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Abstract: Oral squamous cell carcinoma (OSCC) can arise anywhere in the oral cavity. OSCC’s
molecular pathogenesis is complex, resulting from a wide range of events that involve the interplay
between genetic mutations and altered levels of transcripts, proteins, and metabolites. Platinum-
based drugs are the first-line treatment for OSCC; however, severe side-effects and resistance are
challenging issues. Thus, there is an urgent clinical need to develop novel and/or combinatory
therapeutics. In this study, we investigated the cytotoxic effects of pharmacological concentrations
of ascorbate on two human oral cell lines, the oral epidermoid carcinoma meng-1 (OECM-1) cell
and the Smulow–Glickman (SG) human normal gingival epithelial cell. Our study examined the
potential functional impact of pharmacological concentrations of ascorbates on the cell-cycle profiles,
mitochondrial-membrane potential, oxidative response, the synergistic effect of cisplatin, and the
differential responsiveness between OECM-1 and SG cells. Two forms of ascorbate, free and sodium
forms, were applied to examine the cytotoxic effect and it was found that both forms had a similar
higher sensitivity to OECM-1 cells than to SG cells. In addition, our study data suggest that the
determinant factor of cell density is important for ascorbate-induced cytotoxicity in OECM-1 and
SG cells. Our findings further revealed that the cytotoxic effect might be mediated through the
induction of mitochondrial reactive oxygen species (ROS) generation and the reduction in cytosolic
ROS generation. The combination index supported the agonistic effect between sodium ascorbate and
cisplatin in OECM-1 cells, but not in SG cells. In summary, our current findings provide supporting
evidence for ascorbate to serve as a sensitizer for platinum-based treatment of OSCC. Hence, our
work provides not only repurposing of the drug, ascorbate, but also an opportunity to decrease the
side-effects of, and risk of resistance to, platinum-based treatment for OSCC.

Keywords: oral squamous cell carcinoma; ascorbate; cisplatin; reactive oxygen species; cytotoxicity

1. Introduction

Oral cancer is the sixth leading cause of global cancer-related deaths [1,2]. Oral squa-
mous carcinogenesis is a multistep process involved in multiple genetic events including
the mutation of oncogenes and tumor-suppressor genes. Oral squamous cell carcinoma
(OSCC) can arise anywhere in the oral cavity, including the tongue, upper and lower
gingiva, and buccal mucosa [3–5]. Excessive alcohol consumption, betel nut chewing, and
smoking are the three major risk factors for OSCC [6]. OSCC’s molecular pathogenesis
involves the interplay between genetic mutations and altered levels of transcripts, proteins,
and metabolites. The overall 5-year survival rate of OSCC has remained at 50%, despite
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intensive research [7]. Platinum-based drugs are the first-line treatment for OSCC; however,
severe side-effects and resistance are challenging issues [8]. Thus, there is an urgent clinical
need to develop novel and/or combinatory therapeutics.

Hydrogen peroxide, hydroxyl radical, and superoxide anion are the major endogenous
sources of reactive oxidative species (ROS), which are primarily produced by the mitochon-
dria respiratory chain, NADPH oxidase, and peroxisomes [9–11]. An imbalance between
the production of ROS and antioxidant capacity may result in cellular oxidative stress [12].
Kelch-like ECH-associated protein 1 (Keap1) represses the transcriptional activity of Nrf2
(nuclear factor erythroid 2-related factor 2) through its sequestering, ubiquitination, and
proteasomal degradation under basal conditions; the activation of Nrf2 is induced by the
accumulation of ROS via the disruption of binding between Nrf2 and its native repressor,
Keap1 [13,14]. When the amount of ROS overwhelms the cellular antioxidant capacity, it
may trigger cell death by oxidizing cellular lipids, nucleic acids, and protein [15]. However,
cancer cells might protect themselves from ROS-induced cell death via an relatively active
antioxidant defense system [16]. Interestingly, many current chemotherapeutic drugs can
generate higher ROS stresses to overcome the antioxidative capacity of cancer cells, result-
ing in cell death [17,18]. Hence, the steady-state level of ROS stress in cancer cells plays a
significant role in the development of cancer therapy.

Many clinical drugs, including cardiac glycosides, statins, and β-blockers, were demon-
strated to possess additional pharmaceutic efficacy targeting cancer therapeutics and pre-
vention, suggesting the powerful and efficient alternative strategy of drug repositioning
in drug development [19–21]. Recently, the intravenous administration of L-ascorbic acid
(L-AA) achieved a pharmacologic concentration (>100 µM) to produce hydrogen peroxide
for a cytotoxic effect [22–26], in contrast to its functional role of antioxidant at physiological
concentrations. However, a puzzle that requires addressing is that L-AA has little cyto-
toxic effect on normal cells compared with some tumor cells [27,28]. In addition to ROS
generation, ascorbate can also serve as a cofactor for hydroxylases involved in the stability
of hypoxia-inducible factor 1 alpha (HIF-1α) and Tet2 (ten-eleven translocation 2) DNA
hydroxylases [23,24,29–31]. In general, pharmacologic doses of ascorbate exhibit anticancer
effects through the induction of both oxidative stress and DNA demethylation. However,
the underlying cytotoxic mechanism in OSCC is unclear.

