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Abstract: Universal stress proteins (USPs) exist across a wide range of species and are vital for
survival under stressful conditions. Due to the increasingly harsh global environmental conditions, it
is increasingly important to study the role of USPs in achieving stress tolerance. This review discusses
the role of USPs in organisms from three aspects: (1) organisms generally have multiple USP genes
that play specific roles at different developmental periods of the organism, and, due to their ubiquity,
USPs can be used as an important indicator to study species evolution; (2) a comparison of the
structures of USPs reveals that they generally bind ATP or its analogs at similar sequence positions,
which may underlie the regulatory role of USPs; and (3) the functions of USPs in species are diverse,
and are generally directly related to the stress tolerance. In microorganisms, USPs are associated with
cell membrane formation, whereas in plants they may act as protein chaperones or RNA chaperones
to help plants withstand stress at the molecular level and may also interact with other proteins to
regulate normal plant activities. This review will provide directions for future research, focusing on
USPs to provide clues for the development of stress-tolerant crop varieties and for the generation of
novel green pesticide formulations in agriculture, and to better understand the evolution of drug

resistance in pathogenic microorganisms in medicine.
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1. Introduction

In 1992, Nystrom and Neidhardt [1] identified a protein in Escherichia coli that was
overexpressed under stressful conditions and named it Universal Stress Protein (USP) [2,3].
The USP was shown to play an important role in various [4] aspects of phosphorylation [5]
and coordination of glucose [6] and acetate metabolism in E. coli [7]. After the amino
acid sequence of the first USP was determined in E. coli [8], USPs were identified in a
range of organisms [9,10]. The E. coli USP gene family includes UspA, UspC (YecG), UspD
(YiiT), UspE (YdaA), UspF (YnaF, UP03) and UspG (YbdQ), and they have been divided
into three subfamilies (Figure 1a) [11]. Various E. coli USPs play different roles in this
bacterium [12] and can be divided into two major classes (Figure 1b) and four minor
subclasses (Figure 1c) [13].

Follow-up studies have found that USP genes are present not only in E. coli [14], but
also in the genomes of other bacteria [15], archaea, fungi, protozoa [10], and plants [16].
It was found that the USP genes are involved in the formation of biofilms [17] that help
bacteria survive in an anaerobic environment [18]. Oryza sativa was the first eukaryote
in which a USP protein was reported, and OsUSP1 was shown to be particularly closely
related to the bacterial MJ0577-type ATP-binding USP protein, possibly playing a role in
ethylene-mediated anaerobic stress adaptation in rice [19]. Subsequent studies [20] have
detected USPs in a number of plant [21] species with expression upregulated in response
to stresses [22] such as drought [23,24] or cold [25], as well as with plant root nodule
formation [26]. Studies at the molecular level [27] have shown that USPs are associated
with a range of functions, such as protection of nucleic acids, cellular defense [28], stress
tolerance [29], protein scaffolding, and cellular protein transport [30]. The study of USPs in
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plants is not as in-depth as in microorganisms, and most of the studies on plant USPs focus
on plant resistance studies, with few studies on structure and other aspects. In this paper,
we summarize the studies on USPs from three aspects: genetic, structural and functional,
in order to provide a reference for the study of USPs in plants.
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Figure 1. E. coli genes and functions. (a) Location of USP family genes on E. coli chromosomes. uspA,
uspC and uspD belong to a category represented by green squares, uspF and uspG belong to another
category represented by yellow squares, and uspE is represented by purple; (b) the role of six E. coli
USPs in oxidative stress defense, iron metabolism, and cell surface properties; (c) classification of
universal stress proteins of E. coli.

2. Diversity of USP Genes

The Acinetobacter baumannii universal stress protein A (USPA) protects the bacterium, a
major global public health threat, from H,O stress [31]. Schistosoma mansoni is the causative
agent of human schistosomiasis, and all S. mansoni USP genes are transcribed during at least
one developmental stage of the helminth life cycle, with the expression of six of these genes
being upregulated in the trichocysts, a free-swimming developmental stage of S. mansoni
that is essential for transmission to the intermediate snail host. After transmission into
the intermediate host, the S. mansoni USP transcripts may be induced to perform specific
functions triggered by environmental stressors [32].

