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Abstract: B cells are a class of professional antigen-presenting cells that produce antibodies to mediate
humoral immune response and participate in immune regulation. m6A modification is the most
common RNA modification in mRNA; it involves almost all aspects of RNA metabolism and can
affect RNA splicing, translation, stability, etc. This review focuses on the B-cell maturation process as
well as the role of three m6A modification-related regulators—writer, eraser, and reader—in B-cell
development and B-cell-related diseases. The identification of genes and modifiers that contribute to
immune deficiency may shed light on regulatory requirements for normal B-cell development and
the underlying mechanism of some common diseases.
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1. Introduction

B lymphocytes develop from hematopoietic progenitor cells in bone marrow (BM) [1,2].
Hematopoietic stem cells (HSC) differentiate into B cells via downstream pluripotent progenitors,
lymphoid-induced pluripotent progenitors, common lymphoprogenitors, and B-cell precursors,
thus differentiating into naive B cells expressing surface immunoglobulin [3,4]. Under the effect
of the internal environment of the bone marrow, the bone marrow stem cells differentiate into
pre-B cells, immature B cells, and finally mature B cells, according to the established genetic
sequence. The process of immunoglobulin gene rearrangement, gene activation, transcriptional
expression, and so on, finally results in the unique surface marker, the B-cell antigen receptor
(BCR) [5]. Naive cells receive antigen stimulation in peripheral lymphoid organs or blood and
differentiate into memory B cells and plasma cells for humoral immunity(Figure 1) [6,7].

N6-methyladenosine (m6A) is the most common, abundant, and conserved internal
co-transcription modification in eukaryotic cells, especially higher eukaryotic cells. m6A
modification helps to achieve different basic biological functions at the molecular, cellular,
and physiological levels. Recent studies have shown that m6A RNA modification plays a
crucial role in both physiological and pathological conditions, and m6A plays an important
role in regulating immune cell function and immune response. The modification of m6A
adds another layer of regulation to an already complex pathway of gene expression regula-
tion in mammals. m6A methylation is integral to the function of innate immune responses.
m6A modification controls a variety of innate immune responses, such as interferon ex-
pression, inflammatory responses, and homeostasis of macrophages and dendritic cells.
However, little is known about the role of m6A in B-cell development and B-cell-related
diseases. In this review, we summarize recent findings regarding the influence of m6A on
B-cell development and its role in B-cell-related diseases.
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Figure 1. The development of B cells. B-cells develop in the bone marrow (BM) and later mature in 
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2. B-Cell Development and Common B-Cell Immune Deficiency 
The development of hematopoietic stem cell B lymphocytes can be divided into dif-

ferent stages according to the sequential expression of proteins on the cell surface or 
within the cell, and the rearrangement of immunoglobulin (Ig) genes. Hematopoietic stem 
cells produce pluripotent progenitors (MPPs) and lymphoid-induced pluripotent progen-
itors (LMPPs) that lack the ability to self-renew. LMPPs have the ability to differentiate 
into common lymphoid progenitor cells (CLPs), granulocyte/macrophage progenitor cells 
(GMPs), or early T-cell progenitor cells (ETPs) [8]. The CLP compartment consists of all 
lymphoid progenitors (ALPs) and B-cell-biased lymphoid progenitors (BLPs). BLPs 
mainly differentiate into B-line cells [9]. 

The progression of HSCs in successive developmental stages requires changes in 
their cellular gene expression and chromatin status, reflecting genetic and epigenetic reg-
ulation [4]. In the context of sequential development, the core bypass network that orches-
trates the fate specification of B cells is established. Transcription factors Ikaros, PU.1, and 
E2A regulate lymphocyte and myeloid fate selection, and EBF and Pax5 control B-cell 
specification and commitment. Ikaros transcription factor is a major regulator of the pro-
gression of HSC into the lymphatic system. Ikaros regulates cytokine receptor flt3, λ5 pre-
cursor B-cell receptor chain, and Rag1/2 gene expression, and its activity is required in 
LMPPs and early B-cell precursors. The expression of PU.1 in MPPs limits the fate of 
MEPs, and then the synergistic action of PU.1 and Ikaros-induced Gfi-1 (growth factory-
independent-1) transcription factors establish selection of B-cell and myeloid fate by sta-
bilizing PU.1 levels [10,11]. E2A promotes the production and/or maintenance of MPPs 
and LMPPs and is required for bone marrow restriction of LMPPs. In addition, E2A is 
required to promote progression of the B-cell lineage through a cascade of the regulatory 
factors EBF, Pax5, and Foxo1 [12,13]. Forced expression of EBF in MPPs activates the ped-
igree-related genes Pax5, λ5, VpreB, and Cd79b, and inhibits other fate-related genes, in-
cluding c/EBPα [14]. Binding of the interferon regulatory factor IRF8 to the EBF promoter 
leads to transcriptional activation of EBF, while binding to the Sfp1 promoter inhibits PU.1 
[15]. EBF in turn enhances E2A activity by inhibiting ID inhibitors of E2A [16]. 

