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Abstract: Mesenchymal stem cells (MSCs) and cancer stem cells (CSCs) maintain bladder cancer
(BCa) stemness and facilitate the progression, metastasis, drug resistance, and prognosis. Therefore,
we aimed to decipher the communication networks, develop a stemness-related signature (Stem.
Sig.), and identify a potential therapeutic target. BCa single-cell RNA-seq datasets (GSE130001 and
GSE146137) were used to identify MSCs and CSCs. Pseudotime analysis was performed by Monocle.
Stem. Sig. was developed by analyzing the communication network and gene regulatory network
(GRN) that were decoded by NicheNet and SCENIC, respectively. The molecular features of the Stem.
Sig. were evaluated in TCGA-BLCA and two PD-(L)1 treated datasets (IMvigor210 and Rose2021UC).
A prognostic model was constructed based on a 101 machine-learning framework. Functional assays
were performed to evaluate the stem traits of the hub gene. Three subpopulations of MSCs and CSCs
were first identified. Based on the communication network, the activated regulons were found by
GRN and regarded as the Stem. Sig. Following unsupervised clustering, two molecular subclusters
were identified and demonstrated distinct cancer stemness, prognosis, immunological TME, and
response to immunotherapy. Two PD-(L)1 treated cohorts further validated the performance of
Stem. Sig. in prognosis and immunotherapeutic response prediction. A prognostic model was then
developed, and a high-risk score indicated a poor prognosis. Finally, the hub gene SLC2A3 was found
exclusively upregulated in extracellular matrix-related CSCs, predicting prognosis, and shaping
an immunosuppressive tumor microenvironment. Functional assays uncovered the stem traits of
SLC2A3 in BCa by tumorsphere formation and western blotting. The Stem. Sig. derived from MSCs
and CSCs can predict prognosis and response to immunotherapy for BCa. Besides, SLC2A3 may
serve as a promising stemness target facilitating cancer effective management.

Keywords: bladder cancer; cancer stem cell; immunotherapeutic response; mesenchymal stem cell;
stemness; intercellular communication; SLC2A3; tumor microenvironment

1. Introduction

Bladder cancer represents one of the most common urological malignancies, with over
500,000 newly diagnosed cases and 200,000 deaths each year worldwide [1]. Bladder cancer
can be classified into non-muscle invasive bladder cancer (NMIBC) and muscle-invasive
bladder cancer (MIBC) based on the depth of invasion. Although MIBC only accounts for
approximately 30% of the newly diagnosed, it is characterized by aggressiveness, metastasis,
drug resistance, and recurrence, which are responsible for the decreased cancer-specific
survival after R0 resection [2].

Cancer stemness, defined as the stem-cell-like phenotype of cancer cells, including
self-renewal and differentiation, plays a critical role in the progression, metastasis, resis-
tance to drugs, and recurrence of several cancers, including colorectal cancer (CRC) [3],
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hepatocellular carcinoma [4], and BCa [5]. Cancer stem cells (CSCs) and mesenchymal stem
cells (MSCs) have been recognized as the main contributors to stemness maintenance [6].
Considering the important roles of CSCs in tumor initiation, conventional drug resistance,
and the origin of metastasis, they have been considered the targets in cancer treatment [7].
MSCs infiltrate into the tumor microenvironment (TME) and promote tumor development
through the secretion of pro-survival factors. In TME, MSCs support the cancer stemness
by protecting tumor cells from physiological stress and therapies [6]. Furthermore, the
exosome secretion or extracellular vesicles facilitate the intercellular crosstalk and promote
angiogenesis, progression, resistance, and quiescent cancer cell activation [8]. Therefore,
decoding the communication networks may shed light on the cancer stemness and identify
potential therapeutic targets enhancing effective cancer treatment.

Compared to conventional bulk RNA-seq technology, single-cell RNA-seq (scRNA-
seq) facilitates decoding the intricate communication networks and uncovering molecular
mechanisms at the single-cell level. In the study, we first integrated two BCa scRNA-seq
datasets and built the intercellular communication network between CSCs and MSCs. Then,
the gene regulatory network (GRN) analysis was performed to identify activated regulons
(the transcription factors and their target genes) within the communication network. A
stemness-related signature (Stem. Sig) was subsequently constructed, and it showed
predictive values for prognosis and immunotherapy response. Ultimately, we identified
the hub gene SLC2A3 of the Stem. Sig and validated its biological features in BCa cells by
wet-lab experiments.

