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Abstract: Cardiovascular disease (CVD) remains the leading cause of mortality globally. Circular
RNAs (circRNAs) have attracted extensive attention for their roles in the physiological and patho-
logical processes of various cardiovascular diseases (CVDs). In this review, we briefly describe
the current understanding of circRNA biogenesis and functions and summarize recent significant
findings regarding the roles of circRNAs in CVDs. These results provide a new theoretical basis for
diagnosing and treating CVDs.
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1. Introduction

The incidence of cardiovascular disease (CVD) has been increasing rapidly in recent
years, which is the leading cause of death worldwide [1,2]. CVDs are characterized by high
morbidity, high disability rate, and high mortality, as well as various complications. As
such, there is an urgent need to identify new potential biomarkers and therapeutic targets
for the prevention and treatment of CVDs.

The accumulating evidence has indicated that only a small percentage of the human
genome encoded proteins and the rest were non-coding RNAs (ncRNAs) [3]. Recent studies
have shown the roles ncRNAs played in cellular homeostasis and disease pathophysiology.
Based on their size, ncRNAs could be divided into two groups: small ncRNAs and long
ncRNAs. Circular RNA(CircRNA), a particular type of long ncRNA, forms a closed-loop
framework by covalently constituting single-stranded RNAs without the usual terminal
structures such as the 5′cap or polyadenylated tail. CircRNAs are also characterized by their
high abundance and sometimes could even exceed 10 times that of linear transcripts [4].

In the past decade, great attention has been paid to the biogenesis and function of
circRNAs in different diseases, including in CVDs. In addition, the potential clinical ap-
plications, such as diagnostic and prognostic biomarkers, as well as therapeutic targets in
heart disease, are new emerging domains [5–8]. In the present review, the literature on
circRNAs and CVDs published in the English language in PubMed data, from January 2013
to January 2023, was searched with keywords including “RNA, Circular” and “Cardio-
vascular Diseases”. We summarized the existing knowledge of circRNAs in CVDs, from
cardiovascular-related cells to different diseases, and pointed out directions of potential
future researches.

2. Biogenesis and Functions of circRNAs

CircRNAs are closed circular biomolecules, which distinguish them from other linear
RNA biomolecules. They are circularized by joining the 3′ and 5′ ends together via exon
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circularization or intron circularization [9]. At present, three major mechanisms have been
reported for the generation of circRNAs: “lariat-driven circularization”, “intron-pairing-
driven circularization” and “RBP-driven circularization” [10] (Figure 1. Lariat-driven
circularization is associated with exon skipping, in which one or more transcript exons are
skipped, and then the remaining lariat itself is joined by a spliceosome and becomes an exon
circle. Intron-pairing-driven circularization, on the other hand, is mostly related to comple-
mentary motifs present in the intronic regions. In this model, direct RNA base pairing with
reverse complementary sequences, such as Alu repeats in the human genome across introns
flanking exons, is brought into proximity to promote circularization [11,12]. CircRNAs can
also be cyclized by RNA-binding protein (RBP). In RBP-driven circularization, trans-acting
factors recognize and dock on specific motifs located in the introns flanking the circularized
exons. The splice sites are brought into close proximity through these protein–protein
interactions or dimerization, and after that the spliceosome could engage in a back-splicing
reaction [13]. It is worth noting that circular intronic circRNAs (ciRNAs) have a special
lariat circularization method in which only introns remain. CircRNAs can be classified into
at least three categories: EcircRNAs (exonic circRNAs), EIcircRNAs (exonic-intronic circR-
NAs) and ciRNAs (circular intronic circRNAs), according to their synthesis mechanism and
constituent components (Table 1) [14–19]. EcircRNAs now make up a notable proportion of
the known circRNAs.
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driven circularization, (4) Special lariat circularization for CiRNA. The five representative biological
functions of circRNAs: miRNA sponge, interacting with RBP, scaffold for modulating protein–protein
interactions, regulation of parental gene expression and translation template. EcircRNAs: exonic
circRNA; EIcircRNAs: exon-intronic circRNA; ciRNA: circular intronic RNA.
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Despite the rapid research progress in the field, the biological functions of circRNAs in
eukaryotic cells have not been fully understood. To date, several potential functions of cir-
cRNAs have been revealed: (1) acting as miRNA sponges; (2) interacting with RNA-binding
proteins (RBP); (3) acting as dynamic scaffolding molecules that modulate protein–protein
interactions; (4) acting as transcription or translation regulators; (5) participating in the
translation of proteins [13,20–22] (Figure 1). The function CircRNAs as miRNA sponge has
been a focus of recent research. CircRNAs can competitively bind to miRNAs and lead to
the reduction of miRNAs. Then, the reduced miRNAs have reduced inhibitory effects on
target genes, resulting in the upregulation of these genes. For example, circRNA_000203 can
regulate the occurrence of cardiac hypertrophy by directly sponging miR-26b-5p and miR-
140-3p [23]. Apart from miRNA sponges, circRNAs can also function as protein sponges,
such as RBP sponges. The binding of RBPs with circRNAs would lead to the function inhi-
bition of RBPs, especially those participating in the transcription and translation of genes.
For instance, circANRIL competitively recruited PES1 (pescadillo homolog 1, an essential
60S-preribosomal assembly factor), leading to the inhibition of ribosome biogenesis in
vascular smooth muscle cells and macrophages [24]. CircANRIL induced nucleolar stress
and p53 activation, which was followed by the induction of apoptosis and inhibition of
proliferation in atherosclerosis. Moreover, in the presence of internal ribosomal enter sites
and a corresponding open reading frame, circRNAs can affect protein translation and act as
a scaffold for enzymes, guiding them to indicate location. CircFOXO3 binds to CDK2 and
p21, contributing to the formation of the circFOXO3-p21–CDK2 ternary complex and then
serving as a scaffold, affecting cancer cell-cycle progression [25]. In addition, circRNAs
mediated the regulation of the transcription of parental genes. For example, Ci-ankrd52
can bind to the transcription sites and enhance host-gene transcriptional progress by act-
ing as a positive regulator of Pol II transcription [26]. Although circRNAs were initially
recognized as non-coding RNAs, studies conducted in recent years have demonstrated
that circRNAs can serve as templates for protein translation via some modification [27].
CircZNF609 has an IRES element and can be translated into a protein that functions in
myoblast proliferation [28].

