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Abstract: We investigated the characteristics of a rollable dielectric barrier discharge (RDBD) and
evaluate its effects on seed germination rate and water uptake. The RDBD source was composed
of a polyimide substrate and copper electrode, and it was mounted in a rolled-up structure for
omnidirectional and uniform treatment of seeds with flowing synthetic air gas. The rotational
and vibrational temperatures were measured to be 342 K and 2860 K, respectively, using optical
emission spectroscopy. The chemical species analysis via Fourier-transform infrared spectroscopy
and 0D chemical simulation showed that O3 production was dominant and NOx production was
restrained at the given temperatures. The water uptake and germination rate of spinach seeds by
5 min treatment of RDBD was increased by 10% and 15%, respectively, and the standard error of
germination was reduced by 4% in comparison with the controls. RDBD enables an important step
forward in non-thermal atmospheric-pressure plasma agriculture for omnidirectional seed treatment.

Keywords: rollable dielectric barrier discharge (RDBD); omnidirectional and uniform treatment;
plasma seed treatment; non-thermal atmospheric pressure plasma (NAP)

1. Introduction

Non-thermal atmospheric-pressure plasma (NAP) is an emerging technology with
numerous applications in a variety of fields, including semiconductor manufacturing,
medicine, agriculture, and environmental decontamination [1–6]. NAP contains a large
number of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which react
with contamination particles, cells, bacteria, tumors, and metal surfaces [7–9]. Previously,
NAP was widely used in the polymer and electronic industries for surface modification
and the functionalization of various polymers. However, in recent years, the applications
of NAP have expanded to include the treatment of biological matter, such as food, cancers,
and viral diseases [10–12]. Plasma jets, surface dielectric barrier discharge (DBD), pin-to-
plate-type plasma, and other plasma devices were subsequently developed based on the
demand [13–17]. The development of surface DBD devices has progressed owing to their
large surface area treatment for wound healing and seed treatments at low temperatures.
The general design of DBDs restricts their use on straight surfaces because the curvature
of the sample must also be considered. Furthermore, the size and shape of the seeds vary
based on the plant species, which makes it difficult to provide uniform treatment using
conventional devices. In this case, a flexible DBD device may offer an alternative; however,
a device that can effectively overcome this difficulty has not yet been proposed. Recently, a
flexible DBD was developed for sterilization purposes [18–20]. Kim et al., developed this
inkjet-printed flexible DBD source, which inhibited the growth of fungi in blueberries [18].
Guo et al., studied the inactivation of a virus on film and the sterilization of natural bacteria
using a flexible DBD source [19]. In particular, plasma treatment could remove the cuticle
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and epidermis layer on seeds, which improves water absorbance into the inner layers [21].
These flexible DBD devices may provide an alternative for overcoming the abovementioned
limitations; however, to our knowledge, there are no existing reports on an omnidirectional
design. Herein, we present the design of a novel rollable dielectric barrier discharge (RDBD)
device that includes 200 micro-discharge cells for a uniform and omnidirectional plasma
seed treatment. We investigated the rotational and vibrational temperatures using optical
emission spectroscopy and performed Fourier-transform infrared (FTIR) spectroscopy
and 0D (zero-dimension) chemical simulation analysis of plasma in the RDBD device.
Furthermore, the proposed RDBD device was tested to assess the effect on the germination
rate and water uptake of spinach seeds.

2. Results and Discussions
2.1. Physical and Chemical Properties of RDBD

The electrical characteristics of RDBD are shown in Figure 1. The duty ratio of the
applied voltage with a sinusoidal wave on-time of 20 ms and an off-time of 180 ms at 0 V
are shown in Figure 1a. A large number of discharge current peaks appear during the
voltage period because the discharges of each of the 200 discharge cells in the RDBD device
varied, as shown in Figure 1b. The root mean square voltage and discharge current were
measured to be 1.8 kV and 2 mA, respectively. The electrical energy and dissipated power
based on the duty ratio were measured to be 0.2 J and 2 mW, respectively.
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Figure 1. (a) Duty ratio of applied voltage, (b) voltage (black line) and discharge current (blue line)
versus time.