The progression of BLPs to mature B cells involves multiple stages, with pro-B cells 
undergoing Rag-mediated assembly of the immunoglobulin heavy-chain (IgH) gene and 
successfully pairing IgH chain with alternative light-chain VpreB and λ5 to produce pre-
B cells expressing pre-B cell receptors (pre-BCRs). This process allows the rearrangement 
of light-chain genes of immunoglobulin and successful pairing of IgH with IgK or IgX 

Figure 1. The development of B cells. B-cells develop in the bone marrow (BM) and later mature in
the secondary lymphoid organs.

2. B-Cell Development and Common B-Cell Immune Deficiency

The development of hematopoietic stem cell B lymphocytes can be divided into differ-
ent stages according to the sequential expression of proteins on the cell surface or within
the cell, and the rearrangement of immunoglobulin (Ig) genes. Hematopoietic stem cells
produce pluripotent progenitors (MPPs) and lymphoid-induced pluripotent progenitors
(LMPPs) that lack the ability to self-renew. LMPPs have the ability to differentiate into
common lymphoid progenitor cells (CLPs), granulocyte/macrophage progenitor cells
(GMPs), or early T-cell progenitor cells (ETPs) [8]. The CLP compartment consists of all
lymphoid progenitors (ALPs) and B-cell-biased lymphoid progenitors (BLPs). BLPs mainly
differentiate into B-line cells [9].

The progression of HSCs in successive developmental stages requires changes in
their cellular gene expression and chromatin status, reflecting genetic and epigenetic
regulation [4]. In the context of sequential development, the core bypass network that
orchestrates the fate specification of B cells is established. Transcription factors Ikaros,
PU.1, and E2A regulate lymphocyte and myeloid fate selection, and EBF and Pax5 control
B-cell specification and commitment. Ikaros transcription factor is a major regulator of
the progression of HSC into the lymphatic system. Ikaros regulates cytokine receptor
flt3, λ5 precursor B-cell receptor chain, and Rag1/2 gene expression, and its activity is
required in LMPPs and early B-cell precursors. The expression of PU.1 in MPPs limits the
fate of MEPs, and then the synergistic action of PU.1 and Ikaros-induced Gfi-1 (growth
factory-independent-1) transcription factors establish selection of B-cell and myeloid fate
by stabilizing PU.1 levels [10,11]. E2A promotes the production and/or maintenance of
MPPs and LMPPs and is required for bone marrow restriction of LMPPs. In addition,
E2A is required to promote progression of the B-cell lineage through a cascade of the
regulatory factors EBF, Pax5, and Foxo1 [12,13]. Forced expression of EBF in MPPs activates
the pedigree-related genes Pax5, λ5, VpreB, and Cd79b, and inhibits other fate-related
genes, including c/EBPα [14]. Binding of the interferon regulatory factor IRF8 to the EBF
promoter leads to transcriptional activation of EBF, while binding to the Sfp1 promoter
inhibits PU.1 [15]. EBF in turn enhances E2A activity by inhibiting ID inhibitors of E2A [16].

The progression of BLPs to mature B cells involves multiple stages, with pro-B cells
undergoing Rag-mediated assembly of the immunoglobulin heavy-chain (IgH) gene and
successfully pairing IgH chain with alternative light-chain VpreB and λ5 to produce pre-B
cells expressing pre-B cell receptors (pre-BCRs). This process allows the rearrangement of
light-chain genes of immunoglobulin and successful pairing of IgH with IgK or IgX chains
to produce immature B cells expressing BCRs that monitor the reactivity of B cells, which
eventually differentiate into mature B cells from bone marrow [17].

