
Citation: De Siervi, S.; Turato, C.

Liver Organoids as an In Vitro Model

to Study Primary Liver Cancer. Int. J.

Mol. Sci. 2023, 24, 4529. https://

doi.org/10.3390/ijms24054529

Academic Editor: Nguan Soon Tan

Received: 1 February 2023

Revised: 16 February 2023

Accepted: 22 February 2023

Published: 25 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Liver Organoids as an In Vitro Model to Study Primary Liver Cancer
Silvia De Siervi and Cristian Turato *

Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia,
27100 Pavia, Italy
* Correspondence: cristian.turato@unipv.it

Abstract: Primary liver cancers (PLC), including hepatocellular carcinoma (HCC) and cholangiocarci-
noma (CCA), are among the leading causes of cancer-related mortality worldwide. Bi-dimensional
in vitro models are unable to recapitulate the key features of PLC; consequently, recent advancements
in three-dimensional in vitro systems, such as organoids, opened up new avenues for the develop-
ment of innovative models for studying tumour’s pathological mechanisms. Liver organoids show
self-assembly and self-renewal capabilities, retaining essential aspects of their respective in vivo
tissue and allowing modelling diseases and personalized treatment development. In this review, we
will discuss the current advances in the field of liver organoids focusing on existing development
protocols and possible applications in regenerative medicine and drug discovery.
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1. Introduction

Numerous physiological, metabolic, and regulating processes, including bile secre-
tion, glycogen and fat-soluble vitamin storage, drug detoxification, and the synthesis
of plasma proteins and coagulation factors, are carried out by the liver [1]. As a result,
pathogenic (genetic or acquired) alterations in liver tissue may have significant effects on
an individual’s health.

The basic hepatic structure consists of parenchymal cells, hepatocytes and cholan-
giocytes, and non-parenchymal cells, such as fibroblasts, stellate cells, Kupffer cells, and
endothelial cells. In particular, hepatocytes, which are organized in lobules, account for
more than half of total liver mass [2], while cholangiocytes are epithelial cells that line the
bile ducts and the peribiliary glands and play an important role in the transport of bile
constituents from the liver to the duodenum [3].

Primary liver cancers (PLC) are tumours that develop directly in the organ rather
than as a result of metastasis [4] and include hepatocellular carcinoma (HCC), intrahepatic
cholangiocarcinoma (iCCA), and combined hepatocellular-cholangiocarcinoma (CHC), a
rare malignant neoplasm that shows features of both hepatocarcinoma and cholangiocarci-
noma [5,6] (Figure 1).
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Figure 1. Primary liver cancers, including HCC (85–90%) and iCCA (10–15%) [6], are resulting from 
the malignant transformation of hepatocytes and cholangiocytes [7], epithelial cells that make the 
liver parenchyma. A third form is represented by CHC (0.4–14.2%) [8,9], which combine features of 
both HCC and CCA. 

HCC, caused by a malignant transformation of the hepatocytes, accounts for about 
85–90% of PLC cases and is one of the most common causes of cancer-related mortality 
worldwide [6,10]. The remaining 10–15% is represented by iCCA, which is less common 
than HCC and is caused by intrahepatic biliary tree epithelial alterations [6]. According to 
the site of origin, in addition to the aforementioned iCCA, CCA also includes a second 
form, the extrahepatic cholangiocarcinoma (eCCA), which develops outside liver paren-
chyma and is further classified as perilear cholangiocarcinoma (pCCA), accounting for 
50% of cases, and distal cholangiocarcinoma (dCCA), observed in 30–40% of total CCA 
[11]. 

Infections with hepatitis B (HBV) and C (HCV) viruses, alcohol abuse (alcoholic liver 
disease, ALD), metabolic syndrome, obesity, type 2 diabetes (non-alcoholic fatty liver dis-
ease, NAFLD), and genetic or immune changes are among the main risk factors for the 
development of both HCC and CCA [12]. Other established and proven causes that con-
tribute to the development of CCA are biliary tract diseases with resulting chronic infec-
tion, such as primary sclerosing cholangitis, cysts of the biliary duct, and parasitic infes-
tations caused by trematodes [13]. 