Cisplatin is a standard OSCC chemotherapeutic agent and has the ability to induce
oxidative stress via the production of ROS [32–34]. In this study, we used two human oral
cell lines, the oral epidermoid carcinoma meng-1 (OECM-1) cell line and the Smulow–
Glickman (SG) human normal gingival epithelial cell line, to investigate the cytotoxic
mechanisms of ascorbate for use in combinatory therapy for OSCC, mediated through the
homeostasis of ROS. We further examined the potential functional impact of pharmacologi-
cal concentrations of ascorbates on cell-cycle profiles, mitochondrial-membrane potential,
oxidative response, and the synergistic effect with cisplatin. Our findings may provide a
new direction for future combinatory OSCC therapy using ascorbate, focusing on the issues
of redox homeostasis and cell density.

2. Results
2.1. The Effect of Ascorbate on the Metabolic Activity, Cell-Cycle Profile, and Cellular Proliferation
in OECM-1 and SG Cells

To investigate the cytotoxicity of ascorbate in oral cells, two forms of ascorbates, L-
free acid and sodium base, were applied to monitor their cytotoxic effects on one oral
epidermoid carcinoma meng-1 (OECM-1) cell, originally derived from the primary culture
of an oral cancer patient by Professor Meng CL, and compared it with a human Smulow–
Glickman (SG) normal gingival epithelial cell [35], using MTT analysis. We observed the
differential cytotoxicity of both cell lines where L-ascorbic acid and sodium ascorbate were
applied to cells over 2 mM (Figure 1). The responsiveness of the OECM-1 cells to both
forms of ascorbates was more sensitive than that of the SG cells (Figure 1A,B). Sodium
ascorbate had a similar cytotoxic effect to that of L-ascorbic acid on OECM-1 and SG cells.
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teins were found in OECM-1 cells, and similar trends were found in p53 and cyclin D1 

proteins in SG cells (Figure 2D). 

Figure 1. Effects of L-ascorbic acid and sodium ascorbate on cell viability in OECM-1 and SG cells.
(A) and (B) OECM-1 (6 × 104) and SG (6 × 104) cells were cultured in 24-well plates and treated with
the indicated concentrations of L-ascorbic acid (A) for 5 h and sodium ascorbate (B) for 3 h. Cell
viability was measured using the MTT method. Bars depict the mean ± SD of three independent
experiments. Student’s t-tests were analyzed and compared with vehicle. * p < 0.05, ** p < 0.01, and
*** p < 0.001.

We further examined the effect of ascorbates on the cell-cycle profiles of OECM-1 and
SG cells (Figure 2). Sodium ascorbate decreased the populations of the G1 and G2/M
phases and increased the populations of the subG1 and S phases in OECM-1 and SG cells
(Figure 2A,B). These cell-cycle-related proteins were examined for their expression changes
using RT-PCR and Western Blot analysis (Figure 2C,D). Dose-dependent decreasing trends
in p53, p21, and cyclin D1 mRNAs were more apparent in SG cells than in OECM-1 cells
compared with consistent amount of internal control β-actin mRNA (Figure 2C). In Western
Blot analysis, dose-dependent decreasing trends in p21 and cyclin D1 proteins were found
in OECM-1 cells, and similar trends were found in p53 and cyclin D1 proteins in SG cells
(Figure 2D).

The dose-dependent increasing trend of the population of the S phase suggested that
cellular proliferation might be involved in the cytotoxicity of oral cells. Hence, we applied
BrdU proliferation analysis to examine the effect of sodium ascorbate in OECM-1 and
SG cells (Figure 3A–D). Our BrdU results showed that sodium ascorbate first increased
the proliferation rate and then decreased the proliferation rate in both cells (Figure 3B,D).
However, the decreasing effect in the SG cells was more apparent than in the OECM-1 cells
(Figure 3 compared B and D).

2.2. Modulation of Oxidative-Stress Proteins and Cell Density by Ascorbatein OECM-1 and
SG Cells

We sought to elucidate the differential cytotoxic effect between OECM-1 and SG cells.
We applied L-ascorbic acid and sodium ascorbate to examine the change in p-ERK/ERK
(cell-survival marker), γH2A.x (DNA-damage marker), p21 (senescence marker), p62 (au-
tophagy marker), HO-1 (oxidative-stress marker), and Nrf2 (oxidative-stress marker) using
Western Blot analysis (Figure 4A). We observed an increasing p-Erk/Erk ratio and γH2A.x,
and decreasing p21 proteins, in OECM-1 and SG cells (Figure 4B). The decreasing p62
and HO-1 proteins were only found in treatment with sodium ascorbate, not in treatment
with L-ascorbic acid, in both cell types. A decrease in Nrf2 proteins was found in OECM-1
treated with sodium ascorbate and L-ascorbic acid (Figure 4). The effects of ascorbate on
Nrf2 whether shorter exposure or longer exposure showed that the decrease of in Nrf2
(molecular weight of approximately 60 kDa) and the increase in Nrf2 (molecular weight of
approximately 70 kDa) in OECM-1 cells.