2. Results
2.1. scRNA-Seq Analysis Unravels the Heterogeneity of CSCs and MSCs

Based on cell markers reported in the literature, we first identified CSCs and MSCs
populations from the integrated BCa scRNA-seq datasets [6,9–11] (Figure S1). Following
the Seurat pipeline, we re-clustered CSCs into three subpopulations and presented the
top 10 markers of each subpopulation in Figure 1a. Cluster 0 highly expressed collagen
gene family including COL4A1, COL3A1, COL4A2, COL1A1, COL1A2, and COL6A2.
Thus, we named Cluster 0 “ECM-related CSCs.” Enrichment analysis revealed that col-
lagen fibril organization, extracellular matrix/structure organization, and ECM-receptor
interaction pathway were enriched (Figure 1b). Marker genes of Cluster 1 were enriched in
tissue/organ development; thus, Cluster 1 was defined as “quiescent CSCs” (Figure 1c).
As for Cluster 2, IL-6, CCL2, and CCL21 were upregulated. And Cluster 2 markers were
enriched in immune-related biological progress and pathways, such as interferon-gamma,
TNF signaling pathway, and complement and coagulation cascades. So, we named Cluster
2 “immune-related CSCs” (Figure 1d,e). Pseudotime analysis demonstrated that quiescent
CSCs were projected onto the root of the developmental trajectory, and ECM-related CSCs
and immune-related CSCs were projected onto two branches (Figure 1f). BEAM analysis
demonstrated that branch-dependent genes were collagen gene family and immune-related
genes. They were responsible for quiescent CSCs’ developmental direction (Figure 1g).

MSCs were also clustered into three subpopulations (Figure S2a). Markers of Cluster 0
were mainly enriched in leukocyte recruitment-related biological progress, including leuko-
cyte adhesion to vascular endothelial cells, regulation of leukocyte cell-cell adhesion, and
regulation of cellular extravasation. Thus, Cluster 0 was defined as “innate immune-related
MSCs” (Figure S2b). In the top 10 markers of Cluster 1, COL4A1 was identified. In combi-
nation with enrichment analysis, we defined Cluster 1 as “ECM-related MSCs” (Figure S2c).
According to the upregulated genes and enriched terms, we named Cluster 2 “adaptive
immune-related MSCs” (Figure S2d and Figure 1h). Pseudotime analysis revealed that
immune-related MSCs were projected on the root and developed into ECM-related MSCs
with the developmental trajectory (Figure 1i). BEAM demonstrated the expression status of
the collagen gene family and immune-related genes changed from the early developmental
stage to the top right of the tree through branch point 1 (Figure 1j).
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Figure 1. scRNA-seq analysis unravels the heterogeneity of CSCs and MSCs. (a) Top 10 markers of 
each subtype of CSCs. Top 10 terms of BP of GO and KEGG pathway enrichment analysis of Cluster 
0 (b), 1 (c), and 2 (d). (e) Subpopulations of CSCs. (f) Pseudotime and developmental trajectory of 
the subpopulation of CSCs. (g) BEAM of MSCs. (h) Subpopulations of MSCs. (i) Pseudotime and 
developmental trajectory of the subpopulation of MSCs. (j) BEAM of MSCs. 
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sender cells. VMF, COL4A1, CTGF, and SERPING1 were highly activated in the top 20 
ligands. It has been well-documented that the four ligands were involved in tumor cell 
proliferation, invasion, and migration of several malignancies, including hepatocellular 
carcinoma, gastric adenocarcinoma, and BCa [12–14] (Figure 2a).  

Figure 1. scRNA-seq analysis unravels the heterogeneity of CSCs and MSCs. (a) Top 10 markers of
each subtype of CSCs. Top 10 terms of BP of GO and KEGG pathway enrichment analysis of Cluster 0
(b), 1 (c), and 2 (d). (e) Subpopulations of CSCs. (f) Pseudotime and developmental trajectory of
the subpopulation of CSCs. (g) BEAM of MSCs. (h) Subpopulations of MSCs. (i) Pseudotime and
developmental trajectory of the subpopulation of MSCs. (j) BEAM of MSCs.