The optical emission spectrum (OES) of the RDBD is depicted in Figure 2. The
discharge emissions uniformly occurred at the discharge cells, and the OES results show
that RDBD primarily emits the nitrogen band spectra, such as the N2 s positive system
(N2SPS, 300–380 nm), N2 first negative system (N2FNS, 380–500 nm), and N2 first positive
system (N2FPS, 500–800 nm). Additionally, the NO-γ band (220–260 nm) and atomic
oxygen (778 nm) were observed in the OES. The dominant N2-band spectrum shows that
RDBD was mainly discharged by nitrogen molecules.
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The rotational and vibrational temperatures were calculated via the spectrum-fitting
method using the experimental spectrum of nitrogen molecules (337 nm), which was ob-
tained from a fitted Boltzmann plot [22,23]. The rotational and vibrational temperatures
were measured to be 342 K and 2860 K, respectively (see Supplementary Figure S1). The
gas FTIR and 0D chemical simulation results are shown in Figure 3. In the FTIR spec-
troscopy results, O3, NO2, and N2O were increased for 1 min after the RDBD operation
and were then kept stable. Their concentrations were 1.36× 1014 cm−3, 2.15× 1012 cm−3,
and 8.25× 1011 cm−3, respectively, as shown in Figure 3a. Figure 3a,b show the chemical
simulation results with the FTIR spectroscopy results and the chemical species in the 0D
chemical simulation, respectively.
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The crucial NO production was generated by reaction R6 in Table 1, which originated
from vibrationally excited N2 [24]. However, owing to the low vibrational temperature
of 2860 K, the NO concentration was simulated to a maximum of 1.66× 1011 cm−3 at 3 s
and immediately decreased to 1.48× 1010 cm−3. The sharp decrease in NO occurred as
the vibrational temperature approached its maximum at time, and the NO production in
R6 was saturated. Then, reaction R7 occurred for NO2 formation from NO, which was
effective at the low gas temperature. This led to a rapid decrease in NO concentration,
as shown in Figure 3b. The NO, NO3, N2O3, N2O4, and N2O5 concentrations were too
low to measure in the FTIR. The N2O5 concentration was calculated to be 8.0× 1010 cm−3

in this simulation. Moreover, N2O3 and N2O4 had very low calculated concentrations of
1.14× 104 cm−3 and 1.0× 105 cm−3, respectively. These results show that O3 production
was dominant, owing to the low gas temperature in reaction R2.

Table 1. Chemical reaction list used in simulation.

No. Reaction Rate Coefficient (cm3/s or cm6/s) Ref

R1 O + O + M→ O2 + M 4.5× 10−34 exp
(
630/Tg

)
[25]

R2 O + O2 + M→ O3 + M 5.6× 10−34(Tg/300
)−2.8 [25]

R3 O + O3 → O2 + O2 8.0× 10−12 exp
(
−2060/Tg

)−1.6 [25]
R4 O + N2 + M→ N2O + M 3.9× 10−35 exp

(
−10, 400/Tg

)
[26]

R5 O + N2

(
A3Σ

)
→ NO + N(2D) 7.0× 10−12 [27]

R6 O + N2(ν)→ NO + N 1.0× 10−11 [27]
R7 O + NO + M→ NO2 + M 1.0× 10−31(Tg/300

)−1.6 [25]
R8 O + NO→ NO2 4.2× 10−18 [26]
R9 O + NO2 → NO + O2 5.5× 10−12 exp

(
188/Tg

)
[28]

R10 O + NO2 + M→ NO3 + M 1.31× 10−31(298/Tg
)1.5 [28]
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Table 1. Cont.