3. Exploration of circRNAs

CircRNAs were first discovered in the early 1970s, however, due to limited available
technology, they have been poorly studied in the past [29,30]. With the development of high-
throughput sequencing (HTs) and bioinformatic tools, scientists have found that circRNAs
are general features of the human transcriptome, and their biological functions have been
intensively investigated. To date, there are more than 200,000 different circRNAs present in
the union of all noncurated databases, to the best of our knowledge [31,32]. The current
methods used to detect and quantify circRNAs include high-throughput sequencing (HTs),
microarray and conventional RT-PCR/qPCR, and northern blot [33]. Most recently, Li et al.
developed a rapid and useful screening tool for functional circular RNAs based on the
CRISPR-Cas13d system [34]. This technology may provide a new tool for circRNA research.
Cellular levels of circRNAs are known to be low in proliferating and neoplastic human
cells. Recent studies performed on the human heart have shown that it expressed about
7000 to 16,000 different circRNAs [35]. In the cardiovascular system, circRNAs appear to be
robustly expressed and show differential regulation in different related cells and cardiac
diseases. Currently, there are several different datasets about circRNAs using microarray
or HTs technology that focus on cardiovascular diseases such as atherosclerosis and acute
myocardial infarction (MI). We summarized these gene expression omnibus (GEO) datasets
in Table 2. This is a treasure to be discovered. Due to the space limitation, we would only
focus on some cardiovascular-related cells and diseases. Data mining in the future may
reveal more important circRNAs and their roles in CVDs.
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Table 2. Recent identification of circRNAs in CVDs from gene expression omnibus (GEO) datasets. AS: atherosclerosis; VSMCs: vascular smooth muscle cells; CAD:
coronary artery disease; AMI: acute myocardial infarction; I/R: ischemia/reperfusion; DCM: dilated cardiomyopathy; HCM: hypertrophic cardiomyopathy; RVHD,
rheumatic valvular heart disease; CAVD: calcified aortic valve disease; HTs: high-throughput sequencing.

GEO Number Disease Sample Method Related circRNAs Main Findings Ref.

GSE216305 Atherosclerosis Homo sapiens (VSMCs) microarray circCTDP1

VSMC within atherosclerotic plaques mediates the
link between glycolysis switching and phenotype

transformation via
KLF4-eEF1A2/circCTDP1-PFKFB3 axis

[36]

GSE133270 Atherosclerosis Mouse AS model (VSMCs) HTs circEsyt2 circEsyt2 regulates vascular remodeling by
regulating p53-beta splicing [37]

GSE151475 Atherosclerosis Homo sapiens (HUVEC/HCAEC) HTs circGNAQ (hsa_circ_0006459)
The circGNAQ/miR-146a-5p/PLK2 axis is used to
regulate endothelial cell aging and atherosclerosis

progression
[38]

GSE107522 Atherosclerosis Homo sapiens (macrophages) microarray hsa_circ_0007478

The hsa_circ_0007478/miR-765/EFNA3 axis
regulates lipid metabolism and foam cell formation
in macrophages, thus participating in the regulation

of vascular atherosclerosis

[39]

GSE65392 Atherosclerosis Homo sapiens HEK293 cell line microarray circANRIL CircANRIL and PES1 induce nucleolar stress and p53
activation to regulate atherosclerosis [24]

GSE208194 CAD Homo sapiens (plasma) HTs circUBAC2
Circulatory levels of circUBAC2 were higher

expressed in patients with myocardial infarction than
in healthy controls

[40]

GSE115733 CAD Homo sapiens (PBMC) microarray Hsa_circ_0001879 and
Hsa_circ_0004104

hsa_circ_0001879 and hsa_circ_0004104 can be used
as new biomarkers to diagnose CAD [41]

GSE152498 CAD Homo sapiens (PBMC) HTs hsa_circ_0005540 Plasma exosomal hsa_circ_0005540 can be used as a
promising diagnostic biomarker of CAD [42]

/ CAD Homo sapiens (PBMC) microarray hsa_circ_0124644 hsa_circ_0124644 can be used as a diagnostic
biomarker of CAD [43]

GSE149051 AMI Homo sapiens (Blood) microarray

top three upregulated: circRNA:
hsa_circ_0050908,

hsa_circRNA4010-22,
hsa_circ_0081241;

top three downregulated:
hsa_circ_0066439,
hsa_circ_0054211,
hsa_circ_0095920

circRNA may be involved in the pathogenesis of
AMI (such as hsa_circ_0050908, hsa_circRNA4010-22,

hsa_circ_0081241 . . . )
[44]
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Table 2. Cont.