USP genes can be an important marker for studying species evolution. Espinola et al.
provided a broad framework for the evolution of the USP gene family to provide a basis
for future studies on the emergence of USPs in other tax [33]. A recent study of the gene
encoding the allosteric universal stress protein (USPA) in Halomonas spp. has demonstrated
its role in microbial evolution, its presence suggesting that Halomonas spp. developed
directly from primitive bacteria [34]. Therefore, the study of microbial USPs can help us
understand the origins and mode of action of these proteins, which would be beneficial to
the human exploitation of microbial resources.

The model plant Arabidopsis thaliana possesses as many as 41 USP genes (Table 1),
which are extremely important in the developmental process of this plant [35] USP genes
play specific roles at each developmental stage; different genes can also respond when
the plants are subjected to different stresses [36]. For example, barley has Huollsp genes
that are specifically expressed only in roots and leaves [37]. The AtUsp genes positively
regulates genes encoding cell wall components, thus facilitating cell expansion during
organ growth [38]. The AtUsp promoter can be highly induced by plant hormones and a
number of abiotic stresses and can also be induced by other effectors to reduce the effect
of stress on important traits in the plant [39]. The expression of At3g58450 is regulated
by phytohormones; it is involved in A. thaliana seed germination and may also regulate
the flowering process [36,40]. The expression of AtUsp17 can be induced by a number of
stresses and this gene regulates salt tolerance in A. thaliana [41].
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Table 1. List of AtUSP genes in Arabidopsis thaliana along with their corresponding proteins, locus ID,
CDS length, protein length, domain and Pfam ID. (Adapted with permission from Ref. [35]. 2023, copyright
Springer Nature. and NCBI: https:/ /www.ncbinlm.nih.gov/genome/ (accessed on 29 January 2023).

Gene Protein Locus CDS Length (bp) Protein Length (aa) Domain Pfam ID
AtUSP1 AtUSP1 At1G01680 927 308 usp PF00582
AtUSP2 AtUSP2 At1G09740 516 171 usp PF00582
AtUSP3 AtUSP3 At1G11360 729 242 usp PF00582

usp PF00582
AtUtyK1 AtUtyK1 At1G16760 2277 758
Pkinase-Tyr PF07714
usp PF00582
AtUtyK2 AtUtyK2 At1G17540 2187 728
Pkinase-Tyr PF00069
usp PF00582
AtUK1 AtUK1 At1G21590 2271 756
Pkinase PF00069
AtUSP4 AtUSP4 At1G44760 642 213 usp PF00582
AtUSP5 AtUSP5 At1G48960 660 219 usp PF00582
AtUSP6 AtUSP6 At1G68300 483 160 usp PF00582
AtUSP7.1 At1G69080.1 672 223 usp PF00582
AtUSP7
AtUSP7.2 At1G69080.2 630 209 usp PF00582
usp PF00582
AtUK2 AtUK2 At1G77280 2385 753
Pkinase PF00069
usp PF00582
AtUtyK3 AtUtyK3 At1G78940.2 2265 754
Pkinase-Tyr PF07714
AtUSP8 AtUSP8 At2G03720 498 165 usp PF00582
usp PF00582
AtUK3 AtUK3 At2G07020 2103 700
Pkinase PF00069
AtUSP9.1 At2G21620.1 564 187 usp PF00582
AtUSP9
AtUSP9.2 At2G21620.2 582 193 usp PF00582
usp PF00582
AtUK4 AtUK4 At2G24370 2367 788
Pkinase PF00069
AtUSP10 AtUSP10 At2G47710 489 162 usp PF00582
AtUSP11 AtUSP11 At3G01520 528 175 usp PF00582
AtUSP12 AtUSP12 At3G03270.1 606 201 usp PF00582
AtUSP13 AtUSP13 At3G03290 825 274 usp PF00582
AtUSPUSP1.1 At3G11930.1 600 199 usp PF00582
AtUSPUSP1.2 At3G11930.2 603 200 usp PF00582
AtUSPUSP1
AtUSPUSP1.3 At3G11930.3 681 226 USP, USP PF00582
AtUSPUSP1.4 At3G11930.4 606 201 usp PF00582
AtUSP14 AtUSP14 At3G17020 492 163 usp PF00582
usp PF00582
AtUtyK4 AtUtyK4 At3G20200 2343 780
Pkinase PF00069
AtUSP15 AtUSP15 At3G21210 2415 804 usp PF00582
AtUSP16 AtUSP16 At3G25930 465 154 usp PF00582
AtUSP17.1 At3G53990.1 483 160 usp PF00582
AtUSP17
AtUSP17.2 At3G53990.2 381 126 usp PF00582
AtUSP18.1 At3G58450.1 615 204 usp PF00582
AtUSP18
AtUSP18.2 At3G58450.2 594 197 usp PF00582