No. Reaction Rate Coefficient (cm3/s or cm6/s) Ref

R11 O + NO2 → NO3 2.3× 10−11(Tg/300
)0.24 [28]

R12 O + NO3 → O2 + NO2 1.7× 10−11 [25]
R13 O + N2O→ NO + NO 1.5× 10−16 exp

(
−14, 090/Tg

)
[26]

R14 O + N2O5 → products 3× 10−16 [26]
R15 O2 + O2 → O + O3 2.0× 10−11 exp

(
−49, 800/Tg

)
[26]

R16 O(1D) + N2 + N2 → N2O + N2 9.0× 10−37 [29]
R17 O3 + NO→ NO2 + O2 1.8× 10−12 exp

(
−1370/Tg

)
[25]

R18 O3 + NO2 → NO3 + O2 1.2× 10−13 exp
(
−2450/Tg

)
[30]

R19 O3 + M→ O + O2 + M 7.26× 10−10 exp
(
−11, 400/Tg

)
[31]

R20 O3 + O2
(
a1∆

)
→ O + O2 + O2 5.2× 10−11 exp

(
−2840/Tg

)
[25]

R21 N + O + M→ NO + M 6.3× 10−33 exp
(
140/Tg

)
[25]

R22 N + O2 → NO + O 1.5× 10−14Tg exp
(
−3270/Tg

)
[32]

R23 N + O3 → NO + O2 5.0× 10−22 [33]
R24 N + N + M→ N2 + M 8.3× 10−34 exp

(
500/Tg

)
[26]

R25 N + NO→ N2 + O 2.1× 10−11 × exp
(
100/Tg

)
[25]

R26 N + NO2 → N2O + O 5.8× 10−12 exp
(
220/Tg

)
[25]

R27 N + NO2 → N2 + O + O 9.1× 10−13 [34]
R28 N + NO2 → NO + NO 6.0× 10−13 [34]
R29 N + NO2 → N2 + O2 7.0× 10−13 [34]
R30 N2 + O2 → O + N2O 2.5× 10−10 exp

(
−50, 390/Tg

)
[26]

R31 N2 + M→ N + N + M 5.4×
10−8[1− exp

(
−3354/Tg

)]
exp

(
−113, 200/Tg

) [26]

R32 NO + NO2 + M→ N2O3 + M 3.1× 10−34(Tg/300
)−7.7 [28]

R33 NO + NO3 → NO2 + NO2 1.59× 10−11 exp
(
122/Tg

)
[33]

R34 NO + NO→ N + NO2 3.3× 10−16(300/Tg
)

exp
(
−39, 200/Tg

)
[26]

R35 NO + O2 → O + NO2 2.8× 10−12 exp
(
−23, 400/Tg

)
[26]

R36 NO2 + NO2 + M→ N2O4 + M 1.44× 10−32 exp
(
110/Tg

)3.8 [28]
R37 NO2 + NO3 + M→ N2O5 + M 3.7× 10−30(300/Tg

)4.1 [28]
R38 NO2 + NO3 → NO2 + NO + O 2.3× 10−13 exp

(
−1600/Tg

)
[26]

R39 NO2 + NO2 → NO + NO + O2 3.3× 10−12 exp
(
−13, 500/Tg

)
[26]

R40 NO2 + O2 → NO + O3 2.8× 10−12 exp
(
−25, 400/Tg

)
[26]

R41 NO2 + M→ NO + O + M 6.8× 10−6(300/Tg
)2 exp

(
−36, 180/Tg

)
[26]

R42 NO2 + N2

(
A3Σ

)
→ N2 + NO + O 1.3× 10−11 [25]

R43 NO3 + O2 → NO2 + O3 1.5× 10−12 exp
(
−15, 020/Tg

)
[26]

R44 NO3 + M→ NO2 + O + M 3.1× 10−5(300/Tg
)2 exp

(
−25, 000/Tg

)
[26]

R45 NO3 + M→ NO + O2 + M 6.2× 10−5(300/Tg
)2 exp

(
−25, 000/Tg

)
[26]

R46 NO3 + NO3 → NO2 + NO2 + O2 4.3× 10−12 exp
(
−3850/Tg

)
[35]

R47 N2O3 + M→ NO + NO2 + M 1.9× 10−7(Tg/300
)−8.7 exp

(
−4880/Tg

)
[28]

R48 N2O4 + M→ NO2 + NO2 + M 1.3× 10−5(Tg/300
)−3.8 exp

(
−6400/Tg

)
[28]

R49 N2O5 + M→ NO2 + NO3 + M 1.3× 10−3(Tg/300
)−3.5 exp

(
−11, 000/Tg

)
[28]

R50 N2O + N2

(
A3Σ

)
→ O + N2 + N2 8.0× 10−11 [36]

R51 N2O + N2

(
A3Σ

)
→ NO + N + N2 8.0× 10−11 [36]

M is N2 or O2. Tg is the gas temperature (K).