The majority of patients receives diagnoses at an advanced stage of the disease, 
where there are limited and frequently inefficient treatment options, which contributes to 
the high mortality rate attributable to PLC [14]. Despite efforts, currently, there are no 
available treatments, and a large portion of the drugs tested over the past ten years are 
ineffective, failing to pass phase III of clinical trials [15]. The multikinase inhibitor Sorafenib 
[16] and the recently authorised Lenvatinib [17] are used as first-line therapeutic choices 
for HCC targeted therapy, while the only traditional first-line treatment option for pa-
tients with CCA at advanced stages of the disease is the combination of gemcitabine and 
cisplatin; otherwise, the use of folinic acid, fluorouracil, and oxaliplatin (FOLFOX) is used 
as CCA second-line treatment [18]. However, because of the limited efficacy of these op-
tions, there is an urgent need for new therapeutic strategies for PLC treatment. 

One of the most significant issues in the preclinical development of regenerative ther-
apies is the lack of appropriate model-based systems that maintain the tumour’s 
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the malignant transformation of hepatocytes and cholangiocytes [7], epithelial cells that make the
liver parenchyma. A third form is represented by CHC (0.4–14.2%) [8,9], which combine features of
both HCC and CCA.

HCC, caused by a malignant transformation of the hepatocytes, accounts for about
85–90% of PLC cases and is one of the most common causes of cancer-related mortality
worldwide [6,10]. The remaining 10–15% is represented by iCCA, which is less common
than HCC and is caused by intrahepatic biliary tree epithelial alterations [6]. According to
the site of origin, in addition to the aforementioned iCCA, CCA also includes a second form,
the extrahepatic cholangiocarcinoma (eCCA), which develops outside liver parenchyma
and is further classified as perilear cholangiocarcinoma (pCCA), accounting for 50% of
cases, and distal cholangiocarcinoma (dCCA), observed in 30–40% of total CCA [11].

Infections with hepatitis B (HBV) and C (HCV) viruses, alcohol abuse (alcoholic liver
disease, ALD), metabolic syndrome, obesity, type 2 diabetes (non-alcoholic fatty liver
disease, NAFLD), and genetic or immune changes are among the main risk factors for
the development of both HCC and CCA [12]. Other established and proven causes that
contribute to the development of CCA are biliary tract diseases with resulting chronic
infection, such as primary sclerosing cholangitis, cysts of the biliary duct, and parasitic
infestations caused by trematodes [13].

The majority of patients receives diagnoses at an advanced stage of the disease, where
there are limited and frequently inefficient treatment options, which contributes to the high
mortality rate attributable to PLC [14]. Despite efforts, currently, there are no available
treatments, and a large portion of the drugs tested over the past ten years are ineffective,
failing to pass phase III of clinical trials [15]. The multikinase inhibitor Sorafenib [16] and
the recently authorised Lenvatinib [17] are used as first-line therapeutic choices for HCC
targeted therapy, while the only traditional first-line treatment option for patients with
CCA at advanced stages of the disease is the combination of gemcitabine and cisplatin;
otherwise, the use of folinic acid, fluorouracil, and oxaliplatin (FOLFOX) is used as CCA
second-line treatment [18]. However, because of the limited efficacy of these options, there
is an urgent need for new therapeutic strategies for PLC treatment.

One of the most significant issues in the preclinical development of regenerative
therapies is the lack of appropriate model-based systems that maintain the tumour’s
morphologic and functional characteristics, such as three-dimensional architecture, cellular
heterogeneity, and cell-cell interactions [19]. In this regard, reliable in vitro models are
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necessary to increase the knowledge of the molecular and cellular mechanisms underlying
PLC progression and provide high-throughput experimental techniques to define biological
processes and the efficacy of treatments [20]. As a result, in recent years, the limited clinical
value of cell line translation has encouraged researchers to investigate other innovative
models for PLC in vitro research. A few in vitro liver models that accurately mimic a
working in vivo liver have been developed [21]. In this review, we aim to discuss the
recent advances in the field of in vitro liver models with a major focus on liver organoids, a
three-dimensional representation of the liver that exhibits accurate micro-anatomy and self-
renewal capabilities [22]. In particular, we will analyse the potential innovative applications
of liver organoids as a promising new tool for the study of the complexity of liver diseases
and the discovery of novel therapies. We will also provide a detailed overview of current
protocols and discuss potential novel approaches to address some of their limitations.