AtUSP19 AtUSP19 At3G62550 489 162 uspP PF00582
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Gene Protein Locus CDS Length (bp) Protein Length (aa) Domain Pfam ID
usp PF00582

AtUtyK5 AtUtyK5 At4G25160 2508 835
Pkinase-Tyr PF07714
AtUSP20 AtUSP20 AT4G13450.1 660 219 usp PF00582
AtUSP21 AtUSP21 At4G27320 783 260 usp PF00582
usp PF00582

AtUK5 AtUK5 At4G31230 2295 764
Pkinase PF00069
usp PF00582

AtUtyK6 AtUtyK6 At5G12000 2106 701
Pkinase-Tyr PF07714
AtUSP22 AtUSP22 At5G14680 528 175 uspP PF00582
AtUSP23 AtUSP23 At5G17390 858 285 usp PF00582
AtUSP24 AtUSP24 At5G20310 1185 394 usp PF00582
usp PF00582

AtUK6 AtUK6 At5G35380 2196 731
Pkinase PF00069
AtUSP25.1 At5G47740.1 735 244 usp PF00582

AtUSP25

AtUSP25.2 At5G47740.2 741 246 usp PF00582
AtUSP26 AtUSP26 At5G49050 453 150 uspP PF00582
AtUSP27 AtUSP27 At5G54430 729 242 usp PF00582
uspP PF00582

AtUK7 AtUK7 At5G63940 2118 705
Pkinase PF00069

Studies targeting the 21 USPs in grape (Vitis vinifera) revealed that the VollspA promoter
contains potential hormone response and stress-related elements, suggesting that the VollspA
gene may be involved in various hormone and stress response pathways [42]. A full-length
678-bp cDNA fragment, containing a MsUsp 528-bp coding sequence, was identified within
Medicago sativa (alfalfa) leaves, and this gene was found to be commonly expressed in leaves,
stems, flowers, roots, rhizomes, and seeds, with the highest expression levels being in seeds
and relatively low levels in flowers and roots [43]. The Solanum pennellii gene (SpUsp) is located
on chromosome 1 with a length of 572 bp, including a 438-bp open reading frame (ORF), a
91-bp 5'-untranslated region, and a 43-bp 3/-untranslated region, and has been found to be a
drought-responsive gene [44]. A total of 44 USP genes, ranging in length from 222 bp (OsUsp31)
to 2817 bp (OsUsp20), have been identified in rice, located on 11 of the 12 chromosomes, with
the exception of chromosome 4, and alternative splicing of the primary transcript has been
recognized, enabling the synthesis of multiple proteins from a single gene [45]. Malus sieversii
contains a MsUspA gene of length 222 bp, and its expression decreases reactive oxygen species
(ROS) accumulation and enhances plant drought tolerance [46]. The analysis of 16 HuolUsp
genes in barley revealed that each gene contained two or three introns, which range in
size from 75 to 941 bp, and expression is upregulated in response to salt stress [37]. There
are 71 genes encoding USP-related structural domains in pigeonpea (Cajanus cajan) [47], 49
of which have been shown to be drought-responsive genes [48]. The Gallspl [49] gene in
Gossypium arboreum is associated with drought response [50], whereas the Gallsp2 gene
is associated with salt tolerance and osmotolerance [51]. The full-length sequence of SbUsp
cDNA from the extreme halophyte Salicornia brachiata is 873 bp long, containing a 486-bp
OREF, and the SbUsp gene promotes plant growth, reduces ROS accumulation, maintains ion
homeostasis, and improves plant physiology under conditions of salt or osmotic stress [52].
This species was also found to contain two homologs of the intronless SbUsp gene, which
encode salt- and osmosis-responsive USPs [53]. The medicinal plant Calotropis procera is
a good model plant for the study of salt- and drought-tolerance genes, and the discovery
of the USP gene of this plant is of great significance for the selection and breeding of anti-
adverse varieties [54]. Salvia miltiorrhiza, a highly prized plant in traditional Chinese medicine,
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contains 32 cDNAs of USP family members, ranging in length from 279 bp (SmUSP11) to
2274 bp (SmUSP3) [55]. MaUsp genes identified from mulberry (Morus alba L.) are capable of
conferring cellular-level tolerance in both prokaryotic and eukaryotic systems. This finding led
to a new direction of thinking for subsequent USP studies, namely that maintaining cell-level
tolerance is essential to maintaining growth under stress and that cell-level tolerance can be
enhanced by overexpression of genes such as USPs [56].

