H2O molecules split into HO- and H+ ions, leading to H2 
production. To assess the stability of the established heterostructure, we calculated the 
binding energy (𝐸௕௜௡ௗ௜௡௚) of the ZnO: Al/MAPbIଷ/FeଶOଷ composition using the following 
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where A = ZnO: Al, B = MAPbIଷ, and C = FeଶOଷ . The heterostructures AB and BC are 
found to be stable, with calculated 𝐸௕௜௡ௗ௜௡௚ values of 3.64369 and 3.94472 V/Åଶ, respec-
tively. The binding energy is calculated by varying the interlayer distance between the 
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Figure 1. Calculated energy band structures of (a) freestanding ZnO:Al, MAPbI3, and Fe2O3, and
(b) the Fe2O3/MAPbI3/ZnO:Al heterostructure based on GGA-PBE. The Fermi level is set to be 0 eV
and denoted by a black line.

2.1. MAPbI3 (003)/Fe2O3 (110) z-Scheme Photocatalyst

As mentioned above, one of the major challenges with MAPbI3 in photocatalysis is
that the edge position of its valence band (1.15 V) is lower than the oxidation energy of
the water oxidation redox potential (1.23 V). For MAPbI3 compounds, the holes do not
have enough energy to achieve this process, hence we first simulate the composition of
MAPbI3 coupled with Fe2O3 to obtain the sufficient bandgap for WS, as the oxidation
(1.23 V) and reduction (0 V) potentials of MAPbI3 (001)/Fe2O3 (110) are within the desired
reduction (0 V vs. NHE at neutral pH) and oxidation (1.23 V vs. NHE at neutral pH) WS
potentials. The introduction of Fe2O3 allows us to obtain a z-scheme composition leading
to an increased light absorption, with a rise in the formation of electron-hole pairs, which
in turn increases the number of H2O molecules split into HO- and H+ ions, leading to
H2 production. To assess the stability of the established heterostructure, we calculated
the binding energy (Ebindinginding) of the ZnO:Al/MAPbI3/Fe2O3 composition using the
following equation:

EA/B/C
Binding =

(EA/B/C
tot − (EA

tot + EB
tot + EC

tot))

Sur f ace area
(

Å
2
) (1)

where A = ZnO:Al, B = MAPbI3, and C = Fe2O3. The heterostructures AB and BC are
found to be stable, with calculated Ebinding values of 3.64369 and 3.94472 V/Å

2
, respectively.

The binding energy is calculated by varying the interlayer distance between the monolayers
constituting the heterostructure by taking into consideration the van der Waals interactions
in the form of vdW-optB86b (Figure 2).

As can be seen in Figure 2, the binding energies of ZnO:Al/MAPbI3 and MAPbI3/Fe2O3
heterostructures are −0.05665 and −0.05116 eV/Å, respectively, at the vdW minima of
ZnO:Al/MAPbI3 (3.64369 Å) and MAPbI3/Fe2O3 (3.94472 Å), suggesting that the process
of heterostructure build-up is exothermic. Moreover, the obtained binding energy is high
with respect to the typical vdW crystal of graphite (−0.012 eV/Å2) [33].
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2.2. ZnO:Al (001)MAPbI3 (001) z-Scheme and ZnO:Al/MAPbI3/Fe2O3 Heterojunction