Int. J. Mol. Sci. 2023, 24, 4851 4 of 17Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 17 
 

 

 

Figure 2. Effects of L-ascorbic acid and sodium ascorbate on the cell-cycle profile and related gene 

and protein expressions in OECM-1 and SG cells. OECM-1 (3.5 × 105) and SG (3.5 × 105) cells were 

cultured in 6-well plates and treated with the indicated concentrations of L-ascorbic acid and so-

dium ascorbate for 4 h. They were then subjected to (A,B) cell-cycle profile analysis, (C) RT-PCR 

analysis, and (D) Western Blot analysis. (C) RT-PCR analysis was performed with 1 µg total RNA 

and b-actin was a loading mRNA control. (D) The cell lysates (30 µg total proteins) were subjected 

to Western Blot analysis using antibodies against the indicated proteins. ACTN was a loading-pro-

tein control. (A,B) Bars depict the mean ± SD of three independent experiments. Student’s t-tests 

were analyzed and compared with vehicle. * p < 0.05, ** p < 0.01, and *** p < 0.001. The mRNA and 

protein bands (C,D) were quantified through pixel density scanning and evaluated using Image J, 

version 1.44a (http://imagej.nih.gov/ij/) (accessed on 1 February 2023). The ratios of mRNA/β-actin 

(C) and protein/ACTN (D) were listed in the OECM-1 and SG cells. 

The dose-dependent increasing trend of the population of the S phase suggested that 

cellular proliferation might be involved in the cytotoxicity of oral cells. Hence, we applied 
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Figure 2. Effects of L-ascorbic acid and sodium ascorbate on the cell-cycle profile and related gene
and protein expressions in OECM-1 and SG cells. OECM-1 (3.5 × 105) and SG (3.5 × 105) cells were
cultured in 6-well plates and treated with the indicated concentrations of L-ascorbic acid and sodium
ascorbate for 4 h. They were then subjected to (A,B) cell-cycle profile analysis, (C) RT-PCR analysis,
and (D) Western Blot analysis. (C) RT-PCR analysis was performed with 1 µg total RNA and b-actin
was a loading mRNA control. (D) The cell lysates (30 µg total proteins) were subjected to Western
Blot analysis using antibodies against the indicated proteins. ACTN was a loading-protein control.
(A,B) Bars depict the mean ± SD of three independent experiments. Student’s t-tests were analyzed
and compared with vehicle. * p < 0.05, ** p < 0.01, and *** p < 0.001. The mRNA and protein bands
(C,D) were quantified through pixel density scanning and evaluated using Image J, version 1.44a
(http://imagej.nih.gov/ij/) (accessed on 1 February 2023). The ratios of mRNA/β-actin (C) and
protein/ACTN (D) were listed in the OECM-1 and SG cells.

http://imagej.nih.gov/ij/
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Figure 3. Effects of L-ascorbic acid and sodium ascorbate on the cellular proliferation in OECM-1 and
SG cells. (A,B) OECM-1 (3.5 × 105) and (C,D) SG (3.5 × 105) cells were cultured in 6-well plates and
treated with the indicated concentrations of sodium ascorbate for 4 h. They were then subjected to
BrdU proliferation analysis. (B) and (D) Bars depict the mean± SD of three independent experiments.
Student’s t-tests were analyzed and compared with vehicle. * p < 0.05, ** p < 0.01, and *** p < 0.001.

However, the changes in Nrf2, HO-1, and the p-Erk/Erk ratio were unstable in our
analytic systems. Based on the fact that cell density and the responsiveness of ascorbate are
related [36], we examined the differential responsiveness in various cell densities of the
OECM-1 and SG cells. In sodium-ascorbate-treated OECM-1 cells, decreasing Nrf2 and
HO-1 proteins were found in all testing-cell densities, but an increased p-Erk/Erk ratio was
found in higher cell densities (Figure 5A). In sodium-ascorbate-treated SG cells, decreasing
Nrf2 and HO-1 proteins were found in lower cell densities, but an increased p-Erk/Erk
ratio was found in higher (2.5 × 105) cell densities. In L-ascorbic acid-treated OECM-1
and SG cells, the increased p-Erk/Erk ratio was found in all testing-cell densities and the
increased HO-1 proteins were found in higher (2.5 × 105) cell densities (Figure 5B). The
decreased Nrf2 proteins resulting from L-ascorbic acid were found in the OECM-1 cells,
but not in the SG cells. Our current data showed that the effects of sodium ascorbate and
L-ascorbic acid varied in different cell densities of OECM-1 and SG cells, suggesting that
relative cell numbers might be a determinant for the action of ascorbate in cells.
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Figure 4. Effects of sodium ascorbate and L-ascorbic acid on the oxidative-stress proteins in OECM-1
and SG cells. OECM-1 (2.5 × 105) and SG cells (2.5 × 105) were cultured in 6-well plates and treated
with 10 mM sodium ascorbate for 3.5 h or L-ascorbic acid for 5.5 h. (A) The cell lysates (30 µg total
proteins) were subjected to Western Blot analysis using antibodies against the indicated proteins. ACTN
was a loading-protein control. The protein bands (B) were quantified through pixel density scanning
and evaluated using Image J, version 1.44a (http://imagej.nih.gov/ij/) (accessed on 1 February 2023).
The ratios of p-Erk/Erk and protein/ACTN were plotted in the OECM-1 and SG cells.
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Figure 5. Effects of sodium ascorbate and L-ascorbic acid on Nrf2, HO-1, and p-Erk proteins in
OECM-1 and SG cells. Indicated cell densities of OECM-1 and SG cells were cultured in 6-well
plates and treated with 10 mM (A) sodium ascorbate for 3.5 h or (B) L-ascorbic acid for 5.5 h.
The cell lysates (30 µg total proteins) were subjected to Western Blot analysis using antibodies
against the indicated proteins. ACTN was a loading-protein control. The protein bands (A) and
(B) were quantified through pixel density scanning and evaluated using Image J, version 1.44a
(http://imagej.nih.gov/ij/) (accessed on 1 February 2023). The ratios of protein/ACTN were listed
in the OECM-1 and SG cells.