3. USP Crystal Structure

Thomas et al. (1998) isolated and purified MJ0577 from the hyperthermophilic bacterium
Methanococcus jannaschii, and resolved its protein crystal structure (IMJH, PDB DOL: 10.2210/pdb
1MJH/pdb). The MJ0577 monomer consists of five-stranded twisted parallel (3-sheet lamellae,
with two on each side of the lamella helix, which can bind ATP, although the protein itself
is not an ATPase, but exercises the function of an ATPase in physiological activities or as an
ATP-mediated molecular switch in vivo [57]. Marcelo et al. (2001) resolved the crystal structure
of the USPA of Haemophilus influenzae (1JMV, PDB DOL: 10.2210/pdb1JMV /pdb), which has a
tertiary structure similar to that of the «/ 3-fold of MJ0577, but which does not bind ATP. The
protein is present in solution as a dimer, with sulfate ions forming the dimer by chelating with
the side chains through Arg28 and His29 [58]. Mycobacterium spp. stress protein MSMEG-3811
(5AHW, PDB DOI: 10.2210/pdb5AHW /pdb) binds cyclic adenosine monophosphate (cAMP),
with the monomeric structure of this protein having a typical, open, twisted five-stranded
parallel 3-sheet layer with a topology of 33-32-31-34-35 sandwiched between six helices of
different lengths, with a binding pocket that acts as a protein regulator of downstream effectors
of cAMP-binding proteins, so that the abundance of this protein may also determine the amount
of free cCAMP in the cell [59]. In the same year, the crystal structures of YdaA (USPE, 4R2], PDB
DOI: 10.2210/pdb4R2J /pdb) and YnaF (USPF, 4R2L, 10.2210/pdb4R2L/pdb) of Salmonella
typhimurium were resolved for the first time [60], and the monomer of YnaF was shown to
consist of five chains (S51-S5) with the following chain order S3-52-51-54-S5, the chain ends being
connected by a-helices. The two YnaF plasmids form an asymmetric unit that is stabilized by
interaction with chloride ions to form a tetramer with symmetry. YdaA is a larger protein than
YnaF and the YdaA protomer includes an N-terminal structural domain (residues 1-149) and a C-
terminal structural domain (residues 150-315) in addition to two tandem USP structural domains.
The two protomers of YdaA combine to form a tetramer similar to the tetrameric structure of
YnaF. To verify the functions of YdaA and YnaF, each of these two proteins was mutated and the
crystal structures of the mutant proteins 4R2K (PDB DOI: 10.2210/pdb4R2K /pdb) and 4R2M
(PDB DOI: 10.2210/pdb4R2M/pdb) were obtained [60].

NE1028 (3TN], PDB DOI: 10.2210/pdb3TN]/pdb) from Nitrosomonas europaea has
potential ATP-binding residues, and the structure of the complex formed by its binding to
AMP was reported by Tkaczuk et al., who also reported that the mutant 2PFS (PDB DOL
10.2210/pdb2PFS/pdb), namely the universal stress protein 3QTB complexed with dAMP from
Archaeoglobus fulgidus(PDB DOI: 10.2210/pdb3QTB/pdb), and the universal stress protein
6HCD (PDB DOI: 10.2210/pdb6HCD/pdb) from archaea [30]. The histidine kinase KdpD in
the KdpDE two-component system (TCS) contains a USP structural domain that binds to the
second messenger cyclic diadenosine monophosphate (c-di-AMP) and is used to regulate the
transcriptional output of the TCS in thick-walled bacterial taxa such as Staphylococcus aureus.
Given this structure, Dutta et al., suggested that the USP structural domain in the KdpD
histidine kinase may represent a new USP subfamily [61]. The crystal structure of E. coli USPE
(5CB0, PDB DOI: 10.2210/pdb5CB0/ pdb) was resolved [62], showing that USPE folds into a
fan-shaped structure and has a hydrophobic cavity bound to its ligand [63]. The Arabidopsis
protein At3g01520 (2GM3, PDB DOI: 10.2210/pdb2GM3/pdb) is the only eukaryotic universal
stress protein crystal structure that has been resolved, and the structure shows that it is an
aggregate and that each monomer is bound to an AMP molecule its [64].