B-cell deficiency (antibody deficiency disorder) is the most common type of immunod-
eficiency. It is caused by abnormal development and/or function of B cells and is the major
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primary immunodeficiency, accounting for approximately 50% of all PID diagnoses [18,19].
B cells develop in bone marrow and are the main cells of humoral immunity. The main
functions of B cells are to produce antibodies, act as antigen-presenting cells, and secrete
cytokines. Stimulated by antigens, B cells can differentiate into antibody-producing plasma
cells and memory B cells to perform specific humoral immunity. A common feature
of B-cell immunodeficiency disorders is a significant reduction in or absence of serum
immunoglobulin. Antibody deficiency increases susceptibility to infection by bacterial
pathogens, particularly Streptococcus pneumoniae and Hemophilus influenzae [20,21].
The manifestations and complications of B-cell developmental defects vary depending
on the location or degree of functional impairment. There are three main types of pri-
mary B-cell defects: X-linked agammaglobulinemia [22–29], common variable immune
deficiency [20,30–40], and high immunoglobulin syndrome [41–44].

X-linked agammaglobulinemia (XLA) was the first innate immune error found in
humans and is the most common primary B-cell defect disease. It is characterized by B-cell
and plasma cell defects and severe hypogammaglobulinemia; increased susceptibility to
enveloped bacteria; and recurrent bacterial infections in infected men early in life [22]. The
first case, an eight-year-old male child, was reported on by Ogden Bruton in 1952. The
child experienced multiple bacterial pathogens: his serum sample was evaluated by protein
electrophoresis and showed no globulin portion [23]. The affected gene, located on the
long arm of the X chromosome, encodes a cytoplasmic tyrosine kinase named Bruton’s
tyrosine kinase (BTK) [24,25]. Signals transduced with the help of BTK play a key role in
the production of naive, mature B cells from the bone marrow into the circulation. When
the expression level of BTK is low or gene mutation occurs, the developing B cells in bone
marrow show maturation stagnation and cannot differentiate, and the level of mature B
lymphocytes in the peripheral blood of patients is significantly reduced [26]. The clinical
manifestations of XLA are repeated and severe bacterial infections can occur, such as upper
respiratory tract infection, lower respiratory tract infection, nasal and pulmonary infection,
otitis media, meningitis, osteomyelitis, sepsis, bronchitis, rheumatoid arthritis, etc. [27–29].

Common variable immune deficiency (CVID) is a major antibody deficiency and
one of the most common primary immune deficiencies. In 1954, Sanford et al. reported
the first clinical case of CVID in a 39-year-old woman with low serum levels of gamma
globulin and recurrent infection [30]. In 1971, a committee of the World Health Organization
coined the term “common variable immune deficiency” (CVID) to distinguish the less
well-defined antibody deficiency syndrome from other conditions with more consistent
clinical descriptions and Mendelian inheritance [31]. Patients with CVID, most of whom
are diagnosed between the ages of 20 and 45 years, are characterized by significantly
reduced serum immunoglobulin IgG and IgA, normal or low serum IgM, and defects in
specific antibody production [20,32]. Different barriers to B-cell development occur in
CVID, such as the failure of B cells to fully activate, proliferate normally, and eventually
differentiate into plasma and/or memory B cells [33]. Patients with CVID often also
have numerous T-cell abnormalities, such as defective T-cell activation [34], enhanced cell
apoptosis [35], cytokine defects [36], lymphocytopenia [37], defects in mitogen and antigen
proliferation [38], abnormal cell response to chemokines [39], etc. Clinical symptoms of
CVID include severe lung disease, recurrent gastrointestinal infections, autoimmune, and
inflammatory diseases [40].

High immunoglobulin M syndrome (HIGM), also known as immunoglobulin class
switch recombination (Ig-CSR) deficiencies, is a rare primary immunodeficiency char-
acterized by severely reduced serum levels of immunoglobulin A, G, and E; serum im-
munoglobulin M levels are normal or elevated [43]. The HIGM was first described by Rosen
et al. in 1961. The HIGM was molecularly defined in a 1992 Notarangelo report on the
CD40 ligand (CD40L) gene [41,42]. The HIGM phenotype has been observed in different
single-gene immunodeficiency diseases, such as CD40L and CD40 defects, AICDA-encoded
activation-induced cytidine deaminase (AID), and uracil-DNA glycosylase (UNG) defi-
ciency disorders [43]. The CD40 molecule on B cells and its activated T cell ligand, CD40L,



Int. J. Mol. Sci. 2023, 24, 4721 4 of 13

play a role in B-cell immunoglobulin isogenic signaling, and patients with CD40L mutations
account for 65% of HIGM patients [44]. The main clinical symptoms of HIGM patients are
upper and lower respiratory tract infections, otitis media, gastrointestinal infections, oral
ulcers, autoimmune, lymphoid hyperplasia, and malignant tumors [42].