2.2. Improvement of Water Uptake and Germination Rates in Seeds Using RDBD

Figure 4 shows the energy dispersive X-ray spectroscopy (EDS) and water uptake
results for spinach seeds that were untreated and treated by RDBD. To measure the range
of water uptake on the seed surface, 1 µL of 10% NaCl solution was fed to the seed surface.
Figure 4a,b show the EDS images of the seed surfaces, which depict the water absorption
area by the 10% NaCl solution with an atomic Cl signal (orange color). The untreated seed
exhibits the Cl signal over half of its area; however, the treated seed has a fully filled surface.
These results show that the hydrophilicity of the spinach seed surface was enhanced by the
RDBD treatment. The water uptake in the seeds is shown in Figure 4c based on seed weight.
The seeds were treated for 1, 3, and 5 min by RDBD. The water uptake of the spinach seeds
was enhanced by a maximum of 10% via the 5 min RDBD treatment.
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Figure 5 shows the seed germination rate of untreated and treated spinach seeds. A
short treatment time of 1 min exhibited a similar germination rate to that of the control in
this experiment. After 1 min of the RDBD operation, O3 production was too low to affect
the seed, as shown in Figure 3a, and the result led to a lower rate of seed germination.
Moreover, only RDBD treatments longer than 3 min exhibited a meaningful enhancement
in seed germination, as shown in Figure 5. Notably, the 5 min RDBD treatment showed
a significant increase in both water uptake and germination rate. Moreover, the standard
errors of the seed germination were significantly reduced from 6.2% (control) to 2.2%
(5 min RDBD treatment) in this experiment. Undoubtedly, O3 play a significant role in
seed germination in this experiment. Here, the additional omnidirectional production of
ROS enhanced the equal treatment of each seed inside the RDBD device. Furthermore,
a relatively strong flow rate of 15 lpm in air gas can shake the seeds inside the RDBD
device to increase the chance of the ROS mixing with the seeds. These characteristics led to
an increase in seed germination and a decrease in the standard errors of germination in
this experiment.
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3. Materials and Methods
3.1. Rollable DBD Source

The RDBD device was manufactured using a 200 µm-width polyimide substrate.
Copper was inkjet-printed at the electrode on the polyimide film (total area: 100× 200 mm),
as shown in Figure 6a. To prevent the oxidation of the copper electrode, it was covered by
polyimide again. The mount in Figure 6b for the RDBD device was fabricated using 3D
printing with polylactic acid material.
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Figure 6. (a) Schematic of RDBD panel, (b) mount for RDBD, and (c) discharge in RDBD device.

The RDBD panel structure was rolled up with a 3D-printed mount. The plasma was
operated using synthetic air (dry air, 21% O2 with N2 balance) gas of 15 lpm to remove
the fluctuation of chemical species density by random moisture on natural air, and using
an inverter that had a peak voltage of 2.2 kV with a 40 kHz sinusoidal wave. Discharge
was intended to occur on the inner surface of the RDBD device in the mount. To avoid
burning the polyimide surface owing to thermal damage from plasma, the applied voltage
was applied using a duty ratio of 10%, as shown in the following expression:

Duty ratio(%) =
on time

on time + off time
× 100 (1)

where on-time refers to the sinusoidal voltage signal, and off-time is the rest time of the
voltage corresponding to 0 V for cooling. The on-time was fixed at 20 ms, and the off-time
was applied for 180 ms in this experiment.