The crystalline small molecules containing ATP or ATP analogues (AMP, ANP, etc.)
were selected for sequence comparison and structure superposition, and the results are
shown in Figure 2.
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Figure 2. USPs binding analysis. Crystalline small molecules containing ATP or ATP analogs (AMP, ANP,
etc.) were selected for sequence comparison and structure superimposition. (a) Sequence comparison.
All except 4R2L contain ATP-binding motifs: G-2X-G-9X-S/T. (b) Superposition. IMJH, 5AHW, 4R2L,
3TN]J and 2GM3 are gold, blue, purple, green and red, respectively. Superposition of IMJH as the
reference structure revealed that 4R2L still binds ATP at the same position even without the typical ATP
binding pattern.

It is well known that structure determines function, and by combing through them
we found that most USPs structures rarely exist as single chains when they are resolved,
(Table 2) they are often aggregated in even chains, while ATP is involved in protein
crystallization, which may be an important reason for its function in plants.

Table 2. Summary of crystal structures of USP family proteins.

Organism PDB Code Chains Mutation(s) Small Molecules References
Methanocaldococcus jannaschii 1IMJH 2 0 ATP, Mn%* [57]
Huemophilus influenzae 1MV 4 0 S042~ [58]
Methanocaldococcus jannaschii 5AHW 6 0 CMP, SO4%~, POG, CI~ [59]
4R2J 1 0 GLC, PO43~, EDO, Zn**
. 2—
Salmonella enterica subsp. enterica 4R2K 1 1 (4R2] Mutation) SO4™", EDO, OXD [60]
serovar Typhimurium str. LT2 4R2L, 2 0 EDO, Cl—, ATP, Mg2+
4R2M 2 1 (4R2L Mutation) ANP, Mg2+
. 3TNJ 1 0 AMP
Nitrosomonas europaea ATCC 19718
2PFS 1 3 MSE, CI~
1
, 3QTB 2 0 D5M, ACT, MSE (o1l
Archaeoglobus fulgidus
6HCD 4 0 ACT, MSE, CI~
Escherichia coli K-12 5CB0 2 0 Z6X [63]
Arabidopsis thaliana 2GM3 6 3 AMP, MSE [64]

4. Functional Diversity of USPs
4.1. Functional Diversity of Prokaryotic USPs

USPs are important regulatory stress proteins which have been reported from a wide
range of bacterial species [65], which help bacteria survive under conditions of stress.
USPs have various functions in fine bacteria, such as ATP hydrolysis [66], modification of
membrane properties [67] and chlorine sensing [68]. Mycobacterium tuberculosis expresses
USPs to survive hypoxia and carbon monoxide stress, and it was found that this bacterium
expresses ten USPs, which were divided into five classes (Figure 3a) [69]. Universal stress
proteins from M. tuberculosis, such as Rv2623 and Rv2624c, bind ATP [27], whereas Rv1636
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binds more to cAMP than to ATP [70]. Rv2623 regulates mycobacterial growth both in vivo
and in vitro (interacting with Rv1747; Figure 3b), suggesting that it is an essential protein
for M. tuberculosis during the chronic phase of host infection. It was found that the
ATP-binding activity of Rv2623 determines the growth-regulating properties of the USP
and that Rv2623 may act as an ATP-dependent signaling intermediate during persistent
infection of the host [71]. Rv2624c alters the abundance of arginine in vivo by binding
to ATP, to make M. tuberculosis more likely to survive in the host [72]. At the same
time, overexpression of the universal stress protein BCG-2013 in M. tuberculosis, which is
associated with latency, increases the bifunctional catalase-peroxidase KatG level, which
makes the overexpressed strain more sensitive to isoniazid (INH) [73]. Species in the
bacterial family Desulfovibrionaceae have 651 sequences associated with the expression of
USPs, which can be divided into four classes based on the number of structural domains
and ATP-binding motifs (Figure 3c) The USPs are associated with the survival of members
of the Desulfovibrionaceae in anaerobic aquatic environments and also with cellular uptake
of inorganic mercury and the production of methylmercury [74].