GEO Number Disease Sample Method Related circRNAs Main Findings Ref.

GSE169594 AMI Homo sapiens (Blood) microarray circRNA_104761
circRNA_104761 can be used as a diagnostic marker

of AMI and distinguish the severity of
coronary lesions

[45]

GSE160717 AMI Homo sapiens (Blood) microarray

hsa_circRNA_001654,
hsa_circRNA_091761,
hsa_circRNA_405624,
hsa_circRNA_406698

Four CircRNAs (hsa_circRNA_001654,
hsa_circRNA_091761, hsa_circRNA_405624, and

hsa_circRNA_406698) modulate the activation and
expression of RUNX1 in AMI patients via

miRNA sponges

[46]

GSE133503 AMI Mus musculus (heart) microarray circFndc3b Cardiac repair after myocardial infarction is
regulated by the CircFndc3b/FUS/VEGF-A axis [47]

/ Myocardial ischemia
reperfusion Mouse model of I/R injury HTs mmu_circRNA_0001379,

mmu_circRNA_0002263

Nineteen upregulated and 20 downregulated
circRNAs were identified to be involved in

differential expression in myocardial I/R injury
[48]

/ Myocardial ischemia
reperfusion

HCM cells simulated with
myocardial I/R / circHIPK3

CircHIPK3 sponge miRNA-124-3p inhibits
myocardial cell proliferation and induces apoptosis

after I/R injury
[49]

/ Myocardial ischemia
reperfusion Cardiomyocytes/cardiac tissues / circ-NNT

The circ-NNT/miR-33a-5p/USP46 signal axis was
used to promote pyroptosis and myocardial

I/R injury
[50]

/ Myocardial ischemia
reperfusion Mouse model of I/R injury / circ_Ddx60 Cardiomyocyte apoptosis was inhibited by

regulating the circ_Ddx60/miR-302a-3p/Bcl2a1a axis [51]

/ Myocardial ischemia
reperfusion

I/R rat model and
hypoxia/re-oxygenation
(H/R)-treated H9C2 cells

/ circRNA_0031672
The circRNA_0031672/miR-21-5p/PDCD4 signaling
pathway mediated the apoptosis of cardiomyocytes

and alleviated the IRI of cardiomyocytes
[52]

/ Myocardial ischemia
reperfusion

Myocardial I/R model in vitro by
oxygen and glucose deprivation and

reperfusion in cardiomyocytes
/ circ_0050908 Prevention of myocardial I/R injury by the

Circ_0050908/miR-324-5p/TRAF3 axis [53]

/ Myocardial ischemia
reperfusion Extracellular vesicles (EVs) HTs

mmu-circ008351, mmu-circ001007,
mmu-circ008228,

mmu_circ_0001336 and
mmu-circ007845

In the I/R group (such as mmu-circ008351,
mmu-circ001007, mmu-circ008228 . . . ), 185

significantly differentially expressed (DE) circrnas
were identified in cEVs

[54]
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Table 2. Cont.

GEO Number Disease Sample Method Related circRNAs Main Findings Ref.

/ Hypertension Homo sapiens microarray has-circ-0000437, has-circ-0008139,
has-circ-0005870, has-circ-0040809

hsa-circ-0005870 could serve as a biomarker for
hypertension diagnosis [55]

/ Essential
hypertension (EH) Homo sapiens microarray hsa_circ_0105015

hsa_circ_0105015 combined with hsa-miR-637
indicates vascular inflammation or endothelial

dysfunction and is a biomarker for early diagnosis
of EH

[56]

GSE134584 Heart failure (Plasma) Homo sapiens (plasma) microarray hsa_circ_0062960
hsa_circ_0062960 may be involved in the platelet

activity of HF and potentially used to
predict prognosis

[57]

GSE162505 DCM Homo sapiens (heart) HTs
top3: Chr7:8257935−8275635,
chr4: 187627717−187630999−,
chr1: 219352489−219385095+

In the DCM group, 213 circRNAs and 617 mRNAs
were identified as significantly upregulated. 85

circRNAs and 1125 mRNAs were
significantly downregulated

[58]

GSE148602 HCM Homo sapiens (blood) microarray
hsa_circ_0043762,

hsa_circ_0036248 and
hsa_circ_0071269

hsa_circ_0043762, hsa_circ_0036248 and
hsa_circ_0071269 may be involved in the risk factors

of HCM.
[59]

GSE122905
Idiopathic

constrictive
pericarditis

Homo sapiens (pericardium) HTs
hsa_circ_0008679,
hsa_circ_0006238,
hsa_circ_0013093

hsa_circ_0008679, hsa_circ_0006238 and
hsa_circ_0013093 were identified to be differentially

expressed in CP
[60]

GSE129409 Atrial fibrillation Homo sapiens (left atrial
appendage) microarray has_circRNA_100612

The potential roles of has_circRNA_100612,
has-miR-133b, and KCNIP1/JPH2/ADRB1 in atrial

fibrillation
[61]

GSE197764 Cardiac arrest Homo sapiens (blood) HTs circNFAT5 circNFAT5 was used to predict clinical outcome after
cardiac arrest [62]