3. m6A Modification

More than 170 chemical modifications of RNA have been found in living organ-
isms [45]. RNA modification has been found in all types of RNA molecules, including
transfer RNA (tRNA), ribosomal RNA (rRNA), and messenger RNA (mRNA), as well
as microRNA (miRNA), long non-coding RNA (lncRNA), and circRNA [45–50]. RNA
modification plays an important role in RNA metabolism, including RNA structure forma-
tion; stability and dynamics [51]; RNA splicing; polyadenosine decomposition; transport;
localization; and translatability. Currently, the most studied RNA modifications include
N1-methyladenosine (m1A), 5-methylcytosine (m5C), N6-methyladenosine (m6A), N7-
methylguanosine (m7G), N6,2′-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine
(8-oxoG), etc. [52–55].

Methylation of the N6 position of RNA (N6-methyladenosine [m6A]) is one of the most
common post-transcriptional modifications of RNA and the most abundant internal mRNA
modification. m6A plays an important role in almost every aspect of the mRNA life cycle, as
well as in various cellular, developmental, and disease processes [56]. In mammalian cells,
there are an average of 1–2 m6A sites per 1000 nucleotides [57,58]. m6A was first discovered
in 1974 [59,60] and is mainly enriched in the 3′ untranslated region (3′ utrs), near the stop
codon, inside and outside the long exon, intergenic region, intron, and 5′ untranslated
region (5′ utrs) [61–64]. Similar to epigenetics, the deposition of RNA modification is
dynamic and it has been identified that specific proteomes influence the fate of RNA,
such as “writers” for catalytic modification deposition, “erasers” for catalytic modification
removal, and “readers” for recognizing and binding modified nucleotides (Figure 2) [65].
The physiological roles of m6A and its reader in various biochemical processes have been
studied and identified, such as embryonic stem cell differentiation [66], hematopoietic
stem cell development [67–69], and immune response [70,71]. The characterization of these
effector proteins in various biological systems underscores the multifaceted and adjustable
nature of their function. Once the protein involved in m6A modification is abnormal,
a series of diseases will be caused, including tumors, neurological diseases, embryonic
development delay, etc.
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3.1. m6A Writers

m6A writers are methyl transferases that catalyze the formation of m6A modifica-
tion [72]. The multicomponent methyltransferase complex consists of S-adenosine methio-
nine (SAM)-binding protein methyltransferase-like 3 (METTL3), methyltransferase-like
14 (METTL14) heterodimer catalytic cores, and various other methyltransferases [73,74].
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The METTL3-METTL14 heterodimer is essential for the methylation process. METTL3
catalyzes the conversion of adenosine to m6A through its methyltransferase active domain,
and METLL14 plays a key role in the substrate recognition process, providing structural
support for METTL3 close to its active site, thus achieving catalysis [75,76]. The het-
erodimerization complex of the methyltransferase domain binds to the CCCH motif to
form the minimum region required for the formation of m6A modification in vitro [75].
Wilms’ tumor 1-associated protein (WTAP) interacts with METTL3 and METTL14 to cat-
alyze m6A methyltransferase activity in vivo. WTAP may also play a role in regulating the
recruitment of m6A methyltransferase complex to mRNA targets [74,77]. Recent studies
have shown that zinc finger protein Zc3h13 (Flacc) is required for the nuclear localiza-
tion of the ZC3H13-WTAP-Virilizer-Hakai complex and promotes m6A methylation [78].
Through proteomic methods, KIAA1429 (also known as vir-like m6A methyltransferase
associated (VIRMA)) is identified as another component of the m6A methyltransferase com-
plex; KIAA1429 is one of the main interaction factors of WTAP [79–81]. In addition, RBM15
and its analog RBM15B are functional components of the methyltransferase complex and
interact with METTL3 in a WTAP-dependent manner [82]. RBM15 and RBM15B bind to the
uridine-rich region and then recruit the WTAP/METTL3 complex to methylate the nearby
DRACH motif [82]. METTL16 has recently been identified as an m6A “writer” that plays a
methyltransferase activity-dependent and independent role in gene regulation, promoting
translation in an m6A independent manner [83]. METTL16-mediated methylation is mainly
caused by small nuclear RNAs, some intron sites in pre-mRNA, and other ncRNAs [84–86].