A _museE- 1 C _musem— 148
—IUSPIIUSPI—6  —{USPI—{ ATP 340
—SE— 1 —USEN—USEN— 138
—{ USP HH USSP —1 ATP ATP
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P-Thr237 (l’;;AI Rv1747

Interaction

Regulates cell growth

)
e_©
e®e PIMS

signals

@23

| Rv2623 [Thr23

coo

Figure 3. Classification of M. tuberculosis, Vibrio desulfuricans and interaction of Rv2623 with Rv1747.
(a) There are ten USPs of Mycobacterium nucleatum, which are classified into five categories. (b) Rv2623
regulates M. tuberculosis growth. When certain signals are present, Rv2623f Thr237 is phosphorylated
and interacts with the FHA structure of Rv1747; when there is no signal from Mycobacterium
tuberculosis, this protein transports phosphatidylinositol mannoside (PIM), making M. tuberculosis,
possess more virulence. (c) Classification of the USP of Vibrio desulfuricans. The USPs can be
classified into five categories according to the number of USPs and bound ATPs, i.e., single USP,
one USP bound to one ATP, two USPs alone, two USPs connected to one ATP and two ATPs.

USPs may be a major regulator of bacterial survival, and it has been suggested that the
USP of Micrococcus luteus may be a switch for metabolic control in this bacterium, with
related studies suggesting that this USPA616 regulates glyoxylate shunting to make it more
likely for the bacterium to survive under stressful conditions [65]. USP4207 from Mycobac-
terium smegmatis is closely involved in biofilm formation, with strains lacking USP4207
exhibiting reduced biofilm formation in vivo, resulting in coarser colony morphology [43].
The presence of USP76 in lung cells is a hallmark of Burkholderia infection [75]. Listeria
innocua ATCC 33090 contains a novel ATP-binding USP that is upregulated not only during
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the stable phase but also during the exponential growth period, and it has been found
to be involved in the in vivo bacterial response system when acid stress is encountered
during the exponential period [76]. USPF is involved in the tolerance process of atypical
enteropathogenic E. coli (aEPEC) and other Enterobacteriaceae [77].

USPs are associated not only with bacterial stress tolerance but also with the pathogenic-
ity of pathogenic bacteria, and are important factors for the survival or persistence of
various pathogens [78,79]. A. baumannii USPA plays an important role in the pathogenic-
ity of the two most lethal, infectious diseases caused by this bacterial human pathogen,
pneumonia and sepsis, and it is an essential component of the virulence mechanism of
A. baumannii [31]. Edwardsiella piscicida USP13 is essential for pathogenicity and can help
block the host immune response to pathogen infection [80]. USPC was found to function
as a scaffold for signaling in the KdpD/KdpE-P/DNA complex [81] and to regulate the
expression of the ion pump/channel complex kdpFABC [82], the N-terminal domain of
YdaA binds zinc and might play a role in lipid metabolism [60].

4.2. Functional Diversity of Eukaryotic USPs

USPs also carry out multiple functions in eukaryotic organisms, and Schistosoma
mansoni USPs may play a role [83] in defense against hydrogen peroxide-induced oxidative
stress [32], so that USPs are now novel targets for human schistosomiasis intervention
and treatment [84]. USPs, as important stress-regulated proteins in plants, are involved in
a variety of physiological activities.