GSE97745 Thoracic aortic
dissection Homo sapiens (aortic specimens) microarray

hsa_circRNA_101238,
hsa_circRNA_104634,
hsa_circRNA_002271,
hsa_circRNA_102771,
hsa_circRNA_104349

The hsa_circRNA_101238/hsa-miR-320a/MMP9
signal axis was involved in the regulation of

aortic dissection
[63]

GSE215935 Aortic dissection Mus musculus () microarray

mmu_circ_0004377,
mmu_circ_0004375,
mmu_circ_0004373,
mmu_circ_0004371,
mmu_circ_0004370

Differential circRNAs were identified in OSA-AD
animal models (such as mmu_circ_0004377,
mmu_circ_0004375, mmu_circ_0004373 . . . )

[64]
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Table 2. Cont.

GEO Number Disease Sample Method Related circRNAs Main Findings Ref.

GSE171827

Pulmonary
hypertension
secondary to

congenital heart
disease

Homo sapiens microarray circ_003416 downregulated,
circ_005372 upregulated

Circ_003416 and circ_005372 are involved in
oxidative phosphorylation and tight signaling to

regulate pulmonary hypertension
[65]

GSE145610 Tetralogy of Fallot Homo sapiens (heart) microarray hsa_circ_0007798 The hsa_circ_0007798/miR-199b-5p/hf1a signaling
axis is involved as a risk factor for TOF [66]

GSE168932 Rheumatic valvular
heart disease (RVHD) Homo sapiens (plasma) microarray Has_circ_0000437

Has_circ_0000437 can promote the process of RVHD
and may be a potential for the diagnosis and

treatment of RVHD
[67]

GSE155119 CAVD Homo sapiens (valve leaflets) microarray circ-CCND1
The circ-CCND1/miR-138-5p/CCND1/P53/P21

pathway is involved in the regulation of the
development of CAVD

[68]

GSE144431 Abdominal aortic
aneurysm Homo sapiens microarray

hsa (Homo sapiens) _circ_0005360
(LDLR) and hsa_circ_0002168

(TMEM189)

The hsa_circ_0005360/miR-181b and
hsa_circ_0002168/miR-15a axis may play a

regulatory role in the occurrence and development of
human abdominal aortic aneurysm

[69]
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4. circRNAs and Cardiovascular-Related Cells

There are many cells related to cardiovascular diseases. In this review, we focus on
endothelial cells, smooth muscle cells, cardiomyocytes and cardiac fibroblast (Figure 2).
Some other cells such as immune cells are not our primary focus here, but a special summary
is also needed for these other cells in the future.
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4.1. Endothelial Cells

Endothelial cells (ECs) are the foundation of the vascular system and EC injury occurs
in the early stage of atherosclerosis. Several factors contribute to EC injury and dysfunction,
such as oxidized low-density lipoprotein (ox-LDL), oxidative stress and hypoxia [70,71].

Ox-LDL is a common stimulating factor of atherosclerosis in vitro. Hsa_circ_0003575
was significantly upregulated in ox-LDL-stimulated human umbilical vein endothelial
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cells (HUVECs) in vitro. Functional tests indicated that silencing hsa_circ_0003575 could
lead to the promotion of HUVEC proliferation and angiogenesis ability [72]. These results
indicated that hsa_circ_0003575 may promote atherosclerosis by inducing cell apoptosis. In
another study, circ_0003645 had been identified to promote the development of ox-LDL-
induced HUVEC injuries. In that study, propofol protected against the viability inhibition
and apoptosis promotion of HUVECs by decreasing the circ_0003645 level. Mechanically,
circ_0003645 could induce TRAF7 upregulation following propofol treatment through
sponging miR-149-3p [73].

The redox imbalance of the ECs plays a causative role in a variety of cardiovascular
diseases. CircANKRD12, derived from the junction of exon 2 and exon 8 of the ANKRD12
gene, was significantly upregulated in H2O2-treated ECs. In a network analysis performed
for the identified circANKRD12, the p53 and Foxo pathways were proven to play a fun-
damental role in the oxidative stress response in many different systems. Further, the
downregulation of circANKRD12 affected the redox imbalance response, suggesting the
potential role of circANKRD12 in the protection of ECs against oxidative stress [74].

In an EC and hypoxia study, cZNF292 was found to be expressed in the ECs and
induced by hypoxia. Moreover, the silencing of cZNF292 reduced the tube formation and
spheroid sprouting of ECs in vitro. The circRNA cZNF292 exhibits proangiogenic activities
in vitro, and this circRNA was involved in the regulation of EC function. No validated
microRNA-binding sites for cZNF292 were detected, indicating that cZNF292 may not act
as a microRNA sponge [75].

Furthermore, Chen et al. demonstrated that CircDLGAP4 was significantly decreased
in HUVECs suffering ischemia/reperfusion (I/R) injury [76]. CircDLGAP4, which acts
as an miR-143 sponge, promoted HECT domain E3 ubiquitin protein ligase 1 (HECTD1)
expression. HECTD1 could inhibit the apoptosis and migration in ECs associated with
endoplasmic reticulum (ER) stress. The study suggested an important role for circDLGAP4
and HECTD1 in ER dysfunction induced by I/R.