2.2. Stem. Sig. Derived from Intercellular Communication Networks

In the MSCs-CSCs communication network, ECM-related MSCs served as the main
sender cells. VMF, COL4A1, CTGF, and SERPING1 were highly activated in the top
20 ligands. It has been well-documented that the four ligands were involved in tumor cell
proliferation, invasion, and migration of several malignancies, including hepatocellular
carcinoma, gastric adenocarcinoma, and BCa [12–14] (Figure 2a).

Based on the 20 top ligands, we further constructed a ligand-target network predicting
corresponding targets (Figure 2b). In combination with SCENIC, we obtained the highly ac-
tivated regulons in the ligand-target network and compiled these genes to a communication
signature named Stem. Sig (Figure 2c,d, Table S1).

2.3. Stem. Sig. Stratifies the TME of TCGA-BLCA into Two Molecular Subtypes

Based on Stem. Sig., we clustered the TME of TCGA-BLCA into two molecular
subclusters via unsupervised consensus clustering. Both the CDF curves and PAC scores
indicated the optimal clustering number was 2 (Figure 3a–c). Patients in cluster 1 had more
unfavorable prognoses compared to those in cluster 2 (Figure 3d). Besides, cluster 1 had
a significantly higher proportion of high-grade and late-stage BCa patients compared to
cluster 2, indicating the association between cluster 1 and the clinical progression of BCa
(Figure 3e).
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and KLF9 were highly activated in CSCs. 
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by NicheNet. (c) Activated regulons identified by SCENIC. (d) Regulons EGR1, MEF2C, and KLF9
were highly activated in CSCs.

To verify the distinct stemness features, we compared the mRNAsi index and activities
of stemness-related signatures between two clusters. Results showed that cluster 1 was
characterized by a high mRNAsi index and highly activated signatures, suggesting the
higher cancer stemness of tumors in cluster 1 (Figure 3f,g). Robertson et al. [15] reported
three main molecular subtypes of TCGA-BLCA, namely luminal subtypes (further divided
into Luminal-papillary, Luminal-Infiltrated, and Luminal), one “Basal/Squamous” sub-
type, and one “Neuronal” subtype. In our study, cluster 1 had a higher proportion of
Basal/Squamous BCa compared to cluster 2 (Figure 3h). Functional enrichment analysis
revealed that most hallmark gene sets were also upregulated in cluster 1, including EMT,
IL-6/JAK/STAT3 signaling, and INFA signaling (Figure 3i).

2.4. Stem. Sig. Models an Inflamed TME of TCGA-BLCA

Considering the profound mechanisms between stemness and immunity, we next
analyzed the immune cell infiltration abundances between two clusters. Results showed
that the infiltration levels of 28 immune cell subsets were all higher in cluster 1 than
those in cluster 2 (Figure 4a). To verify the robustness, we employed six other TME
decoding algorithms, including CIBERSORT, EPIC, MCP-counter, quanTIseq, TIMER, and
xCell. Similar results were found (Figure S3). Furthermore, most immunity-related factors,
including chemokines, MHC molecules, immunostimulators, and immunoinhibitors, were
highly expressed in cluster 1 (Figure S3). These findings indicated that the BCa of cluster 1
was characterized by an inflamed TME.
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Figure 3. Stem. Sig. stratifies the TME of TCGA-BLCA into two molecular subclusters. (a) The
consensus score matrix when k = 2. The CDF curves (b) and PAC scores (c) of the consensus matrix
for each k. (d) KM curves with log-rank test revealed the poor prognosis of cluster 1. (e) Upper
panel: The proportion of high- and low-grade between two clusters. Lower panel: The proportion
of late- and early-stage between two clusters. Late stage, stages III and IV, early stage, stages I and
II. (f) The distribution of mRNAsi between two clusters. (g) The heatmap showed the enrichment
scores of 26 stemness-related signatures in two clusters. (h) The distribution of TCGA molecular
subtypes between two clusters. (i) GSEA analysis demonstrated upregulated hallmark gene sets in
two clusters.
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Figure 4. Stem. Sig. models an inflamed TME of TCGA-BLCA. (a) The infiltration abundances
of 28 immune cell subsets between two clusters. (b) The distribution of the enrichment scores of
a seven-step anti-tumor cycle between two clusters. (c) The distribution of the enrichment scores
of immunotherapy-predicted pathways between two clusters. (d) The distribution of TCR and
BCR evenness between two clusters. (e) The distribution of activities of four immunotherapy-
predicted factors between two clusters. (f) Upregulated pathways in cluster 1. ** p <0.01, *** p<0.001,
**** p <0.0001.