4.2.1. Versatility of A. thaliana USPs

There are 53 USPs in Arabidopsis, and these USPs are divided into four groups (Table 1).
They are expressed in almost all parts of the plant and show tissue specificity and different
functions at various developmental stages [35]. AT3G53990 has several possible functions
in Arabidopsis. AT3G53990 transforms itself from a low molecular weight (LMW) complex
to a high molecular weight (HMW) complex in response to high temperature scorching
stress, and such a structural change could help plants protect key intracellular proteins in
high temperature environments, and it would participate as a protein chaperone to play a
stabilizing role as a protein [85] (Figure 4a). AT5G35380 is an effector of proline accumulation
at low water potential [86]. The GRUSP protein, encoded by the AT3G58450 gene, is a novel
regulatory component of the flowering signal transduction pathway in Arabidopsis, and
overexpression of this protein interferes with the flowering signal, so that flowering is delayed,
and a decrease in the concentration of the endogenous, bioactive gibberellins GA1 and GA3 is
detected [40]. GRUSP is also associated with Arabidopsis seed germination and has a similar
regulatory pattern to the hormone, but unlike abscisic acid, it promotes seed germination [36].
HRU1 (Hypoxia-responsive universal stress protein) coordinates oxygen sensing and ROS
signaling under hypoxic conditions [87]. AtUSP17 negatively mediates salt tolerance in
Arabidopsis by regulating ethylene, ABA, ROS, and G-protein signaling and responses [41].

As important stress-regulated proteins, USPs are involved in a range of physiological
activities in plants. It has been shown that cold-shock tolerance is usually achieved by RNA
chaperones [88], and that, in Arabidopsis, AtUSP becomes involved in plant physiolog-
ical activities as an RNA chaperone, which helps RNA-bound proteins to exercise their
functions correctly by preventing RNA misfolding or by resolving misfolded RNAs [89]
(Figure 4b). Meanwhile, when subjected to environmental stress, the expression of USPs
causes upregulation of the expression of secondary metabolites in plants, resulting in an
increase in intracytoplasmic solutes and achieving a greater tolerance to stress [46]. More
importantly, USPs can also reduce ROS production in plants [90], maintain ROS home-
ostasis, alleviate oxidative damage caused by ROS, and improve tolerance to oxidative
stress [91]. Interestingly, Arabidopsis AtUSP (At3g53990) exhibits anti-fungal activity by
generating ROS and causing mitochondrial damage in the pathogenic fungi [92]. This sug-
gests that the study of plant USPs could be beneficial for the selection of disease-resistant
varieties and the creation of novel pesticides.
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Figure 4. Role of Arabidopsis USPs in different stresses. (a) When the environment gives Arabidopsis
high temperature stress, AfUSP functions as a protein chaperone in the cell, it changes from a low
molecular weight complex (LMW) to a high molecular compound (HMW) and binds to proteins that
cannot function properly because of high temperature aggregation, helping it to restore its active
state after AtUSP reverts back to the LMW state. (b) When subjected to cold stress, AtUSP binds as
an RNA chaperone to RNA fragments misfolded by low temperature and helps them to open the
misfold and restore the correct fold.

Plants have evolved complex redox signaling [91] regulatory systems [93] and can
tolerate stress by activating specific intracellular redox-mediated defense signaling path-
ways [94,95]. The plant redox system was found to regulate ROS concentration in plants
in relation to cell metabolism [96,97], apoptosis [98,99], and carbon metabolism and
photosynthesis-related processes [100,101]. It has been shown that three Arabidopsis USP
proteins, HRU1, AtUSP, and At3g17020, interact with their redox chaperone thioredoxin-
hl, and that the structural transition of AtUSPs is induced by external redox changes,
accompanied by changes in their function.

4.2.2. Functional Diversity of USPs in Other Plants

The tomato USPA (SIRd2) is an ATP-binding protein that forms homodimers in plants.
SIRd2 is a novel interactor and phosphorylation target of SICipk6, a member of the CIPK
(CBL-interacting protein kinase) family, and functionally regulates SICipk6-mediated ROS
generation [102]. Under drought conditions, overexpression of the S. pennellii gene (SpUsp)
causes upregulation of a large number of chlorophyll a- and b-binding proteins and photo-
system proteins in plants, increasing the ABA concentration, closing stomata, alleviating
oxidative damage caused by ROS, and improving tolerance to oxidative stress [44].