3.2. Electrical and Optical Properties of Rollable DBD

The electrical characteristic of the device was measured using a high-voltage probe
(P6015A, Tektronix, Beaverton, OR, USA) and current probe (P6021, Tektronix, Beaverton,
OR, USA) that was connected to an oscilloscope (DSOX3104T, Keysight, Santa Rosa, CA,
USA) for data recording as a function of time. The electrical energy I and dissipated power
(P) were calculated using the following expressions:

E =
∫ T

0
v(t)i(t)dt [J], (2)

P = Duty ratio × 1
T

∫ T

0
v(t)i(t)dt [W], (3)

where v(t) and i(t) are the voltage and current versus time from the recorded data, respec-
tively, and T is the period of voltage. The optical-emission property of RDBD was measured
using a charge-coupled device (PIMAX4, Princeton instruments Inc., Trenton, NJ, USA)
with a monochromator (SP2750i, Princeton instruments Inc., Trenton, NJ, USA). The gate
width of the charge-coupled device was set to 1 s and five times of accumulation. The
optical fiber was set to 5 mm away from the outer RDBD panel. To measure the optical
emission profile of RDBD, the wavelength range of 200–800 nm was recorded with 150-
groove grating. To measure the spectrum of rotational structure in N2SPS, the wavelength
range of 334–337.5 nm was recorded with 1200-groove grating.

3.3. Chemical Species Measurement in FTIR Spectroscopy

The chemical species production of the RDBD device was measured using FTIR
spectroscopy (Martix-MG5, Bruker, Billerica, MA, USA). A 1 m Teflon tube was connected
between the gas inlet of the FTIR spectroscope and the gas outlet of the RDBD device. The
time interval of the FTIR spectroscopy was set to 10 s, and the wave number ranged from
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600 to 3000 cm−1 in this experiment. Concentrations of chemical species (nspecies) were
calculated using the Beer–Lambert law with the following absorption cross-section (σ) [37]:

nspecies = −
1
σl

ln
(

ITrans

IBG

)
, (4)

σO3 = 6.51× 10−19 cm2 at 1054.65 cm−1, (5)

σNO2 = 2.32× 10−18 cm2 at 1631.81 cm−1, (6)

σN2O = 3.34× 10−18 cm2 at 2239.07 cm−1, (7)

where σ is the absorption cross-section area, and l is the optical path length (500 cm) in the
FTIR spectroscope. ITrans is the measured transmittance in the FTIR spectroscope, which
corresponded to the wave number of the absorption peak. IBG is the background signal of
the FTIR spectroscope.

3.4. Zero-Dimension (0D) Chemical Species Simulation

A 0D simulation of the chemical species was used to understand the chemical reactions
in the RDBD device. In this simulation, 51 reactions were used with 10 species, as shown in
Table 1.

The time-dependent continuity equation is used in this simulation [24,38]:

∂ni

∂t
= ∑j kS

j ∏ nr,j −∑j kL
j ∏ nr,j −

ni

τdif
(8)

where kS
j and kL

j are the rate coefficients of the source and loss reactions, respectively. nr,j
are the concentrations of each chemical species involved in the reaction [38]. τdif is the time
constant of the diffusion loss owing to the air flow in the RDBD device [24]. The diffusion
owing to the air flow partially contributes to the concentration of the chemical species
that is produced, and the time constant of the diffusion loss (τdif) in this simulation was
considered to be 30 s. The concentration of vibrationally excited N2 (nn2(v)) is determined
by the following expressions [24]:

nN2(v) = nN2Fv>12 = nN2 exp
(
−12∆εv

kbTv

)
, (9)

Tv = Tg + T0
v[1− exp(−t/τv)], (10)

where kb is the Boltzmann constant. ∆εv (=0.29 eV) is the vibrationally excited nitro-
gen at the level above v = 12 that contributes to NO production in R6. Tv is the vibra-
tional temperature, and T0

v (=2860 K) is the steady state of the vibrational temperature.
τv (=0.01 s) is the time constant of the vibrational temperature increase, and Tg (=342 K)
is the gas temperature. In this simulation, the measured rotational temperature from
the N2 spectrum was used as a gas temperature under the assumption of the rotational–
translational temperature equilibrium [39,40]. The initial concentrations of all species,
except for atomic oxygen, excited N2 and O2, which were set to 1.0× 104 cm−3. The excited
species parameters,nO = 7.6× 107 cm−3, nO(D) = 8.0× 107 cm−3 , nO2(a) = 1.0× 107 cm−3,
and nN2(A) = 4.0× 107 cm−3, were set to constants over the simulation period. The equa-
tions with the reactions were solved using the ordinary-differential-equation solver in
MATLAB (MathWorks, Natick, MA, USA).