The enrichment scores of a seven-step anticancer immunity cycle (Figure 4b) and
immunotherapy-predicted pathways (Figure 4c) were also higher in cluster 1 compared to
those in cluster 2. Besides, both TCR and BCR evenness were higher in cluster 1 (Figure 4d).
Pathway enrichment analysis uncovered that cluster 1 was linked to immunity-related
pathways, including antigen processing and presentation, natural killer cell-mediated
cytotoxicity, and PD-L1 expression and PD-1 checkpoint pathway in cancer, and other
common pathways, including JAK-STAT, NK-kappa B, and PI3K-Akt signaling.

Given the inflamed TME and potently effective immunity in cluster 1, we hypothesized
the effective responses to immunotherapy of BCa patients in this cluster. Thus, we analyzed
the expression patterns of four immunotherapeutic predictors, including IFNG, CYT, GEP,
and TMB, between two clusters. Figure 4f showed that all four factors were significantly



Int. J. Mol. Sci. 2023, 24, 4760 7 of 16

highly expressed in cluster 1. Taken together, BCa of cluster 1 had an inflamed TME, and
patients in this cluster may benefit from ICIs therapy compared to those in cluster 2.

2.5. Stem. Sig. Predicts Immunotherapeutic Responses in ICIs-Treated BCa Cohorts

To further unravel the value of the Stem. Sig. in predicting immunotherapeutic
responses, we analyzed two ICIs-treated BCa cohorts, IMvigor 210 and Rose2021UC. In
the IMvigor 210 cohort, two molecular subclusters were identified based on the Stem. Sig.
via consensus clustering (Figure S4a). Cluster 1 was related to a more favorable prognosis
(Figure 5a), a higher proportion of responders (CR/PR, Figure 5b), and a higher proportion
of inflamed TME phenotypes (Figure 5c) compared to cluster 2. Similarly, in the two
molecular subclusters of Rose2021UC (Figure S4b), cluster 1 was linked to better survival
(Figure 5d) and a higher proportion of responders (Figure 5e). Besides, the TMB, a positive
predictor of immunotherapy response, was higher in cluster 1 (Figure 5f).
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Figure 5. Stem. Sig. predicts immunotherapeutic responses in ICIs-treated BCa cohorts. (a) KM
curves with log-rank test revealed the good prognosis of cluster 1. (b) The proportions of SD/PD
and CR/PR between the two clusters. (c) The proportions of the immune phenotypes between
two clusters. (a–c) Data were analyzed in the IMvigor210 dataset. (d) KM curves with log-rank
test revealed the good prognosis of cluster 1. (e) The proportions of R and NR between the two
clusters. (f) The distribution of TMB between two clusters. (g) A contingency table of the numbers
of responders and non-responders to ICIs therapy between two clusters. Data were analyzed by
the TIDE algorithm. (h) A contingency table between responses to ICIs therapy (anti-PD-1 and
anti-CTLA-4) and two clusters based on the SubMap module of the GenePattern online framework.
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Consistent with these two ICI-treated cohorts, cluster 1 in TCGA-BLCA was supposed
to have more responders to both PD-1 and CTLA-4 inhibitors, as predicted by TIDE and
SubMap analyses (Figure 5g,h).