2. Traditional In Vitro Model to Study Liver Cancer

Over the years, research has led to a greater understanding of crucial physiologic and
pathological aspects of liver diseases. Overall, rodent models properly identified less than
50% of the therapeutic response and toxicity of clinically utilised drugs [22]. Therefore,
in vitro human cell cultures are the most popular model for studying biological aspects of
tumours [14,20], as well as pharmacological mechanisms, efficiency, and toxicity [22].

In the past and still today in vitro studies are based on the use of bi-dimensional cell
lines (2D) derived from hepatoma and hepatocarcinoma, as well as 2D primary cultures,
providing a useful tool for studying and characterizing molecular events at the base of dis-
ease onset and progression, and for obtaining information on the efficacy of treatments [23].
In particular, HepG2, a cell line derived from a liver biopsy of a Caucasian adolescent, is one
of the most frequently employed preclinical experimental models for HCC research [14].
HepG2 exhibits typical hallmarks of a hepatic lesion, such as an increased α-fetoprotein
(AFP) expression, and expresses distinct hepatic cell functions, such as glycogen synthesis,
plasmatic protein and biliary acid synthesis, and cholesterol and triglycerides metaboliza-
tion. Other cell lines commonly used in HCC research include HepaRG, which originated
from a female with HCC, chronic HCV, and cirrhosis, and HuH-7, which are both viable
models for studying drug metabolism and carcinogenesis [14].

On the other hand, in the last 40 years, more than fifty cell lines for CCA knowledge
have been established [20]. The majority of preclinical research on CCA has been principally
conducted in human eCCA cell lines, EGI-1 and TFK-1, and iCCA cells, RBE and HuCC-T1,
derived from malignant ascites [20], all of which are representative of a single CCA subtype
and thus insufficient for a comprehensive study of its molecular biology [13].

Although 2D cultures are still useful tools for biomarker discovery and drug screen-
ing, they have some significant limitations. At first, these cell lines grow in adhesion on
a rigid surface with an elongated shape, creating a monolayer where interactions only
occur between adjacent cells, and typical functions, such as signalling, proliferation, and
migration, are altered [24]. Moreover, 2D cell cultures, which can only develop in two di-
mensions, have a higher proliferative capacity compared to in vivo conditions and are
exposed to uniform concentrations of cell medium nutrients [25]. In addition, compared to
patient-derived tissue, gene expression analysis of immortalized cell cultures revealed a
significantly limited sensitivity to drug treatment that can easily induce apoptosis. This
frequently results in incorrectly promising several molecules that, when tested in vivo, fail
to provide the desired results [24].

As previously mentioned, another crucial model for research on PLC is the primary
2D human cell cultures, directly derived from cancer patients’ tissue samples, which
were developed to overcome some limitations of the conventional cell lines [19]. Due to
their ability to retain representative hepatocytes characteristics, such as expression levels
of metabolizing enzymes and liver-specific markers, primary cultures represent a more
reliable tool for in vitro research on hepatic metabolism, drug toxicity, and viral infections
liver-related [26]. However, primary hepatocytes have a limited lifespan in culture, lasting
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only a few days, leading to a decrease in hepatic function in vitro [26] and necessitating
the expensive donation of fresh material [19]. Additionally, the process of derivation
of primary cultures is laborious since it is possible to detect an unwelcome increase in
healthy cell fractions that must be eradicated [20]. Despite several advantages, such as
easy reproducibility and cheaper costs, 2D cell techniques remain a too simplified model of
tumour tissue, which is, instead, excessively heterogeneous and characterized by a complex
and dynamic microenvironment [27].

3. Three-Dimensional Cell Culture (3D)

In recent years, research has focused on developing three-dimensional (3D) cell models
that may be derived from both patient biopsies and commercially available 2D cell lines
described above. As shown in Table 1, in comparison to conventional 2D cell cultures, 3D
systems provide a more accurate preservation of the in vivo conditions, processes, and
microenvironment in which the tumour arises and develops [24], allowing the evaluation
of several biological aspects, including proliferation, morphology, and cell-cell and cell-
microenvironment interactions [14].