2.3. The Effect of Ascorbate on Cytosolic and Mitochondrial ROS Generation in OECM-1 and
SG Cells

Nrf2 is a master protein that responds to the status of reactive oxygen species (ROS)
in cells. It was interesting to address the status of ROS at a pharmacologic concentration
of L-ascorbic acid and sodium ascorbate in OECM-1 and SG cells. We measured the cy-
tosolic ROS levels of both types of cells using flow-cytometry analysis with DCFH-DA
dye (Figure 6A–D). Our data showed that sodium ascorbate decreased the ROS levels in
both cell lines in a dose-dependent manner (Figure 6A,C). However, L-ascorbic acid first
decreased the ROS level and then returned to the increasing level in both cells (Figure 6B,D).

We further measured the increasing trend in mitochondrial ROS, compared with the
cytosolic ROS status following treatment with sodium ascorbate of the OECM-1 and SG
cells (Figure 7). We observed the induction of mitochondrial ROS by sodium ascorbate
in a dose-dependent manner in OECM-1 cells (Figure 7A). The amount of mitochondrial
ROS first decreased and then returned to its basal level following treatment with sodium
ascorbate of the SG cells (Figure 7B).

The increasing trend in subG1 by sodium ascorbate revealed that mitochondrial
dysfunction might be involved. Hence, we measured mitochondrial-membrane potential
using flow-cytometry analysis with JC-1 dye (Figure 8A–D). Our data showed that the
mitochondrial-membrane potential was significantly disrupted by sodium ascorbate in the
OECM-1 and SG cells (Figure 8A,B). However, the disruption of mitochondrial-membrane
potential was observed at the level of 1 mM sodium ascorbate in the OECM-1 cells, but not
in the SG cells (Figure 8C,D).

http://imagej.nih.gov/ij/
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Figure 6. Effects of sodium ascorbate and L-ascorbic acid on the levels of cytosolic ROS in OECM-1
and SG cells. (A,B) OECM-1 (3.5 × 105) and (C,D) SG (3.5 × 105) cells were cultured in 6-well plates
and treated with the indicated concentrations of sodium ascorbate for 4 h. They were then subjected
to measurement of DCFH-DA intensity. Bars depict the mean± SD of three independent experiments.
Student’s t-tests were analyzed and compared with vehicle. * p < 0.05, ** p < 0.01 and *** p < 0.001.
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plates and treated with the indicated concentrations of sodium ascorbate for 4 h. They were then
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experiments. Student’s t-tests were analyzed and compared with vehicle. * p < 0.05 and *** p < 0.001.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 8. Effects of sodium ascorbate on the mitochondrial-membrane potential in OECM-1 and SG 

cells. (A,C) OECM-1 (3.5 × 105) and (B,D) SG (3.5 × 105) cells were cultured in 6-well plates and 

treated with the indicated concentrations of sodium ascorbate for 4 h, after which the live cells were 

stained with 5 μM JC-1 dye. (C,D) Bars depict the mean ± SD of three independent experiments. 

Student’s t-tests were analyzed and compared with vehicle. * p < 0.05 and *** p < 0.001. 

2.4. The Combination Index between Cisplatin and Ascorbate in OECM-1 and SG Cells 

Cisplatin is a standard OSCC chemotherapeutic agent and has the ability to induce 

oxidative stress via the production of ROS [32–34]. It was interesting to address the com-

bination of sodium ascorbate with cisplatin in OECM-1 and SG cells. Isobologram analysis 

has been mathematically proven and widely used to evaluate drug interactions [37]. The 

dose of the same efficacy when two drugs are used alone, which is generally expressed as 

half-effective dose (ED50). Based on IC50 values (Figure 1) and the classic experimental de-

sign to calculate the combination index (CI) [38], we designed combinations of concentra-

tions and calculated the CI between cisplatin and sodium ascorbate in the OECM-1 and 

SG cells. The definition of CI < 1 as a synergistic effect was observed in the OECM-1 cells 

and the combination of cisplatin plus sodium ascorbate was CI > 1 in the SG cells (Figure 

9A,B). The ED50 of cisplatin decreased from 16.2 to 0.7 μM in the presence of 1.41 mM 

sodium ascorbate (ED50 = 3.5 mM) in the OECM-1 cells (Figure 9A). Although the combi-

nation of cisplatin with sodium ascorbate was antagonistic, the ED50 of cisplatin decreased 

from 58.6 to 1.6 μM in the presence of 3.1 mM sodium ascorbate (ED50 = 2 mM) in the SG 

cells (Figure 9B). 