3.5. Spinach Seed Treatment and Germination

Spinach seeds were soaked in deionized (DI) water for 24 h before treatment. Addi-
tionally, the seeds were inserted into the mount and covered by the surrounding rolled-up
RDBD panel, as shown in Figure 6c (Also see Supplementary Materials Figure S3). Each
treatment condition was performed with 150 seeds for 1, 3, or 5 min. Treated seeds were
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divided into groups of 50 seeds per 90 mm petri dish, which had three pieces of filter paper.
The filter paper was supplied with 3 mL DI water on the first day of the experiment, and 1
mL DI water was additionally supplied on the third day. The seeds were covered in the
petri dish and grown in an incubator at 26 ◦C with 60% humidity. Seed germination was
considered successful if the seed grew a stem of more than 1 mm. The germination rate
was calculated using the following expression:

Germination rate (%) =
NG

NT
× 100% (11)

where NT is the total number of seeds in a petri dish, and NG is the total number of
germinated seeds in a petri dish.

3.6. Measurement of Water Uptake of Seeds

The water uptake was measured two ways. To measure the water absorption area
on the seed surface, 1 µL of 10% NaCl solution was fed to the seed surface during 10 min.
Energy dispersive X-ray spectroscopy (EDS) was used to measure the absorption area by
the Cl signal of absorbed NaCl solution in the seed surface.

The water absorption rate (Wa) was measured by DI water absorption in the seed.
After plasma treatment, seeds were incubated (26 ◦C with 60% humidity) in the petri dish
with wet filter paper for 24 h. The filter paper was fed 3 mL of DI water. After 24 h, the
weight Wa was measured using the following expression [41]:

Wa(%) =
W1 −Wo

Wo
× 100%, (12)

where Wo is the weight of 50 seeds before the plasma treatment, and W1 is the correspond-
ing weight 24 h after the plasma treatment.

3.7. Statistical Analysis

The analysis of the variance of the differences among samples used standard errors
in this report. Experimental results were repeated three times. The seed germination was
statistically analyzed by Student’s t-test, and significant differences were indicated based
on p < 0.05. (* denotes p < 0.05 and ** denotes p < 0.01).

4. Conclusions

NAP is a new technology with a wide range of applications in different fields, includ-
ing agriculture. Innovative NAP devices that are designed with improved understanding
and usability are desperately needed to advance NAP applications in agriculture. In this
study, we developed and investigated the properties of an RDBD device that is operated us-
ing synthetic air gas. The rotational and vibrational temperatures were measured as 342 K
and 2860 K, respectively. The rotational temperature results show that the RDBD device is
safe and efficient for use in agricultural fields. The N2, O, and NO-γ spectra were observed
using optical emission spectroscopy. The O3, NO2, and N2O productions of the RDBD
device were measured to be 1.36 × 1014 cm−3, 2.15 × 1012 cm−3, and 8.25 × 1011 cm−3,
respectively, based on FTIR absorption spectroscopy. The 0D chemical simulation and
experimental FTIR spectroscopy results were shown to be dominant for O3, whereas the
nitrogen species were recessive, owing to their low temperatures in RDBD. The proposed
RDBD device was also used to assess seed germination and seed water uptake. When
150 spinach seeds were simultaneously treated with RDBD, the water uptake and germina-
tion increased by 10% and 15%, respectively, after a 5 min RDBD treatment. The RDBD
device exhibited an enhancement in the germination rate, as well as a reduction in the
standard errors of the germination rate owing to omnidirectional seed treatment. These
findings represent a significant advancement in NAP devices, which may help in advancing
the potential applications of plasma in agriculture.
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