2.6. A Prognostic Model Derived from the Stem. Sig. by an Integrated Machine-Learning Framework

To facilitate translational medicine, we decided to develop a consensus model based
on the Stem. Sig. that may be friendly used in clinical settings. First, we selected prognosis-
related genes from the Stem. Sig. by univariate cox regression analysis. Then, we developed
an integrated machine-learning framework of 101 combinations to select the optimal model
with the highest C-index. Finally, the optimal prognostic model was constructed by both-
direction StepCox and RSF (Figure 6a). The relative importance of each model gene is
illustrated in Figure 6b. Besides, the model demonstrated robust prognostic prediction
performance in TCGA-BLCA (Figure 6c), GSE31684 (Figure 6d), GSE13507 (Figure 6e),
GSE32548 (Figure 6f), and GSE32894 (Figure 6g).
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Figure 6. A prognostic model derived from the Stem. Sig. by an integrated machine-learning
framework. (a) A total of 101 combinations of machine learning algorithms via a 10-fold cross-
validation framework. The C-index of each model was calculated across validation datasets, including
TCGA-BLCA, GSE13507, GSE31684, GSE32548, and GSE32894 datasets. (b) The importance of the
17 most valuable genes based on the RSF algorithm. Kaplan-Meier survival curve of OS between
patients with a high score and with a low score in the TCGA-BLCA (c), GSE13507 (d), GSE31684 (e),
GSE32548 (f), and GSE32894 (g) datasets.
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2.7. SLC2A3 Overexpression Promoted CSC Traits, Which Can Be Suppressed by
SLC2A3 Inhibition

As the most significant gene in the prognostic model, SLC2A3 was exclusively upregu-
lated in ECM-related CSCs (Figure 7A) and correlated with the stemness score determined
by the enrichment score of the Stem. Sig. (Figure 7B). Survival analysis demonstrated the
prognostic value of the gene (Figure 7C). Cancer-immunity cycle represented the biological
processes of tumor cell elimination [16]. Figure 7D demonstrated that the overexpression
of SLC2A3 was associated with an impaired cancer-immunity cycle. Further investigation
uncovered that M2 macrophage polarization factors were also upregulated (Figure 7E).
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Figure 7. SLC2A3 is upregulated in ECM-related CSCs and related to impaired cancer-immunity
cycle. (A) SLC2A3 was upregulated in ECM-related CSCs. (B) Positive correlation between the
expression of SLC2A3 and stemness enrichment score. (C) Overexpressed SLC2A3 indicated a
worse prognosis. (D) Overexpressed SLC2A3 indicated an impaired cancer-immunity cycle. (E) M2
macrophage polarization factors were upregulated in the high-expression group.

All these findings suggested the critical roles of SLC2A3 in the stemness of BCa. We
further analyzed the stemness traits of SLC2A3 by tumorsphere formation assay. As shown
in Figure 8a, the number and sizes of spheres were promoted in SLC2A3 upregulated cells,
which was markedly attenuated by SLC2A3 inhibition. Besides, the expression levels of
stem cell markers were evaluated (Figure 8b). Results showed that SLC2A3 affected the
CSC traits of BCa cells.
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3. Discussion

Cancer stemness plays a crucial role in tumor initiation, progression, drug resistance,
and metastasis. The reciprocal cell communications between CSCs and other cells, espe-
cially MSCs, maintain the stemness. Therefore, deciphering the communication networks
can shed light on the molecular mechanisms of stemness and facilitate novel biomarker
identification. CSCs have been well studied in BCa and are thought to be responsible for the
BCa initiation and maintenance of tumor growth [17]. They also regulate the angiogenesis
and metastasis of BCa and are associated with a higher risk of recurrence. At the single-cell
level, Wang et al. generated a comprehensive BCa cancer-cell atlas consisting of 54,971 sin-
gle cells and highlighted the critical roles of the CSC population in recurrent BCa [10].
Similarly, a subpopulation with overexpressed cancer stem cell markers SOX9 was discov-
ered in the single cells derived from one T3-stage MIBC [11]. Further SCENIC analysis of
the critical TF regulatory network revealed the preferential upregulation of SOX9 and SOX2
in this subpopulation. And the key roles of SOX2 and SOX9 in the regulation of cancer
stemness and tumor metastasis have been well-documented in previous studies [18,19]. For
MSCs, the biological roles of exosomes in BCa cells have been reported [20,21]. However,
the understanding of MSCs at the single-cell level is limited in BCa. In the study, we
first identified subpopulations of CSCs and MSCs in the integrated scRNA-seq dataset.
Based on the communication network and GRN, the Stem. Sig was developed and showed
satisfactory performance in the prediction of prognosis and response to immunotherapy.
Finally, a prognostic model involving SLC2A3 was constructed and demonstrated robust
performance in prognostic prediction.