Figure 8. Cont.



Int. J. Mol. Sci. 2023, 24, 4851 10 of 17

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 8. Effects of sodium ascorbate on the mitochondrial-membrane potential in OECM-1 and SG 

cells. (A,C) OECM-1 (3.5 × 105) and (B,D) SG (3.5 × 105) cells were cultured in 6-well plates and 

treated with the indicated concentrations of sodium ascorbate for 4 h, after which the live cells were 

stained with 5 μM JC-1 dye. (C,D) Bars depict the mean ± SD of three independent experiments. 

Student’s t-tests were analyzed and compared with vehicle. * p < 0.05 and *** p < 0.001. 

2.4. The Combination Index between Cisplatin and Ascorbate in OECM-1 and SG Cells 

Cisplatin is a standard OSCC chemotherapeutic agent and has the ability to induce 

oxidative stress via the production of ROS [32–34]. It was interesting to address the com-

bination of sodium ascorbate with cisplatin in OECM-1 and SG cells. Isobologram analysis 

has been mathematically proven and widely used to evaluate drug interactions [37]. The 

dose of the same efficacy when two drugs are used alone, which is generally expressed as 

half-effective dose (ED50). Based on IC50 values (Figure 1) and the classic experimental de-

sign to calculate the combination index (CI) [38], we designed combinations of concentra-

tions and calculated the CI between cisplatin and sodium ascorbate in the OECM-1 and 

SG cells. The definition of CI < 1 as a synergistic effect was observed in the OECM-1 cells 

and the combination of cisplatin plus sodium ascorbate was CI > 1 in the SG cells (Figure 

9A,B). The ED50 of cisplatin decreased from 16.2 to 0.7 μM in the presence of 1.41 mM 

sodium ascorbate (ED50 = 3.5 mM) in the OECM-1 cells (Figure 9A). Although the combi-

nation of cisplatin with sodium ascorbate was antagonistic, the ED50 of cisplatin decreased 

from 58.6 to 1.6 μM in the presence of 3.1 mM sodium ascorbate (ED50 = 2 mM) in the SG 

cells (Figure 9B). 

Figure 8. Effects of sodium ascorbate on the mitochondrial-membrane potential in OECM-1 and SG
cells. (A,C) OECM-1 (3.5 × 105) and (B,D) SG (3.5 × 105) cells were cultured in 6-well plates and
treated with the indicated concentrations of sodium ascorbate for 4 h, after which the live cells were
stained with 5 µM JC-1 dye. (C,D) Bars depict the mean ± SD of three independent experiments.
Student’s t-tests were analyzed and compared with vehicle. * p < 0.05 and *** p < 0.001.

2.4. The Combination Index between Cisplatin and Ascorbate in OECM-1 and SG Cells

Cisplatin is a standard OSCC chemotherapeutic agent and has the ability to induce
oxidative stress via the production of ROS [32–34]. It was interesting to address the combi-
nation of sodium ascorbate with cisplatin in OECM-1 and SG cells. Isobologram analysis
has been mathematically proven and widely used to evaluate drug interactions [37]. The
dose of the same efficacy when two drugs are used alone, which is generally expressed
as half-effective dose (ED50). Based on IC50 values (Figure 1) and the classic experimental
design to calculate the combination index (CI) [38], we designed combinations of concentra-
tions and calculated the CI between cisplatin and sodium ascorbate in the OECM-1 and SG
cells. The definition of CI < 1 as a synergistic effect was observed in the OECM-1 cells and
the combination of cisplatin plus sodium ascorbate was CI > 1 in the SG cells (Figure 9A,B).
The ED50 of cisplatin decreased from 16.2 to 0.7 µM in the presence of 1.41 mM sodium
ascorbate (ED50 = 3.5 mM) in the OECM-1 cells (Figure 9A). Although the combination
of cisplatin with sodium ascorbate was antagonistic, the ED50 of cisplatin decreased from
58.6 to 1.6 µM in the presence of 3.1 mM sodium ascorbate (ED50 = 2 mM) in the SG cells
(Figure 9B).
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Figure 9. Combination index of cisplatin with sodium ascorbate in OECM-1 and SG cells. (A) OECM-
1 (2 × 104) and (B) SG (1.7 × 104) cells were cultured in 24-well plates and treated with sodium
ascorbate dose: 0, 0.1, 0.25, 0.5, 1, 3, 5, 8, 10, and 20 mM combined with cisplatin dose: 0, 0.1, 0.25,
0.5, 1, 5, 10, and 20 µM. Cell viability was measured by the MTT method. The combination index of
cisplatin plus specific drug in (A) OECM-1 and (B) SG cells. Isobolograms (ED50) of cisplatin were
calculated using CalcuSyn software.