In addition, the circRNA-0024103/miR-363/MMP-10 axis was reported to regulate
endothelial cells behaviors such as proliferation, apoptosis, migration and invasion [77].

4.2. Smooth Muscle Cells

Vascular smooth muscle cell (SMC) is the major component of the medial layer and
could maintain intravascular pressure and blood perfusion through coordinating vascular
relaxation and contraction.

Zeng et al. demonstrated that overexpression of circMAP3K5 inhibited the prolifera-
tion of human coronary artery SMCs [78]. Loss of TET2 was found to downregulate the
circMAP3K5-mediated antiproliferative effect on vascular SMCs in SMC-specific TET2
knockout mice. CircMAP3K5/miR-22-3p/TET2 was found to be the mechanism axis.

In addition, circ-SATB2 was reported to regulate the differentiation, proliferation,
apoptosis, and migration of VSMCs through enhancing STIM1 expression [79].

The knockdown of circSOD2 was found to inhibit PDGF-BB-induced SMC prolifera-
tion. On the contrary, circSOD2 ectopic expression promoted SMC proliferation. CircSOD2
acted as a sponge for miR-206, leading to the upregulation of notch receptor 3(NORCH3)
and NOTCH3 signaling [80]. CircSOD2 is thus regarded as a novel regulator that mediates
SMC proliferation and neointima formation following vascular injury.

What is more, Sun et al. reported that circ_RUSC2/miR-661/spleen-associated tyro-
sine kinase (SYK) could contribute to VSMC proliferation, phenotypic modulation and
migration [81].

Furthermore, hsa_circ_0001445has been suggested as an indicator of stable coro-
nary artery disease (CAD). This circRNA is produced from the SWI/SNF-related matrix-
associated actin-dependent regulator of the chromatin subfamily A member 5 (SMARCA5)
locus, and its levels in the plasma may be a predictor of coronary artery atherosclerosis
in suspected patients. Interestingly, the decreased secretion of hsa_circ_0001445 could
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be observed when the human coronary SMCs were exposed to atherogenic conditions
in vitro [82].

4.3. Cardiomyocytes

CircRNAs are mentioned as powerful cardiac development regulators affecting car-
diac regeneration. CircNfix was overexpressed in adult hearts in humans, rats, and mice
compared to infants. Experiments in vitro and in vivo indicated that cardiomyocyte prolif-
eration was promoted when circNfix was downregulated. Huang et al. demonstrated that
super-enhancer-regulated circNfix could suppress Ybx1 ubiquitin-dependent degradation
and increase miR-214 activity to inhibit cardiac regenerative repair and functional recovery
after myocardial infarction (MI) [83]. In addition, the upregulation of circSNRK could
also contribute to the reduction of apoptosis and cardiomyocytes proliferation. In the
post-infarction area after acute myocardial infarction (AMI), circSNRK promoted cardiomy-
ocytes regeneration by acting as a sponge for miR-103-3p and upregulating the expression
of SNRK [84].

What is more, Zhou et al. reported that circRNA-68566 could participate in myocardial
I/R injury by regulating the miR-6322/PARP2 signaling pathway [85]. MiR-6322 was
proven to be a direct target of circRNA-68566. CircRNA-0068566 inhibited I/R injury
through reducing oxidative stress and apoptosis via miR-6322. A study conducted by Zong
et al. indicated that overexpressed circANXA2 could inhibit hypoxia/reoxygenation (H/R)-
treated H9C2 cell proliferation. Moreover, further study demonstrated that circANXA2
could reverse the inhibition of myocardial proliferation and increasing cardiomyocyte
apoptosis by acting as a sponge for miR-133 [86]. Luo et al. demonstrated that suppressing
circPVT1 expression could prevent heart I/R injury in rats and improve cardiomyocyte
viability by regulating the circPVT1/miR-125b/miR-200a axis [87].

It has been reported that the absence of circ-CBFB could offer cardiac protection against
H/R-triggered cardiomyocyte injury through the miR-495-3p/VDAC1 axis, suggesting its
potential role for acute myocardial infarction treatment [88].

Additionally, hypoxia treatment upregulated the expression of circHSPG2 in AC-16
cells (human cardiomyocyte). In this study, exposing AC-16 cells to hypoxia resulted in
a reduction in cell viability and proliferation as well as the promotion of apoptosis. The
progressions were diminished by the silence of circHSPG2 [89].

Furthermore, hsa_circ_0000848 was notably downregulated in hypoxia-induced car-
diomyocytes [90]. The silence of hsa_circ_0000848 inhibited the proliferation while accel-
erating the apoptosis. This circRNA interacted with the ELAV-like RNA-binding protein
1 protein to stabilize SMAD family member 7 mRNA and affected the development of
cardiomyocyte cells cultured under hypoxia.

4.4. Cardiac Fibroblast

The activation and phenotypical transition of cardiac fibroblasts (CFs) could contribute
to cardiac fibrosis. It was proven that circBMP2K enhanced the regulatory effects of miR-
455-3p on its downstream target gene, SUMO1, which led to the inhibition of TGF-β1 or
Ang II and resulted in the activation and proliferation of CFs [91]. In addition, circPAN3
knockdown was reported to attenuate autophagy-mediated cardiac fibrosis after myocar-
dial infarction via the miR-221/FoxO3/ATG7 axis [92]. In another study, circRNA_010567
was proven to be markedly upregulated in CFstreated with Ang II. CircRNA_010567 silenc-
ing could upregulate miR-141 and downregulate TGF-β1 expression, and it suppressed
fibrosis-associated protein resection in CFs, including Col I, Col III and α-SMA, which
suggested that circRNA_010567 played an regulatory role in CFs [93].