Moreover, we have coupled the MAPbI3 surface with ZnO:Al to enhance the injection
of electrons to the CB of MAPbI3, to reinforce the H2 reduction potentials. ZnO:Al was
selected as it is transparent [25,27,34], allowing light radiation to reach MAPbI3 while
protecting it from degradation in the presence of H2O. For MAPbI3, our findings show
that the CB electrons are mainly composed of Pb-5p orbitals, and hybridized Pb-5s and
I-5p in VB [35]. The top of the VB (1.15 V vs. NHE) takes a much smaller position than
1.23 V vs. NHE, as illustrated in Figure 3a. A value for the work function (φ = 5.13 eV)
is obtained, which is expressed as the difference between the vacuum and the minimum
energy required for electrons to escape from the Fermi level. Moreover, we calculated the
potential energy of ZnO:Al/MAPbI3/Fe2O3 after contact in the Z direction, and Fermi level
position EF = −5.13 eV from the vacuum (Figure S1).
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Therefore, it is not possible for the redox half reactions H+/H2 and O2/H2O to occur,
because the bottom of the CB is found at −0.64 V vs. NHE, and the VB for Fe2O3 consists
of strongly hybridized O-2p and Fe-3d orbitals [36]. The CB is, however, dominated by
Fe-3d states, as shown by core-level absorption measurements. Some covalent mixing of
the metal and O2 states also exists in the CB, and this introduces a degree of O-2p character
in unoccupied states. It is also known that ZnO is a direct bandgap semiconductor, with
a bottom CB and top VB located at the same point of the Brillouin zone. Its VB and CB
are mainly composed of Zn-3d and O-2p states [37], respectively, and the corresponding
calculated bandgap is 3.21 eV, which is in good agreement with the reported experimental
values [34]. When doping ZnO with Al, the Fermi level slowly upshifts towards the CB as
a function of the concentration of Al, until a semiconducting-metallic transition occurs at
the value of 12% of Al content [38]. Such behavior has been reported for other materials
using different bandgap engineering pathways [27]. In our simulations we consider Al
doped ZnO at 2%, which is consistent with our other calculations, as it is coherent with
our result, showing the electrons’ migration between ZnO and MAPbI3 after contact, as
well as the Fermi levels of ZnO:Al and the redox. Additionally, based on calculation of the
surface planes’ stabilities, we have selected the most stable structures, namely (110), (001),
and (001), for Fe2O3, ZnO:Al and MAPbI3, respectively. These surface planes are identical
to other studies [25,28,39].

The photocatalytic efficiency of WS is defined by the positions of the photocatalyst’s
band edges (e.g., Figure 3b). The VB and CB potentials of the Fe2O3 (110), ZnO:Al (001),
and MAPbI3 (001) monolayers are calculated using the following empirical equations:{

E0
CB = χ − E0 − 1

2 Eg
E0

VB = E0
CB + Eg

(2)

where E0 is the energy of free electrons on the hydrogen scale (0 V), χ is the absolute
electronegativity of the semiconductor, E0

VB is the valence band maximum, E0
CE is the

conduction band minimum, and Eg is the bandgap. The χ values for Fe2O3, ZnO:Al,
and MAPbI3, being 5.53, 4.68, and 4.81, respectively, obtained by the Millikan approxima-
tion [40–42], are used to compute the band edge potentials:χ(s) = N

√
χZ1

1 χZ2
2 χZ3

3 . . . . . .χZn−1
n−1 χZn

n

χi(s) =
EIE

i +EAE
i

2

(3)

where EIE
i is the ionization energy, EAE

i is the affinity energy, N is the total number of atoms
in the compound, χZn

n is the electronegativity of the constituent atom, Zn is the number of
species, and Xi is the electronegativity of the elements.

According to Table 1, before the coupling of Fe2O3 and ZnO:Al with MAPbI3, the
calculated band edge positions of the CB and VB for the MAPbI3 (001) surface are −0.64 eV
and 1.15 eV vs. NHE, respectively, and the bandgap is 1.79 eV. Our calculated results reveal
that the Fe2O3 (110) surface has a band edge position of 0.28 eV (CB) and 2.51 eV (VB) vs.
NHE, resulting in a bandgap of 2.23 eV. Likewise, the ZnO:Al (001) surface exihibits a band
edge position of −0.1 eV (CB) and 3.11 eV (VB) vs. NHE, giving rise to a bandgap of 3.21 eV.
After coupling of the Fe2O3 and ZnO : Al systems with MAPbI3 to form the heterostructure,
the fermi levels of MAPbI3 (001) and ZnO:Al surfaces will upshift by 0.32 eV and 0.45 eV,
respectively, while that of the Fe2O3 monolayer will downshift by 0.40 eV vs. NHE until
the Fermi levels of the two components reach the same level (Figure 3b), hence a built-in
electric field is formed on the interface from the Fe2O3 (110) monolayer to the MAPbI3 (001)
surface, as shown in Figure 3a. To determine the energy required for the electrons to escape
from the Fermi level into a vacuum for the heterostructure, where, after ZnO:Al and Fe2O3
contact MAPbI3, the electrons in ZnO:Al with the lowest work function flow into MAPbI3,
while those with a medium work function flow into Fe2O3 which has the highest work
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function. The MAPbI3 and ZnO:Al surfaces will collect positive charges, and the MAPbI3
and Fe2O3 monolayers will accumulate negative charges (Figure 3b).