3. Discussion

Ascorbate has strong antioxidant properties at physiological concentrations, but it may
have pro-oxidant effects at pharmacological concentrations. Hence, we investigated the
cytotoxic effects of pharmacological concentrations of ascorbate on OECM-1 and SG cells.
Our study examined the potential functional impact of pharmacological concentrations of
ascorbates on the cell-cycle profiles, mitochondrial-membrane potential, oxidative response,
the synergistic effect of cisplatin, and the differential responsiveness between OECM-1 and
SG cells. Our study data suggest that the determinant factor of cell density is important in
ascorbate-induced cytotoxicity in OECM-1 and SG cells. Our findings further revealed that
the cytotoxic effect might be mediated through the induction of mitochondrial ROS gen-
eration and the reduction in cytosolic ROS generation. The combination index supported
the agonistic effect between sodium ascorbate and cisplatin in OECM-1 cells, but not in SG
cells. In summary, our current findings provide supporting evidence for ascorbate to serve
as a sensitizer for platinum-based treatment of OSCC. Hence, our work provides not only
the repurposing of the drug, ascorbate, but also an opportunity to decrease the side-effects
of, and risk of resistance to, platinum-based treatment for OSCC.

Endogenous ROS has been reported to be generated, primarily, in mitochondria,
cytosol, and peroxisomes. ROS has been demonstrated to be produced mainly in the
mitochondrial-electron transport chain in prostate cancer cells treated with cisplatin. Con-
sistent with our current findings for OSCC, the selectivity of mitochondria ROS is not
parallel to cytosol ROS, and this might result from the complexity of the functional role
of ascorbate within cellular redox homeostasis. Another issue is the differential effect of
L-ascorbic acid and sodium ascorbic on the trends in cytosolic ROS generation. However,
the acidity of free-form ascorbate has been demonstrated as not being the reason for the
cytotoxicity for human cervical cancer cells. The transformation of Fe3+ into Fe2+ can
be induced by antioxidant ascorbate, and the ascorbate–Fe2+ complex may catalyze ROS
generation via Fenton’s reaction. Furthermore, the oxidation of ascorbate results in the
formation of the ascorbate radical and a high flux of H2O2. Therefore, we should pay
attention to whether our current ROS status findings result directly from ascorbate or
possibly from ROS generated during different compartmentation in oral cells.

There are three lines of defense for a living cell’s antioxidant system, including
(I) biosynthesis and activation of antioxidant enzymes; (II) free radical scavenging; and (III)
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the repair of oxidative damage. The functional role of ascorbate is as a molecule involved
in all these stages. Another aspect of the action of ascorbate is to regulate the biosynthesis
of antioxidant proteins as an antioxidant. Three important transcriptional factors involved
in the cellular antioxidant response are Nrf2, redox effector factor 1, and activator protein 1.
The free form of Nrf2 from the Keap1/Nrf2 complex transfers to the nucleus and binds to
the antioxidant response element to start the biosynthesis of antioxidant protein. Ascorbate
is known as an Nrf2 activator, and its deficiency leads to impaired Nrf2 action, resulting in
inflammation and apoptosis. One of the challenges is the multiple bands of Nrf2 in Western
Blot analysis. Based on its target gene, HO-1, expression, we observed consistent changes in
Nrf2/HO-1 by sodium ascorbic, not by L-ascorbic acid, in the OECM-1 cells. It was difficult
to determine the relationship between Nrf2 and HO-1 in the SG cells. Much attention is
focused on research literature discussing numerous commercial Nrf2 antibodies [39,40].
However, we need to determine the status of Nrf2, including its potential isoform(s) and
different modifications in human oral cells. More importantly, we need to understand Nrf2
functions resulting from its transcriptional activity, target gene expression, or others, that
may play a dual role in different cancer cells.

Intravenous L-ascorbic acid is able to bypass the tight control of the intestine, leading
to higher plasma levels [41,42]. Hence, repurposing ascorbate for cancer therapy is an
accessible and valuable means of treatment [22–24]. It was hypothesized that cancer cells
generally demonstrate higher steady-state levels of ROS stress than normal cells because of
defects in oxidative metabolism and the accumulation of labile iron. Detailed mechanisms
related to hydrogen peroxide of ascorbate killing some cancer cells but having little effect
on normal cells are not well known [27]. L-ascorbic acid promotes oxidation via hydrogen
peroxide generation through pH-dependent auto-oxidation in the presence of a catalytic
metal [43]. In addition to oxidative homeostasis, ascorbate also functions as a cofactor for
the Fe2+-2-oxoglutarate-dependent dioxygenase family, involved to the stability of HIF-1α
and Tet2. In general, pharmacologic doses of ascorbate exhibit anticancer effects through
the induction of both oxidative stress and DNA demethylation.