Moreover, circNFIB, which was identified as a miR-433 sponge, was downregulated
in adult CFs after treated with TGF-β [94]. The overexpression of circNFIB could attenuate
the pro-proliferative effects induced by the miR-433 mimic, while the inhibition of circNFIB
exhibited opposite results. CircNFIB is thus regarded as critical for protection against
cardiac fibrosis.
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5. circRNAs in Cardiac Diseases

Recent research has demonstrated that the profile expression of circRNAs is asso-
ciated with different types of cardiovascular diseases, such as coronary artery disease,
cardiomyopathies, chronic heart failure, hypertension, atrial fibrillation, and so on [95–97].

5.1. Atherosclerosis and Coronary Artery Diseases

CircRNAs played an important role in atherosclerosis and coronary artery diseases [26].
The SNPs on chromosome 9p21.3 were revealed to be correlated with the severity of
atherosclerosis by a genome-wide association study (GWAS) [98]. The antisense non-
coding RNA at the INK4 locus (ANRIL) and the related circular ANRIL (circANRIL) are
transcribed on chromosome 9p21. It was reported that circANRIL upregulation could
inhibit the development of vascular disorders, especially coronary artery diseases [99].
As mentioned above, circANRIL bound to PES1, impairing exonuclease-mediated pre-
rRNA processing and ribosome biogenesis and leading to p53 activation [36,100]. This,
in turn, led to a subsequent apoptosis increase, proliferation decrease, and the migration
of VSMCs and macrophages. In addition, circANRIL overexpression could promote EC
apoptosis and exacerbate EC inflammation. Therefore, circANRIL may play a role in
atherosclerosis and CAD development by inducing the apoptosis and inflammation of
these atherosclerotic-associated cells.

In addition, cardiomyocyte apoptosis and necrosis were important features in AMI.
The CircRNA CDR1AS was found in abundance in the hearts of mice [101]. CDR1AS
was a sponge for miR-7. CDR1AS was shown to be pro-apoptotic in vitro, consistent with
the anti-apoptotic role of miR-7. More importantly, the overexpression of CDR1AS in
mouse hearts resulted in larger infarct sizes after AMI, which could be prevented by the
overexpression of miR-7. Recently, Wang et al. revealed that novel circRNA, mitochondrial
fission and apoptosis-related circRNA (MFACR) could regulate mitochondrial dynamics
and apoptosis in the heart by targeting the miR-652-3p-MTP18 signaling axis [102].

Recently, the experiments conducted by Si et al. illustrated the important role of
circHipk3 in the regeneration of the heart after AMI. The expression of circHipk3 has also
been found to be increased in fetal and neonatal mice hearts. An important observation is
that the inhibition of circHipk3 expression also leads to the inhibition of the proliferation
of cardiomyocytes [103]. In addition, circHIPK3 acted as a sponge for miR-133a to pro-
mote connective tissue growth factor (CTGF) expression, activating endothelial cells and
improving cellular function. The overexpression of circHipk3 is associated with a decrease
in cardiac dysfunction, which translates into a reduction in the area of fibrosis after AMI.

CiRS-7 was reported as a classic miRNA sponge. It has been confirmed that ciRS-7 has
over 70 miR-7 binding sites [17,20]. Geng et al. reported increased ciRS-7 expression after
MI in the cardiac tissue. In addition, when the ciRS-7 level was increased by a lentiviral-
based overexpression in a rodent MI model, an increase in the extent of the MI area was
also observed. The authors have also stated that ciRS-7 affected the axis of PARP/SP1 by
sponging miR-7, and it thus regulated the apoptotic pathway.

Moreover, it is well known that plaque instability is very important in the pathogenetic
mechanism of CAD. CircRNAs play a vital role in sustaining atherosclerotic plaque sta-
bility [104]. The results of the research obtained by Bazan et al. show the upregulation
of circRNA-16 accompanying the downregulation of miR-221 in acutely ruptured carotid
plaques. E26 transformation-specific-1 (ETS1), a key transcription factor of endothelial
inflammation and tube formation, is the target of miR-221 [105]. MiR-221 bound to ETS1
and downregulated several EC inflammatory molecules and decreased the adherence of Ju-
rkat T cells to activated HUVECs. In another study, miR-221-3p could promote pulmonary
arterial SMC proliferation by targeting axis inhibition protein 2 (AXIN2) [106]. Therefore,
circRNA-16 may play an important regulatory role in the stability of atherosclerotic plaques
through acting as a sponge for miR-221.

In myocardial ischemia-reperfusion injury (MIRI) and the hypoxia/reoxygenation
treatment models, the expressions of circ-GTF2I were significantly upregulated in vivo
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and in vitro when compared with that in the sham group. The knockdown of circ-GTF2I
relieved neonatal rat cardiomyocyte damage and MI severity. Further study verified that
circ-GTF2I induced the abnormal expressions of IL-6, TNF-α, LDH, Bax, Bcl-2, and Cyt-c in
MIRI and the hypoxia/reoxygenation treatment models by regulating miR-590-5p and the
heart development transcription factor KBTBD7. Circ-GTF2I promoted MIRI deterioration
and induced the neonatal rat cardiomyocyte damage by targeting miR-590-5p and KBTBD7.