According to the enrichment analysis, the MSCs and CSCs can be categorized into
two functional properties: ECM-related and immune-related. ECM serves as a major
structural component of the TME and constantly undergoes remodeling progress with
tumor development. As an essential role in the stem cell niche, ECM participates in
stemness maintenance, stem cell proliferation, and self-renewal [22]. Compared to normal
ECM, tumor ECM is characterized by stiffness due to overexpressed collagens. Stiffed
ECM comprises a physical barrier that hinders the transport of drugs to the stem cell
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niche and survives the cancer stem cell. Furthermore, ECM influences the infiltration of
immune cells into the TME. ECM promotes the recruitment of M2 macrophages and Tregs,
whereas it inhibits the infiltration of CD8+ T cells. For example, the PI3K-AKT signaling
pathway was upregulated in our ECM-related MSCs, which facilitates the immune escape
of CSCs [23]. Besides, driven by immunomodulatory genes, CSCs reduce the infiltration
density of anti-tumor immune cells and sculpt an immunosuppressive TME with a high
abundance of pro-tumor immune cells like M2 macrophages. Targeting the cancer stemness
will facilitate the chemotherapeutic drug delivery to the stem cell niche and reshape the
immunological feature of TME.

In the communication pattern, ECM-related MSCs functioned as the main sender cells
in the ligand-receptor network, with upregulated VEGFC, ADAM17, VWF, and EDN1.
As a key regulator of angiogenesis in cancer, VEGFC can be activated by oncogenes,
growth factors, and stress, such as hypoxia. Apart from effects on vascular functions,
including vascular constriction and normalization, VEGF can promote tumor growth
and metastasis by binding receptors on tumor cells and inhibiting the maturation of
immune cells. Moreover, VEGF-mediated signaling contributes to the function of CSCs and
promotes tumor initiation. The crucial role of VEGF in the tumor niche makes it a promising
target for anti-cancer therapy. Previous studies have reported that patients with advanced-
stage cancers benefit from VEGF-targeted therapy with or without chemotherapy [24].
The pro-tumoral properties of ADAM17, VWF, and EDN1 have been well-studied in the
literature, and targeted therapy has demonstrated the effects of tumor-inhibiting [24,25].
CTGF, COL4A1, and TFGB1 were overexpressed in ECM-related CSCs/MSCs according
to the communication pattern. The three genes drive tumorigenesis, invasiveness, and
chemotherapeutic resistance in various cancers. Except for COL4A1, the crucial roles of
CTGF and TFGB1 in stemness regulation have been previously reported [26,27].

Regulons EGR1, MEF2C, and KFL9 were activated in ECM-/immune-related CSCs.
For quiescent CSCs, three regulons (GATA3, KLF5, and E2F3) were upregulated, and
GATA3 demonstrated exclusively activated status. Chen et al. uncovered the impor-
tant function of GATA3 in quiescent cellular status. Upregulated GATA3 suggested a
dormant status, and GATA3 knockdown induced a proliferative status shift [28]. These
activated regulons formed a novel Stem. Sig that divided the bulk tumor samples into
two molecular subtypes. Two molecular subtypes with distinct stemness properties were
characterized by different immunological phenotypes: high stemness features indicated
inflamed TME. Our results were consistent with the previous findings that CSC with high
stemness demonstrated unfavorable prognosis, inflamed TME, and high response rate to
immunotherapy [3].