Table 1. Computed electronic properties for freestanding ZnO:Al, MAPbI3 and Fe2O3 before and
after coupling. All values are calculated vs. NHE.

Before
Coupling

After
Coupling

ZnO:Al MAPbI3 Fe2O3 ZnO:Al MAPbI3 Fe2O3

Φ 4.68 4.81 5.53 5.13 5.13 5.13
EG (eV) 3.21 1.79 2.23 3.21 1.79 2.23
EF (eV) 0.18 0.31 1.03 0.63 0.63 0.63
EV (eV) 3.11 1.15 2.51 3.3 1.48 2.11
EC (eV) −0.1 −0.64 0.28 −0.01 −0.31 −0.12

2.3. Water Splitting Mechanism

To better understand the modeled heterostructure’s performance, we have evaluated
its stability and its band gap alongside the CB and VB edge’s positions for each system, and
calibrated them with the WS potentials as illustrated. After coupling the three materials
into one compound, we have calculated the electrostatic potential through the Fermi level
of the composition with respect to the vacuum and observed that there is a shift of the
Fermi level and energy bands due to the migration of electrons between the three systems
in a quest for stability. This is mainly caused by the difference in electronegativity and
chemical potentials as shown in Figure 4.
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To elucidate the shifting process in the energy bands, we have carried out a Bader
charge analysis [43], that indicates the migration of electrons within the three systems.
After coupling, the Fermi level of Fe2O3 upshifted, while those of MAPbI3 and ZnO:Al
downshifted to reach an equilibrium point for the whole system. According to the charge
transfer values summarized in Table 2, it can be seen that electrons have migrated from
MAPbI3 towards Fe2O3, while electrons have moved from ZnO:Al towards MAPbI3.
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Table 2. Charge transfer (∑Q) and number of donor and acceptor electrons (ND,A) within MAPbI3

/Fe2O3 and ZnO:Al/MAPbI3.

∑Q ND,A

MAPbI3/Fe2O3 −0.52 3 × 1018

ZnO:Al/MAPbI3 0.15 1 × 1018

A mechanism of WS based band gap energy produces an oxidative and reductive
entity. In its first step, photo-generated hole-electron pairs are formed in the VB h+ and the
CB e−, respectively. Consequently, these photogenerated charge carriers will react with
water or dissolved oxygen to produce reactive oxidizing species such as HO− and O−

2 .
In our model consisting of three coupled materials, the initial objective is to improve the
performance of MAPbI3 in the photocatalytic process and stop its inherent degradation
caused by water molecules. When the heterostructure is in the excited configuration, a hole-
electron pair is generated in the valence band and electrons start moving to the conduction
band of MAPbI3 and Fe2O3. When the three systems are coupled, an internal electric
field is created at the contact surfaces between MAPbI3 and Fe2O3 due to the difference in
potentials, which then alters the trajectories of charge carriers within the heterostructure.
At the contact surfaces, an energy barrier is generated due to the movement of the Fermi
level, preventing the transfer of charge carriers between MAPbI3 and Fe2O3, while leading
electrons move from MAPbI3 to ZnO:Al and then towards the reduction potential. Besides,
holes cannot move from Fe2O3 to MAPbI3 due to the presence of an energy barrier between
them, which provokes their movement towards the oxidation potential.

The photocatalytic activity of the heterostructure model (Figure S2) to occur in the NHE
range where the heterostructure is found to be suitable for photocatalytic H2 production
at pH = 7 based on the calculated oxidation and reduction potentials of water. Even after
immersing the heterostructure in a neutral solution with pH = 7, it is still suitable for WS,
as displayed in Figure 3b. According to our simulations, the charge concentrations were
calculated by Equation (S1), which showed that the production of H2 is slightly greater
than the amount of H+ ions generated at the edge of the oxidation potentials, where the
concentration of the holes (p = 6.53 × 1010 cm−3) is smaller than the concentration of
electrons (n = 5.86 × 1012 cm−3) for the heterostructure. In order to improve the potential
edges and neutrality in the process of generating positive ions and efficiently producing
H2, we have increased the acidity. This study suggests using the heterostructure as a
photocatalyst in an acidic solution (pH ≤ 7), with the surface coated with ZnO:Al as a
visible-light transparent material to maintain the electronic, optical and photocatalytic
activity of the clean surface of the heterostructure. The potential edges in the presence of
acidic pH were calculated using the following equation:

ECB,VB = E0
CB,VB − 2.3 KT × ∆(pH) (4)

Pristine MAPbI3 demonstrates moderate catalytic HER from hydroiodic acid (150 µmol/g),
which is similar to other works [11,32]. For the ZnO:Al/MAPbI3/Fe2O3 composite, the
photocatalytic activity is significantly improved, yielding 265.05 µmol/g, as shown in
Figure 5. The calculated production yield of H2 is shown in Figure 6.