Transient receptor potential melastatin-3 (TRPM3, a calcium-permeable ion channel)
is detected in VSMCs and is functionally related to contractility and the secretion of inflam-
matory factors such as IL-6 [107]. Nine kinds of circRNAs, including hsa_circ_0089378,
could promote the expression of TRPM3 via interacting with hsa-miR-130a-3p in CAD
patients [108]. This suggested that the progression of CAD may be regulated through the
circRNA-miR-130a-3p/TRPM3 axis [109].

As stated above, different types of circRNAs have also been found to affect the function
of atherosclerotic cells and plaque stability and participate in the development of CAD.

5.2. Cardiomyopathy and Heart Failure

Cardiomyopathies were recognized as a heterogeneous group of disorders of the
myocardium that can change cardiac function (mechanical and/or electrical dysfunction)
and structure and lead to heart failure. Heart failure (HF) represents one of the major
challenges facing healthcare systems in industrialized societies, and an increasing burden
in developing countries.

The circRNA exhibiting the highest level in the human heart is encoded by the SLC8A1
(solute carrier family 8 member A1) gene. Upregulated circSLC8A1 sequestered miR-133a
to increase the expression of multiple miR-133a target genes, which indicated that the
circSLC8A1/miR-133a-mRNAs axis may serve as a pivotal mechanism in cardiac hypertro-
phy pathogenesis [110]. In line with these observations, when compared with the control
group, circSLC8A1 expression was elevated in the autopsy heart samples from sudden-
cardiac-death patients with acute ischemic heart disease [111]. CircFndc3b is another
significantly downregulated circRNA in the cardiac tissues of ischemic cardiomyopathy
patients [47]. It interacts with the FUS RNA binding protein and increases vascular en-
dothelial growth factor (VEGF)-A expression. This regulation enhances angiogenic activity
and reduces cardiac endothelial cell apoptosis. In the hypoxic myocardium, the presence of
circFndc3b in cardiac endothelial cells enhanced the function of the endothelial cells and
protected cardiomyocytes against death.

cTTN1 is an abundant circRNA in the human heart and is downregulated in DCM [112].
RBM20 (RNA-binding motif protein 20) plays a critical role in the splicing of many cardiac
genes, whose mutation will cause aggressive DCM [113,114]. RBM20 is dependent on cTTN
and targets multiple key cardiac genes, such as calcium/calmodulin-dependent kinase II
(CAMK2D) [115].

Another circRNA that regulates cardiac function is circ-Foxo3, which is usually
increased in aged hearts [116]. In vitro, the ectopic expression of circ-Foxo3 induced
senescence in fibroblasts; on the other hand, in vivo, the silencing of circ-Foxo3 reduced
doxorubicin-induced cardiomyopathy in mice. Functionally, circ-Foxo3 could bind to
several proteins that were involved in cellular stress response, including E2F transcription
factor 1, inhibitor of DNA binding 1, focal adhesion kinase, and hypoxia-inducible factor 1α,
resulting in the cytoplasmic sequestration of these proteins. Whether circ-Foxo3 contributes
to cardiac ageing remains to be further investigated.

Moreover, the circRNA described to be functional in the heart was termed heart-
related circRNA (HRCR) [117]. Wang et al. conducted a study in mice. In this study,
Wang et al. demonstrated that HRCR was normally expressed in mouse hearts and was
repressed in hypertrophic and failing hearts. Biologically, HRCR seemed to function as
an miRNA sponge, binding and thereby sequestering miR-223, an miRNA that caused
cardiac hypertrophy via the inhibition of the protein ARC (apoptosis inhibitor with CARD
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domain). The overexpression of HRCR in an isoproterenol-induced hypertrophy mouse
model inhibited hypertrophy, which the authors attributed to the inhibition of miR-223.

In HF tissues and H9C2 cells treated with oxygen–glucose deprivation (OGD), circ-
Snap47 was upregulated when compared to the control group [118]. Wang et al. revealed
that circSnap47 could relieve OGD-induced H9C2 cell damage and affect the progression
of HF by inactivating the miR-223-3p/MAPK axis.

5.3. Hypertension

Essential hypertension is a multifactorial disease with high morbidity. A recent study
found that, when compared to the healthy group, hsa-circ-0037909 was significantly upreg-
ulated in essential hypertension patients. This circRNA contributed to the pathogenesis of
hypertension by acting as a sponge to inhibit miR-637 activity [119].

Hsa-circ-0005870 exhibited significant downregulation in patients with high blood
pressure. Then, a network of hsa-circ-0005870-targeted miRNAs, including hsa-miR-5095,
hsa-miR-1273g-3p, hsa-miR-6807-3p, hsa-miR-619-5p, and hsa-miR-5096, and their corre-
sponding mRNAs was observed [55]. Hsa-circ-0005870 may represent a novel biomarker
and the hsa-circ-0005870-miRNA-mRNA network may provide a potential mechanism
for hypertension.

5.4. Atrial Fibrillation

Atrial fibrillation (AF) is an abnormal heart rhythm characterized by the rapid and
irregular beating of the atria. Zhang et al. [119] performed an association analysis of the
AF-related circRNAs and their parental genes and revealed that hsa_circ_0000075 and
hsa_circ_0082096 participated in the AF pathogenesis via the TGF-beta signaling pathway.