Based on the Stem. Sig, we developed a prognostic model. Patients in the high-risk
score group suffered from unfavorable prognoses. Within the risk model, the hub gene
SLC2A3 harbored the highest hazard risk and demonstrated a positive correlation with
the Stem. Sig enrichment score. In our study, upregulated SLC2A3 contributed to the
unfavorable prognosis of BCa. Similarly, Yang et al. developed a prognostic signature
including SLC2A3 for BCa patients and found that overexpressed SLC2A3 was related to
high-risk score (poor prognosis) [29]. The correlation between upregulated SLC2A3 and
decreased OS has been widely reported in other solid tumors, including CRC and breast
cancer [30,31]. Decoding the molecular mechanisms unraveled that SLC2A3 promoted
invasion, EMT progress, and stemness [32]. In BCa, SLC2A3 suppression inhibited tumor
cell glucose uptake and proliferation and promoted cell apoptosis [33]. In our study,
SLC2A3 was involved in the infiltration of M2 macrophages in BCa and contributed to
the impaired anti-tumor immunity cycle, consistent with the findings of a gastric cancer
study [34]. Intriguingly, SLC2A3 was found exclusively upregulated in ECM-related CSCs
that facilitated ECM stiffness. In addition to the role of SLC2A3 in stem traits of BCa,
targeting SLC2A3 may enhance effective cancer treatment. Interestingly, Xu and colleagues
2015 reported the striking findings of targeting SLC2A3 by siRNA-based nanomedicine in
glioma therapy [35]. Collectively, targeting SLC2A3 therapy is promising for BCa patients.



Int. J. Mol. Sci. 2023, 24, 4760 12 of 16

4. Materials and Methods
4.1. Data acquisition and Pre-Processing

Two BCa scRNA-seq datasets were downloaded from the Gene Expression Omnibus
(GEO) database by accession number: GSE130001 [36] and GSE146137 (mice data was
discarded) [37]. We performed the quality control progress as previously described [38]. The
normalization, integration, dimension reduction, and clustering were conducted stepwise
according to the Seurat manual [39]. Subsequently, we identified the MSCs and CSCs
populations by previously reported cell markers.

BCa bulk RNA-seq datasets were procured from GEO and TCGA databases with the
following accession number: TCGA-BLCA, GSE31684, GSE13507, GSE32548, and GSE32894.
Two PD-(L)1 treatment datasets, IMvigor210 [40] and Rose2021UC [41], were also obtained.

4.2. Subpopulation Identification and Pseudotime Analysis

MSCs and CSCs populations were first extracted from the integrated scRNA-seq
dataset and further clustered into subpopulations. We then used the FindAllMarkers
function in Seurat to identify positive markers of each subpopulation. By clusterProfiler,
enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG), were performed to facilitate subpopulation annotation [42]. We
further performed pseudotime analysis and built the single-cell developmental trajectory
by Monocle [43]. Once the branch point has been selected, the BEAM function in Monocle
was used to identify genes that differ between branches or change expression status with
the developmental trajectory.

4.3. Intercellular Crosstalk, GRN, and Stem. Sig.

To decipher the intricate communication networks, we used the NicheNet to identify
putative ligands and binding targets [44]. Top ligands and targets in the communication
network were regarded as the communication pattern. SCENIC was subsequently used to
identify activated regulons within the pattern [45]. Finally, the Stem. Sig was constructed.

4.4. Unsupervised Consensus Clustering, Enrichment Analysis, and Immunotherapy Prediction

After removing normal samples, we identified molecular subtypes of TCGA-BLCA
based on the Stem. Sig. by ConsensusClusterPlus package [46]. CDF curves and PAC scores
were employed to determine the optimal clustering number. To validate the stemness
between subtypes, we obtained 26 stemness-related gene sets from a web-based tool:
StemChecker (http://stemchecker.sysbiolab.eu/, accessed on 9 January 2023) [47], and
calculated the stemness enrichment scores of each TCGA-BLCA via GSVA [48]. Besides,
messenger RNA expression-based stemness index (mRNAsi) was procured from the study
by Malta et al. and used to explore the differences between clusters [49].

GSEA enrichment analysis with hallmark gene sets downloaded from Molecular
Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb/, accessed on 9 January
2023) was performed to investigate the biological features. Additionally, immune cell
infiltration levels were evaluated by CIBERSORT, EPIC, MCP-counter, quanTIseq, TIMER,
and xCell, which were implemented in the IOBR R package [50].