3.2. m6A Erasers

m6A-modified deposition is reversible and dependent on demethylase. A-ketoglutarate-
dependent dioxygenase alkB homology 5 (ALKBH5) and Fat Mass and Obesity Associated
Protein (FTO) are “erasers” to reverse m6A methylation [87]. FTO is the first demethylated
enzyme identified to catalyze the reversal of m6A methylation in mRNA, both in vitro and
intracellularly [88,89]. In most cell lines, FTO is localized primarily in the nucleus and medi-
ates 5–10% of total mRNA m6A demethylation. In leukemia cells, FTO is highly abundant
in the cytoplasm, mediating up to about 40% of m6A demethylation [65]. In addition, AlkB
homolog 3 (ALKBH3) was found to preferentially act on m6A modifications in tRNAs [90].
Because m6A demethylase is distributed differently in tissues and plays an important role
in regulating m6A methylation, additional cell or tissue-specific demethylases may exist to
act on different RNA substrates [91].

3.3. m6A Readers

m6A modification sites can be recognized by “reader” proteins to regulate RNA
metabolism, splicing, translocation, degradation, and processing [91]. Some m6A bind-
ing proteins with YTH domains, including YTHDF1, YTHDF2, YTHDF3, YTHDC1, and
YTHDC2, act as “readers” of m6A to regulate the translation and mediated degradation
of m6A-modified RNA [56,92]. YTHDF1 can enhance mRNA translation, YTHDF2 can
promote mRNA degradation, and YTHDF3 can enhance both translation and degradation.
The main function of YTHDFs is to inhibit gene expression by enhancing the degradation
of methylated mRNA in cytoplasm [76,93–95]. YTHDC1 binds to certain m6A sites in both
mRNA and non-coding RNA, while YTHDC2 mainly binds to non-coding RNA [96,97].
YTHDC1 of Drosophila melanogaster participates in sex determination and dose compen-
sation by regulating selective splicing of Sxl. In humans, YTHDC1 also plays a role in dose
compensation. YTHDC1 interacts with splicing factors to regulate alternative splicing and
nuclear output. YTHDC2 is a nucleoplasmic protein that only exists in mammals. It is
characterized by a gyrase domain, anchor repeat sequence, YTH domain, and DUF1065
domain [98]. Later, other readers were discovered: Eukaryotic translation initiation factor 3
(EIF3), heterogeneous nuclear ribonucleoprotein (hnRNPC and hnRNPA2/B1), insulin-like
growth factors (IGF2BP1, IGF2BP2, and IGF2BP3), proline-rich and curled protein 2A
(PRRC2A), and fragile X mental retardation protein (FMRP), etc. YTHDF1 binds to the m6A
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site around the stop codon of mRNA and can recruit the 40S ribosomal complex, including
eIF3, eukaryotic translation initiation factor 4E (eIF4E), eukaryotic translation initiation
factor 4G (eIF4G), poly (A)-binding protein (PABP), and 40S ribosome subunits to promote
the translation of target RNA [95]. The eIF3 can be recruited directly by m6A in the 5′ UTR
region of the transcript and then recruited into the 43S ribosomal pre-initiation complex,
promoting cap-independent translation [64]. hnRNPA2/B1 can recognize m6A on the
transcriptional subset of primary microRNA (pri-miRNA) and interact with the microRNA
microprocessor complex protein DGCR8 to promote the processing of pri-miRNA [46].
IGF2BPs can recognize m6A, promote mRNA stability and translation, and depend on
m6A [99]. Deficiency of PRRC2A, a novel m6A-specific binding protein found in nerve cells,
leads to hypomyelination by affecting oligodendrocyte regulation in the brain [100]. By
studying the regulatory mechanism of RNA-binding protein FMR1, we found that FMR1
is a novel m6A reader, which affects the translation of target mRNA and the transport of
mRNA particles [101].