In addition, circRNA calmodulin binding transcription activator 1 (circCAMTA1) was
reported to be related to AF development [120]. CircCAMTA1 knockdown alleviated atrial
fibrosis through downregulating TGFBR1 expression intermediated by miR-214-3p in AF.

5.5. Other Cardiovascular Diseases

Aortic dissection is an emergency and serious aneurysm disease in the cardiovas-
cular system. Zheng et al. found an obviously upregulated circRNA in aortic tissues,
hsa_circ_000595, from patients with aortic dissection aneurysms [121]. Hsa_circ_000595
was reported to promote the apoptosis of vascular smooth muscle cells (VSMCs) through
upregulating miR-19a expression.

Vascular calcification (VC) is characterized by calcium phosphate crystals accumulat-
ing in the vessel wall. It is critical to reveal the novel mechanisms involved in VC as the
pathogenesis is diverse and so many factors and mechanisms are involved. It was reported
that circSamd4a had an anti-calcification property via the sponging of miR-125a-3p and
miR-483-5p [122].

5.6. Predictor and Biomarker

Nowadays, a variety of circulating molecules, such as troponins, creatine kinase-
MB and N-terminal pro brain natriuretic peptide (NT-proBNP), have been widely used
in clinical laboratory tests. However, these molecules are easily influenced by factors
such as age, medications and heart-associated diseases [123–125]. Circular RNAs have
great biomarker potential for the following reasons: (1) they are extraordinarily stable
due to the lack of exposed terminal ends [126]; (2) they have a large amount of cell-
specific circRNA [127]; and (3) they are abundant in whole blood, plasma and extracellular
vesicles [128]. Many studies have demonstrated the potential of circulating circRNAs
as promising predictors and biomarkers. MICRA (myocardial infarction-related circular
RNA) improves risk classification after MI [129]. Vausort et al. demonstrated reduced
MICRA expression in MI patients and found that a lower MICRA level was related to a
higher left ventricular dysfunction risk [130]. Further study found a close link between hsa-
circRNA11783-2 and CAD in CAD patients’ peripheral blood by microarray. What is more,
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hsa_circ_0000284, hsa_circ_0001946, and hsa_circ_0008507 were found to be independent
risk factors for CAD [131]. A recent study determined that hsa_circ_0124644 was closely
associated with CAD, which could be used as a potential diagnostic biomarker for CAD,
with a specificity of 0.626 and sensitivity of 0.861 [43]. Moreover, Wang et al. found that
hsa_circ_0001879 and hsa_circ_0004104 were significantly upregulated in CAD patients
compared with controls in another study [41]. As these circRNAs have been shown to
have high sensitivity and specificity to CAD, they may be potential biomarkers of CAD.
AF is a common complication in patients who have undergone coronary artery bypass
grafting (CABG). In the plasma of patients with new-onset AF after isolated off-pump
CABG, hsa_circ_025016 was found to be upregulated [132]. ROC analysis revealed a high
diagnostic value, and it was confirmed by a large validation cohort. Another study has
shown that, when compared with healthy controls, the expression of hsa_circ_0037911
in essential hypertension patients was upregulated. Hsa_circ_0037911 was proposed as
a key circRNA for essential hypertension development, by affecting serum creatinine
concentration, and a marker for the early detection of essential hypertension [133].

6. Conclusions and Future Direction

CVDs are the leading cause of death worldwide. In this review, we summarized the
circRNAs involved in cardiovascular-related cells and diseases. Presently, the differential
expression of circRNA in cardiovascular diseases has been observed, indicating that circR-
NAs might participate in the pathophysiological processes of diseases and could be used
as biomarkers and therapeutic targets for disease. However, circRNA research in CVDs is
still in its infancy and there is still a long way to go.

Firstly, the lack of a uniform and standard naming system and detection method for
circRNAs may confuse the researchers and be a hindrance for communications among
different laboratories. Secondly, though there has been technical progress in the past decade
for circRNAs, it is still difficult to verify the roles of circRNAs in vivo by overexpression or
downregulation, and most functional studies have focused on the sponge as it is relatively
easy to be validated. More researches are needed in the future to reveal the functions of
circRNAs. Moreover, the mechanisms for circRNAs in different diseases, especially CVDs,
need to be further clarified. Thirdly, circRNAs are more stable than linear RNAs and are
detectable in body fluids such as peripheral blood through exosome secreting, making
them potential biomarkers for cardiovascular diseases. However, these biomarkers need to
be further verified by more different laboratories, and several conditions, such as sensitivity,
specificity, feasibility, reliability, and repeatability, need to be optimized to meet the clinical
test criteria. Finally, progress in the circRNA field might also expand their therapeutic
potential. The high stability of circRNAs makes them potential long-lasting regulators of
specific cellular functions. In a recent study, the overexpression of an artificial circRNA
could inhibit HCV viral protein production through sponging the liver-specific miRNA-122,
which is required for the life cycle of the hepatitis C virus (HCV) [134]. As a rising research
star, circRNAs have potential in therapies such as circRNAs vaccines and genetically edited
treatments.

In brief, we have illustrated the landscape of circRNAs in cardiovascular diseases and
shed light on the importance and potential effectiveness of circRNAs in the diagnosis and
therapy of CVDs.
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