4. Materials and Methods
4.1. Cell Culture and Chemicals

Oral epidermoid carcinoma meng-1 (OECM-1) cells were originally derived from the
primary culture of an oral cancer patient [35]. Smulow–Glickman (SG) gingival epithelial
cells were originally derived from human-attached gingiva [44]. OECM-1 and SG cells were
cultured in Roswell Park Memorial Institute (RPMI) 1640 (Corning, Corning City, NY, USA)
containing 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin (Thermo Fisher
Scientific, Carlsbad, CA, USA). Sodium ascorbate, L-ascorbic acid, 2′,7-dichlorofluorescein
diacetate (DCFH-DA), propidium iodide (PI), and thiazolyl blue tetrazolium bromide
(MTT) were obtained from Sigma Aldrich (St. Louis, MO, USA).

4.2. Cell Viability Analysis

OECM-1 (6 × 104) and SG (6 × 104) cells were plated in 24-well culture plates and
cultured for the indicated drug treatment. Ascorbate was first removed from the ascorbate-
treated cells and then incubated with MTT solution for 1 h at 37 ◦C. Dimethyl sulfoxide
(DMSO; 200 µL) was then added, and the absorbances at 570 nm and 650 nm were measured
using an ELISA plate reader (Multiskan EX, Thermo, Waltham, MA, USA). The control
group containing cells cultured in medium only was defined as 100% cell survival. Cell
viability was calculated based on the absorbance ratio between the cells cultured with
the selected drugs and the untreated controls, which were assigned a value of 100. The
combination index of cisplatin plus specific drug in OECM-1 (2 × 104) and SG (1.7 × 104)
cells. The combination index (CI) was calculated utilizing CalcuSyn (Biosoft, Cambridge,
UK) to generate Isobolograms. Typically, a CI value of <1 denotes a synergistic combination
effect and a CI value of >1 denotes an antagonistic combination effect [38].
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4.3. Fluorescence-Activated Cell Sorting (FACS) for Flow Cytometry Analyses of Cell-Cycle
Profiles, Proliferation, and ROS

The cell-cycle profiles were measured according to their cellular DNA content using
FACS. Briefly, OECM-1 (3.5 × 105) and SG (3.5 × 105) cells were seeded in 6-well culture
plates and treated with the selected drugs for 24 h before being harvested. The cells were
fixed, permeabilized, and stained with 7-Aminoactinomycin (7-AAD, BD Biosciences, San
Jose, CA, USA). The cell-cycle distribution was then evaluated using FACS, based on
cellular DNA content. Cell proliferation was assessed using immunofluorescent staining
with incorporated bromodeoxyuridine (BrdU) (BD Pharmingen™ BrdU Flow Kit) (BD
Biosciences) and flow cytometry, according to the manufacturer’s instructions. Briefly,
OECM-1 (3.5 × 105) and SG (3.5 × 105) cells were seeded in 6-well culture plates and
treated with the selected drugs for 24 h. After incubation, the cells were stained with
BrdU, harvested, washed with PBS, and then fixed and permeabilized before being stained
with BrdU fluorescent antibodies. The cells were resuspended in staining buffer and an
FITC-BrdU fluorescence analysis was performed using a FACSCalibur flow cytometer
and Cell Quest Pro software, version 6.1 (BD Biosciences). The intracellular ROS levels
were determined using the fluorescent marker, DCFH-DA. Briefly, the cells were treated
with the selected drugs for 24 h, stained with DCFH-DA (20 µM) for 40 min at 37 ◦C, and
then harvested. Afterwards, the cells were washed once with PBS and then the DCFH-DA
fluorescence intensity was analyzed on the FL-1 channel of the FACSCalibur flow cytometer
using the Cell Quest Pro software, version 6.1 (BD Biosciences). The median fluorescence
intensity of the vehicle was used as the starting point for M1 gating. Procedural details
were described previously [45,46].

Mitochondrial superoxide production is an important source of reactive oxygen species
in cells that may cause disease. MitoSOXTM Red (Invitrogen, Thermo Fisher Scientific,
M36008) mitochondrial superoxide indicator is a fluorogenic dye for the highly selec-
tive detection of superoxide in the mitochondria of live cells. Once in the mitochondria,
MitoSOXTM Red reagent is oxidized by the superoxide and exhibits red fluorescence. Briefly,
OECM-1 (3.5× 105) and SG (3.5× 105) cells were seeded in 6-well culture plates and treated
with indicated sodium ascorbate dosages for 4 h. After incubation, the cells were harvested
and stained with 5 mM MitoSOXTM Red 37 ◦C for 20 min, and washed once with PBS,
and resuspended in PBS. The MitoSOXTM Red fluorescence was then analyzed via flow
cytometry (FACSCalibur, BD Biosciences); fluorescence intensity was analyzed on the FL-2
channel of the FACSCalibur flow cytometer using the Cell Quest Pro software, version 6.1
(BD Biosciences). The fluorescence intensity of the vehicle was used as the starting point
for M1 gating.