4. m6A Modifications in B-Cell Development and B-Cell-Related Diseases

m6A modification and its regulatory factors regulate the expression of genes, which
are associated with many B-cell diseases (Table 1).

Table 1. m6A regulatory factors and roles in the development and functioning of B cells.

m6A Regulatory Factor The Role in the Development and Functioning of B Cells Refs

Writers

METTL3 B-cell development [102–104]
METTL14 B-cell development [105,106]

WTAP Regulating CD40 response is related to B-cell development [107]
Zc3h13 Related to DLBCL [108]

RBM15/RBM15B Associate with DLBCL, hematopoietic and normal cell development [108–110]

Erasers
FTO Related to DLBCL [108,111]

ALKBH5 Related to DLBCL [112,113]

Readers

YTHDF1-3 Related to DLBCL, YTDHF2 is associated with B-cell development
and is a negative regulator of CD40 [107,108,114,115]

YTHDC1-2 Related to DLBCL [108]
hnRNPC Related to DLBCL [116]

hnRNPA2/B1 Unknown
IGF2BP1-3 Associated with B-lymphoid precursor tumors [117]
PRRC2A Associated with NHL [118]

4.1. The role of m6A Writers in the Development and Function of B Cells

m6A modification can regulate the development of early B cells. Deletion of METTL14
significantly reduced m6A methylation in developing B cells and severely hindered the de-
velopment of mouse B cells. The large-pre-B-to-small-pre-B transition process in METTL14
knockout mice was impaired. Loss of METTL14 in developing B cells reduces YTHDF2
binding to its target and specifically leads to up-regulation of a set of YTHDF2-bound
transcripts. YTHDF2-mediated degradation of mRNA is key to the transition from pro-B
stage to large pre-B stage, and both METTL14 deletion and YTHDF2 deletion significantly
block IL-7-induced pro-B-cell proliferation [105].

Grenov et al. have shown in their studies that Mettl3 regulates the response of
GC B cells through YthDF2-mediated degradation of genes associated with oxidative
phosphorylation and IGF2BP3, enhancing the stability of m6A-modified Myc transcripts.
METTL3 deletion in GC B cells slowed down the cell cycle process and reduced the
expression of genes related to proliferation and oxidative phosphorylation. m6A interaction
factor IGF2BP3 is required for GC persistence to support Myc transcriptional stabilization
and downstream pathways. YTHDF2 as a reader of m6A can regulate appropriate gene
expression and function of mitochondrial respiration [102]. In Huang et al.’s study, it
was found that METTL14-mediated RNA modification of m6A is essential for germinal
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center (GC) B-cell response in mice. When METTL14 was specifically deleted from B
cells, the response of GC B cells was impaired, and BCR and CD40 signals in GC B cells
were attenuated. METTL14-mediated m6A indirectly up-regulates the expression of genes
critical for positive selection and proliferation of GC B cells by promoting mRNA decay of
genes encoding a set of negative immunomodulators, including Lax1 and Tipe2 [106]. The
deletion of METTL3 affected the stability of Myc mRNA, while the deletion of METTL14
did not reduce the level of Myc mRNA in GC B cells. This difference may be due to
incomplete functional overlap between METTL3 and METTL14, with METTL3 having
methyltransferase activity instead of METTL14 [119,120].

In Jiang et al.’s study, genetic analysis of the B-cell CRISPR/Cas9 system was used
to identify positive and negative regulators of CD40 response. In the study, WTAP com-
ponents VIRMA/KIAA1429 had a strong negative regulatory effect on CD40, and WTAP
regulated CD40 response by negatively regulating CD40 mRNA levels [107]. GC is a
secondary lymphoid organ structure essential for key aspects of B-cell development, differ-
entiation, somatic super-mutation, and class transformation recombination. Interference
with CD40/CD40L signaling collapses GC, which is the basis of adaptive humoral immune
response [121,122].