It is worth noting that the H2 yield rate for ZnO : Al/MAPbI3/Fe2O3 proportionally
increased with the decreasing of pH. Moreover, with the continuous reaction at pH = 5, the
H2 yield rate for ZnO:Al/MAPbI3/Fe2O3 reaches 362.99 µmol/g, which is larger than the
value obtained with pH = 7, and is even superior to most of the reported works on pristine
MAPbI3 [31].
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Figure 5. Photocatalytic performance of ZnO/MAPbI3/Fe2O3 in H2 evolution from H2O splitting.
Photocatalytic H2 production rate with different pH (1–7) left, and energy levels of conduction band
and valence band with different pH (1–7) right.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 14 
 

 

and ZnO: Al were constructed on an MAPbIଷ (001) surface to detect the lowest energy ab-
sorption sites with their appropriate composition. Both materials appear to adequately 
stick to the MAPbIଷ (001) surface without causing deterioration to the material, as shown 
in Figure 6. 

 
Figure 6. The fluctuations of energy and temperature for (A) MAPbI3 (001) surface in a solution of 
H2O, OH-, H3O+, and H+ molecules, and (B) ZnO/MAPbI3/Fe2O3 heterostructure. Snapshots were 
taken at 50 ps from AIMD simulations at 300 K. 

All three materials maintained their structural properties with increasing tempera-
ture up to 300 K. MAPbIଷ underwent a transformation (001) from an orthorhombic phase 
to a cubic structure at 300 K, which is in total agreement with reported experimental re-
sults [27]. When MAPbIଷ was immersed in water, there was a deterioration in the contact 

Figure 6. The fluctuations of energy and temperature for (A) MAPbI3 (001) surface in a solution of
H2O, OH-, H3O+, and H+ molecules, and (B) ZnO/MAPbI3/Fe2O3 heterostructure. Snapshots were
taken at 50 ps from AIMD simulations at 300 K.
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2.4. Thermal Stability

Molecular dynamics simulations were performed to investigate the coupling behavior
between the specific surfaces of Fe2O3 or ZnO:Al loaded onto MAPbI3 (001). A geomet-
ric optimization was carried out for the three materials where the planar surfaces are
modified until the total energy of the individual structure reaches a minimum potential,
corresponding to the minimum in the potential energy surface. In our calculations, Fe2O3
and ZnO:Al were constructed on an MAPbI3 (001) surface to detect the lowest energy
absorption sites with their appropriate composition. Both materials appear to adequately
stick to the MAPbI3 (001) surface without causing deterioration to the material, as shown
in Figure 6.

All three materials maintained their structural properties with increasing temperature
up to 300 K. MAPbI3 underwent a transformation (001) from an orthorhombic phase to a
cubic structure at 300 K, which is in total agreement with reported experimental results [27].
When MAPbI3 was immersed in water, there was a deterioration in the contact surface
with water (Figure 6A), which was not the case when the ZnO:Al/MAPbI3/Fe2O3 het-
erostructure was immersed in water. This demonstrates clearly the extent of improvement
in preserving MAPbI3 (001) from degradation in the heterostructure form (Figure 6B).
Additionally, no contact was observed between the H2O molecules and HO− and H3O+

ions in the solution with the surface of MAPbI3 (001). These findings open the door for
discovering more suitable solutions to cope with the degradation of MAPbI3 (001) in the
presence of oxygen or water.

2.5. Optical Properties

Light absorption was used to evaluate the performance of the investigated photocata-
lyst. The absorption spectra of the freestanding Fe2O3, MAPbI3 and ZnO:Al systems were
simulated. The results show that MAPbI3 has a strong light absorption (1.4 a.u.) in the
visible light region, but weak light absorption in the UV region (300–500 nm), as shown in
Figure 7.
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Fe2O3/MAPbI3/ZnO:Al heterostructure.