4.4. Mitochondrial-Membrane Potential (MMP) Analysis

Mitochondrial depolarization was measured as a function of the decrease in the
red/green fluorescence intensity ratio. OECM-1 (3.5 × 105) and SG (3.5 × 105) cells were
cultured in 6-well plates and treated with the indicated concentrations of sodium ascorbate
for 4 h. All dead and viable cells were harvested, washed with PBS, and incubated with 1×
binding buffer containing the MMP-sensitive fluorescent dye JC-1 for 30 min at 37 ◦C in the
dark. After washing the cells once with PBS, JC-1 fluorescence was analyzed on channels
FL-1 and FL-2 of the FACSCalibur flow cytometer using Cell Quest Pro software, version 6.1
(BD Biosciences) to detect monomer (green fluorescence) and aggregate (red fluorescence)
forms of the dye, respectively. The cell-volume gating strategy involved forward scatter
height (FSC-H) and side scatter height (SSC-H), and the median fluorescence intensity of
the vehicle was used as the starting point for M2 gating.

4.5. Western Blotting Analysis

Drug-treated OECM-1 and SG cells were lysed in RIPA buffer (100 mM Tris-HCl
(pH 8.0), 150 mM NaCl, 0.1% SDS, and 1% Triton 100) at 4 ◦C. Proteins in the resultant
lysates were separated by SDS-PAGE and analyzed by immunoblotting with antibodies
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against α-actinin (ACTN, H-2, sc-17829, mouse), p53 (DO-1, sc-126, mouse), p62 (D-3,
sc-28359, mouse), Nrf2 (A-10, sc-365949, mouse) (Santa Cruz Biotechnology, Santa Cruz,
CA, USA), ERK (4695, rabbit), p-ERK (4370, rabbit), histone H3 (9715, rabbit) (Cell Signal-
ing, Danvers, MA, USA), Cyclin D1 (ab134175, rabbit), p21 (ab109520, rabbit), γ.H2AX
(ab81299, rabbit) (Abcam, Cambridge, UK), HO-1 (ADI-SPA-895-F, rabbit, Enzo Life Sci-
ences, Farmingdale, NY, USA). Secondary antibodies against Donkey anti-mouse IgG HRP
(AP192P) and Goat anti-rabbit IgG HRP (AP132P) (Merck Millipore, Burlington, MA, USA).
The membranes were incubated first with primary antibodies against proteins of interest
and then with HRP-conjugated secondary antibodies. The immunoreactive proteins were
detected using ECLTM Western Blotting Detection Reagent and Amersham HyperfilmTM

ECL (GE Healthcare, Chicago, IL, USA). The procedural details have been described in our
previous publications [47,48]. The protein bands were quantified through pixel density
scanning and evaluated using Image J, version 1.44a (http://imagej.nih.gov/ij/) (accessed
on 1 February 2023).

4.6. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

OECM-1 (3.5 × 105) and SG (3.5 × 105) cells were cultured in 6-well plates and
treated with the indicated concentrations of L-ascorbic acid and sodium ascorbate for 4 h.
OECM-1 and SG cells were lysed in TRIzol reagent (Invitrogen) to isolate total RNAs.
Reverse transcription for first strand cDNA synthesis was conducted using MMLV reverse
transcriptase (Epicentre Biotechnologies, Madison, WI, USA) with 1 µg of total RNA
for 60 min at 37 ◦C. PCR reactions were operated on a Veriti Thermal Cycler (Applied
Biosystems, Waltham, MA, USA). The mRNA bands were quantified through pixel density
scanning and evaluated using Image J, version 1.44a. The PCR primers are listed in Table 1.

Table 1. PCR primers used in this study.

Gene Name Primer Sequence (5′→3′)

cyclin D1 Forward: 5′-ATGGAACACCAGCTCC-3′

Reverse: 5′-TCAGATGTCCACGTCCCGC-3′

β-actin Forward: 5′-GTGGGGCGCCCCAGGCACCA-3′

Reverse: 5′-CTCCTTAATGTCACGCACGATTTC-3′

p21 Forward: 5′-CTGAGCCGCGACTGTGATGCG-3′

Reverse: 5′-GGTCTGCCGCCGTTTTCGACC-3′

p53 Forward: 5′-CTCTGACTGTACCACCATCCACTA-3′

Reverse: 3′-GAGTTCCAAGGCCTCATTCAGCTC-3′

VEGF Forward: 5′-GGACATCTTCCAGGAGTACC-3′

Reverse: 5′-GTTCCCGAAACCCTGAGGG-3′

4.7. Statistical Analysis

Values are expressed as the mean ± SD of at least three independent experiments. All
comparisons between groups were made using Student’s t-tests. Statistical significance
was set at p < 0.05.

5. Conclusions

Our study first revealed that the level of cell density was an important determinant
for the cytotoxic effect of ascorbate on OECM-1 and SG cells. The differential effects on
cell-cycle profiles and mitochondrial-membrane potential were verified in these two cell
lines. Our findings further revealed that the cytotoxic effect might be mediated through the
induction of mitochondrial ROS generation and the reduction in cytosolic ROS generation.
The combination index supported the agonistic effect between sodium ascorbate and
cisplatin in OECM-1 cells, but not in SG cells. In summary, our current findings provide
supporting evidence for ascorbate to serve as a sensitizer for platinum-based treatment
of OSCC.

http://imagej.nih.gov/ij/
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