In the study of Xu et al., it was found that the expression levels of ZC3H13, RBM15,
RBM15B and VIRMA were positively correlated with the expression of RAB39B through
comprehensive biological information analysis. RAB39B is associated with proliferation,
apoptosis and drug sensitivity of diffuse large B-cell lymphoma (DLBCL), the most common
aggressive lymphoma. RAB39B can be used as an effective biomarker for the diagnosis and
treatment of DLBCL [108]. In a study by Raffel et al., loss of RBM15 resulted in the obstruc-
tion of pro/pre-B-cell differentiation and the loss of peripheral B cells in adult mice. It has
also been shown that RBM15 is essential for B lymphocyte generation and has inhibitory
effects on myeloid, megakaryocytes, and the progenitor cell compartment [109]. Niu et al.
found that RBM15 may function in part by regulating the expression of the proto-oncogene
c-Myc, which is necessary for normal hematopoietic stem cell-niche interaction and normal
promotion of adult hematopoietic cells and normal megakaryocyte development [110].

4.2. The Role of m6A Erasers in B Cell Development and Function

m6A methylation can significantly improve the expression of innate immune cells
associated with inflammatory processes [123]. FTO is a potential anti-inflammatory tar-
get [111]. The expression of RAB39B, an effective biomarker of DLBCL, was significantly
positively correlated with FTO and ALKBH5 [108]. Translation-regulated lncRNA1 (TR-
ERNA1) was first reported as an enhancer-like RNA, which can mediate the expression
of its neighboring genes [124]. TRERNA1 was positively correlated with lymph node
metastasis, and its expression stimulated the invasion and metastasis of breast cancer and
gastric cancer [125,126]. TRERNA1 modifies its promoter region by H3K27me3 and recruits
EZH2 to silence the expression of cyclin-dependent kinase inhibitor p21 in an epigenetic
manner. TRERNA1 can be modified by ALKBH5, the up-regulation of ALKBH5 promotes
the expression of TRERNA1, and the N6-methyladenosine-modified TRERNA1 mediated
by ALKBH5 promotes the occurrence of DLBCL [112]. In addition, ALKBH5 is related to the
growth of Myc-dysregulated B-cell lymphoma, and inhibition of ALKBH5 can effectively
inhibit the growth of MYC-dysregulated B-cell lymphoma, both in vitro and in vivo. Myc
activated the expression of ALKBH5 and decreased the level of m6A in mRNA [113].

4.3. The role of m6A Readers in the Development and Function of B Cells

Jiang et al. showed that m6A reader YTHDF2 was a negative regulator of CD40, and
the knocking out of YTHDF2 could increase the abundance of CD40 [107]. The expression
levels of YTHDC1, YTHDC2, YTHDF1, YTHDF2, and YTHDF3 in RAB39B high-expression
cells were significantly up-regulated [108]. Grenov et al. reported a post-transcriptional
mechanism that inhibits plasmoblastic genetic programming and promotes GC B cells.
In their study, using single-cell RNA sequencing (RNA-seq) techniques and transgenic
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mice, they found that antigen-specific B-cell precursors up-regulate YTHDF2 in the pre-GC
phase, thereby enhancing the decay of methylated transcribed proteins during the early
stage of B-cell immune response [114]. Recent studies have shown that hnRNPC is closely
associated with alternative splicing associated with overall survival in DLBCL [127]. Yin
et al. found that hnRNPA2/B1 was associated with the proliferation of human glioma cells.
The down-regulation of hnRNPA2/B1 led to the inactivation of AKT and STAT3 signaling
pathways, and ultimately decreased the expression of B-cell lymphoma-2 (Bcl-2), cyclin
D1 and proliferating cell nuclear antigen (PCNA) [117]. In addition, IGF2BP1-3 has been
shown to play a role in B-lymphoid precursor tumors [118]. In B-cell acute lymphoblastic
leukemia (B-ALL), the high mRNA expression of IGF2BP3 is associated with the high
expression of proliferative “metagene” markers and CDK6 [128]. IGF2BP3 is also used as a
diagnostic and prognostic marker for several malignant tumors. Mutations in the RRRC2A
gene affect the risk of non-Hodgkin lymphoma (NHL) [115].

5. Conclusions

The formation and function of B lymphocytes largely depends on the precise regulation
of multilayer gene expression. More and more evidence is showing that post-transcriptional
modification of RNA is another important regulatory link of gene expression, which can regulate
mRNA degradation, splicing or translation during B-lymphocyte generation. This review briefly
introduces the development and maturation of B cells. Many studies have shown that B-cell-
related diseases are related to m6A modifier regulators. The identification of disease-causing
genes and modification factors may help clarify the regulatory requirements for normal B-cell
development as well as the potential basis for some common diseases and the search for new
drug targets. In short, this topic has high research value and needs further study.
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