After coupling, the light absorption capacity of the ZnO:Al/MAPbI3/Fe2O3 het-
erostructure in the UV region was much improved (1.62 a.u.) in comparison to that
of freestanding MAPbI3, while the visible light absorption was maintained. Besides, as
expected the ZnO:Al spectrum in the UV region showed a high transparency, thus, allowing
the visible light to reach MAPbI3. This explains why the excellent absorption obtained in
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visible light was not altered. Thus, the absorption was calculated according to the following
equation: (

hv − Eg
)
= (αhv)

1
n (5)

where α is the absorption index, h is the Planck constant, v is the frequency, A is the
constant, Eg is the bandgap width of semiconductor, and the exponent n is related to
the semiconducting type: n = 1/2 or 2 for a direct or indirect bandgap, respectively [44].
Freestanding ZnO:Al and MAPbI3 are semiconductors with a direct bandgap (n = 1/2),
while Fe2O3 has an indirect nature (n = 2). The bandgap energies of ZnO:Al, MAPbI3 and
Fe2O3 are calculated to be 3.21 eV, 1.79 eV, and 2.2 eV, respectively, by the measured optical
absorption values (Figure 7). These results are consistent with the data reported in the
literature [39,44,45].

3. Methods and Materials

The results presented in this study were obtained from density functional theory (DFT)
calculations using the Quantum-ESPRESSO code v7.1 (Quantum ESPRESSO Foundation,
Cambridge, UK) [46] with the projector augmented-wave (PAW) method [47,48]. Since van
der Waals (vdW) interactions are a key factor in HER [49], the exchange-correlation (XC)
functional vdW-optB86b was employed for all DFT computations [50]. A kinetic-energy
cutoff of 40 Ry was selected for the plane-wave basis set. All the structural models were
fully optimized until the forces were less than 10−2 eV/Å, with an energy convergence
of 10−6 eV between two consecutive self-consistent steps. A vacuum space of 20 Å was
applied perpendicularly to the slab to avert the interactions caused by periodic images.
Due to the weak interaction between MAPbI3 coupled with Fe2O3 and ZnO:Al, the vdW
forces in the heterostructure interface were simulated by the vdW-optB86b method of
Grimme [24,50,51]. We also performed molecular dynamics simulations of the bare slabs,
i.e., without any water molecules, using the same a = b cell dimensions but leaving 10 Å of
vacuum along the non-periodic direction orthogonal to the perovskite surface. In this sense,
Car–Parrinello molecular dynamics (CPMD) simulations have been carried out within
the Quantum Espresso package along with the GGA-PBE functional. For all calculations,
electron-ion interactions were described by scalar relativistic ultrasoft pseudopotentials,
with electrons from O, N, and C: 2s, 2p; H: 1s; I: 5s, 5p; Pb: 6s, 6p, 5d; Zn, Fe: 3s, 3p, 3d, 4s,
and Al: 3s, 3p shells explicitly included in the calculations. CPMD simulations have been
performed with an integration time step of 10 au, for a total simulation time of ca. 50 ps.
Initial randomization of the atomic positions has been used to reach the temperature of
300 ± 30 K. Variable cell geometry optimization of the ZnO:Al, MAPbI3 and Fe2O3 systems
was carried out using the QE code with plane-wave basis set cutoffs for the smooth part
of the wave functions, and the augmented density was 40 Ry, and including dispersion
contributions as reported elsewhere [38,52–54].

4. Conclusions

The constructed heterostructure system, consisting of the following building blocks:
ZnO:Al, MAPbI3, and Fe2O3, exhibited an improvement of the photocatalytic performance
of MAPbI3 by re-adjusting its band edges through coupling with Fe2O3 (110) and ZnO:Al
(001). The band edge potentials in MAPbI3 (001) were shifted down in the valence band
from 1.15 to 1.45 eV to exceed the required value of 1.23 V at the oxidation edge, while
maintaining a high light absorption in the visible light region. The resulting z-scheme led
to a decreased probability of the charges recombining and their lifespan in MAPbI3, thus,
leading to an improved hydrogen generation rate under visible light irradiation, attaining a
hydrogen production rate of 265.05 µmol/g and 362.99 µmol/g, respectively, for a neutral
pH and an acidic pH of 5. The selected compounds comprising the MAPbI3 heterostructure,
appear to prevent its surface deterioration by covering its side surfaces, and to enhance
its structural stability in the presence of oxygen and water molecules. These findings
represent a key route to developing novel strategies for preserving the sensitive MAPbI3
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based perovskites at room temperature and in humid environments, while maintaining
their superlative optical absorption.
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