The expression and regulation of Gossypium arboretun GUSP1 under drought stress results
in drought tolerance in this plant [50]. It has been demonstrated that, following the induction
of drought tolerance, the relative water content, total chlorophyll content, CO, absorbed by net
photosynthesis, stomatal conductance, total soluble sugars, and proline concentration of the
plant’s leaves increased significantly whereas the relative membrane permeability and transpira-
tion rate decreased significantly, suggesting that GUSP1 may activate some downstream genes
in signal transduction pathways in response to drought or other abiotic stresses in order to
protect membranes and cells from damage [49]. The results of the mutant assay of heterologous
expression of GUSP-2 with a lysine-to-threonine mutation demonstrate that this protein may
be directly involved in stress tolerance or may act as a signaling molecule to activate stress
adaptation mechanisms [51]. A universal stress protein in M. sieversii (MsUSPA) is involved
in the regulation of hormone and secondary metabolite synthesis to reduce transpiration and
retain water by altering the cellular structure of leaves to improve drought resistance. In addi-
tion, overexpression of MsUspA increases the activity of antioxidant enzymes and improves
antioxidant capacity, reducing the accumulation of ROS [46].

Of the 32 members of the S. miltiorrhiza SmUSP protein family, four target mitochon-
dria, four target chloroplasts, and two specifically compete for the secretory pathway [55].
The S. brachiata SbUSP is a membrane-bound cytoplasmic protein that interacts with AMP
and exhibits characteristic phosphorylation and glycosylation motifs and ATP-binding
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sites, suggesting that SbUSP may be directly involved in tolerance mechanisms or act as a
molecular switch (signaling molecule) to activate stress adaptation mechanisms [53]. The
archaea Sulfolobus acidocaldarius contains SaUSPA, which is an ATP-binding protein that
binds to the phosphatase PP2A in vitro and in vivo. Although SaUSPA does not hydrolyze
ATP, it stimulates the phosphatase activity of PP2A and may affect many other processes in
this way [103]. The leguminous plant Astragalus fridae increased the expression rate of USP
in response to exposure to SO, nanoparticles [104].

5. Future Perspectives

It is clear that the study of USPs has moved from superficial investigations to in-depth
examination of the mechanisms involved. In the future, the study of USPs may focus on
the following trends: (1) despite their importance, our understanding of the structure of
USPs is still insufficiently detailed, particularly that of eukaryotic USPs; (2) although USPs
are able to help cells survive under stressful conditions, these proteins follow two com-
pletely different mechanisms, namely ATP-dependent USPs play a role in cellular transport,
whereas ATP-non-binding USPs may function in the cell cycle [105]; (3) the application
of USP research to agriculture may facilitate the development of stress-tolerant crop vari-
eties, and the creation of new green pesticide formulations, using USPs as targets or lead
compounds for therapeutic or protective agents; and (4) in the medical field, the study of
USPs in drug-resistance mechanisms in pathogenic bacteria is important for the screening
of novel therapeutic drugs [79] and the development of related antibodies and vaccines
for the prevention and treatment of human diseases. USPs from different plants, which
play different roles in vivo (Table 3), are also worthy of research in the future by genetically
engineering plants to adapt them to more complex climatic challenges.

Table 3. Summary of the functions of USPs in different plants.

Plant Species Name of USPs Functions References
Protein chaperone [85]
AtUSP RNA chaperone [90]
Inherently antifungal activity [55]
AT5G35380 Related to resistance to flooding [86]
Arabidopsis thaliana Promote seed germination [36]
GRUSP Novel regulatory components of the flowering signal [40]

transduction pathway

Coordination of oxygen sensing and ROS signaling under

HRU1 hypoxic conditions (871
AtUSP17 Related to the salt tolerance of the plant [42]
GUSP1 Activates downstream genes in response to drought [49,50]
Gossypium arboretum ; ; ; ; ;
yp GUSP2 Directly involved in stress tolerance or as signaling molecules 51]

to activate stress adaptation mechanisms

Malus sieversii

Reducing transpiration and retaining water by altering the

cellular structure of the leaves to improve drought resistance
MsUSPA — . [46]
Increase the activity of antioxidant enzymes, reduce the

accumulation of Ros and improve the antioxidant capacity

Solanum lycoperiscus

SIRd2 Regulation of SICipk6-mediated ROS generation [102]

Solanum pennellii

SpuspP Improving tolerance to oxidative stress [44]

Participate in tolerance mechanisms or act as molecular

Salicornia brachiata SbUSP switches (signaling molecules) to activate stress adaptation [53]
mechanisms
Sulfolobus acidocaldarius SaUspA Binds phosphatase and alters phosphatase activity [103]
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