We used the Tumor Immune Dysfunction and Exclusion (TIDE) [51] and SubMap
analysis [52] to assess the response to immunotherapy. Two anti-PD-(L)1 treated cohorts
were analyzed to further evaluate the performance of the Stem. Sig. in predicting im-
munotherapy response.

4.5. Prognostic Model Construction

We first performed a univariate Cox regression analysis to identify prognosis-related
genes (p < 0.05) based on the Stem. Sig. Then, an integrated machine-learning framework
was developed to establish a consensus prognostic model based on several BCa RNA-seq
cohorts, including TCGA-BLCA, GSE31684, GSE13507, GSE32548, and GSE32894. To be
specific, the framework was developed from 101 combinations of 10 machine-learning al-

http://stemchecker.sysbiolab.eu/
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gorithms via 10-fold cross-validation, including survival support vector machine (survival-
SVM), random survival forest (RSF), elastic network (Enet), generalized boosted regression
modeling (GBM), supervised principal components (SuperPC), partial least squares re-
gression for Cox (plsRcox), CoxBoost, stepwise Cox, Ridge, and Lasso. TCGA-BLCA was
utilized for training the model, and other cohorts were used to test the performance.

4.6. Cell Culture and Transfection

We obtained human bladder cancer cell lines T24 and 5637 from the Cancer Institute
of the Chinese Academy of Medical Sciences. The cell line was cultured in Dulbecco’s
modified Eagle’s medium (DMEM), supplemented with 10% fetal bovine serum (FBS) and
1% penicillin-streptomycin (Gibco; Thermo Fisher Scientific, Inc., Shanghai, China). Cell
lines were grown at 37 ◦C in a humidified atmosphere of 95% air and 5% CO2.

We purchased pcDNA3.1/SLC2A3 (negative control: pcDNA3.1) and small interfer-
ing RNA (siRNA) targeting SLC2A3 (si-SLC2A3; negative control: si-NC) from RiboBio
(Guangzhou, China). Following the manufacturer’s guidelines, cells were transfected using
Lipofectamine 3000 (Invitrogen, Waltham, MA, USA).

4.7. Western Blotting and Antibodies

The bladder cancer cells were lysed in RIPA lysis buffer. Protein concentration was
measured by a BCA assay kit (Beyotime, Shanghai, China). Protein lysates were separated
using 10% SDS-PAGE and transferred onto PVDF membranes. The membranes were
blocked with 5% skimmed milk for 1 h at room temperature and then incubated with
primary antibody overnight at 4 ◦C. Following this, the membranes were incubated with
the secondary antibody at RT for 1 h. Each blot was detected by an ECL kit.

Primary antibodies used: anti-SLC2A3, anti-SOX2, anti-YAP1, and anti-GAPDH. All
antibodies were purchased from Sigma-Aldrich (St. Louis, MO, USA).

4.8. Tumorsphere Formation Assay

Bladder cancer cells were seeded into an ultralow-attachment 6-well plate at a den-
sity of 5000 cells per well containing DMEM/F12 medium with bFGF (20 ng/mL), EGF
(20 ng/mL), insulin (5 µg/mL) and 2% B27 (Gibco; Thermo Fisher Scientific, Inc.). After
being cultured with 5% CO2 at 37 ◦C for 7 days, tumorspheres were observed under the
inverted microscope.

4.9. Statistical Analyses

R software (v 4.1.1) and GraphPad Prism (v 8.0.2) were used to perform all statistical
analyses. The Wilcoxon test was used to analyze the differences between the 2 groups. Chi-
squared test was used to examine the differences between categorical variables. Pearson
correlation coefficient was used for correlation analysis. Kaplan–Meier curves with the
log-rank test were performed for survival analysis. A 2-tailed p-value < 0.05 was regarded
as statistically significant.

5. Conclusions

Deciphering crosstalk between MSCs and CSCs identified a Stem. Sig. that predicted
prognosis and the response to immunotherapy for BCa. SLC2A3 was exclusively upregu-
lated in ECM-related CSCs and contributed to the stem traits of BCa. Targeting SLC2A3
may facilitate effective cancer management.
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