Table 1. Main differences between in vitro 2D and 3D models.

Characteristics 2D Cell Culture 3D Cell Culture

Cell morphology Flat and elongated morphology Predisposition to maintaining natural cell shape

Type of interaction Adjacent cells interactions on
a monolayer Cell-cell and cell-extracellular matrix interactions

Exposure to culture
medium substances

Equal exposure to culture medium’s
nutrients and growth factors

Exposure to additional medium factors based
on gradient

Drug sensitivity High sensibility, superior to reality Greater resistance
More realistic representation of therapeutic potential

Expression levels Different expression levels compared to
in vivo levels

More accurately identification of in vivo gene
expression levels

Use and analysis High repeatability and easy data
interpretation

Difficulty in reproducing experiments and
data interpretation

Cost Low Expensive

3.1. Spheroids

One of the first discovered 3D systems is represented by spheroid, a three-dimensional
cellular aggregate with a spherical shape enriched in stem-like cell population but with
too low complexity to mimic tumour organization [27]. Spheroids can be produced from
primary cultures or cell lines that have been cultured as single or multi-cell suspensions [28].
To enable the development of floating spheres, the single-cell suspension is typically
maintained in the absence of a matrix, in ultra-low attachment plates [29], and in serum-
free conditions [28]. The use of spheroid is extensive and includes drug screening, immune
interaction modelling [30], and the possibility of setting up co-culture systems with both
healthy and cancerous cells, which aims to implement the understanding of angiogenesis
and tumour metastatic mechanisms.

Wang et al. developed efficient and reproducible agarose hydrogel microwells to
produce uniform-sized multi-cellular tumour spheroids, which offer better mimicry of
traditional solid tumours and allow the evaluation of some anti-cancer drug candidates’
effects, starting from cells of HCC-patients with abnormally high expression of fibroblast
growth factor receptor 4 (FGFR4) [31]. In another study, liver spheroids were established
from iCCA cell lines HuCC-T1, CCLP1, and CCA4 and then characterized, revealing an
increased expression of key genes involved in self-renewal, drug resistance and survival,
as well as stem-like surface markers [32].

3.2. Scaffold-Based 3D Systems

Another viable 3D cell culture method is represented by scaffold-based systems,
which embedded cells into a physical matrix, allowing them to aggregate, proliferate, and
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migrate [14]. Scaffolds are made up of a multitude of materials with varying porosity,
permeability, and mechanical stability, to replicate the microenvironment of the extracel-
lular matrix (ECM) of tissues and tumours [33]. Among different existent scaffolds, the
distinctive hydrogels can mimic the characteristics of the ECM, allowing soluble factors like
cytokines and growth factors to pass through the gel tissue-like support [34]. Hydrogels
are incredibly adaptable since their preparation could differ depending on the experiment
being conducted. There are both natural hydrogels that are typically made from natural
polymers such as fibrinogen, collagen, hyaluronic acid, gelatin, and alginates, and syn-
thetic hydrogel, made with polymeric materials with chemically defined bases, such as
polyethylene glycol (PEG), polylactate (PLA), or polyvinyl alcohol (PVA) [24]. A natural
hydrogel widely used in 3D cell culture is Matrigel. This is derived from secretions of
the Engelbreth-Holm-Swarm murine sarcoma and appears as a soluble material rich in
collagen IV, laminin, proteoglycans, soluble heparan, and entactin that can solidify at 37◦C
and mimic the properties of the base membrane matrix [35].

Recently, Turtoi et al. aimed to create a new 3D cell model of HCC, seeding HepG2
cells in a hyaluronic acid-based scaffold, in order to evaluate the cytotoxicity and apoptotic
response to the anti-tumour agent cisplatin [36]. They demonstrated that the hyaluronic
acid-based system allowed cells to proliferate into larger aggregates, showing liver-like
functions, expressing main hepatocyte-specific biomarkers, such as albumin, bile acids,
transaminases, and sensitizing the hepatocytes to the anti-tumour effect of cisplatin [36].
It also fabricated scaffolds for 3D culture models of CCA, using a CCA cell line (KKU-
213A), by combining silk fibroin with hyaluronic acid, heparin sulfate, and gelatin, which
could yield cancer stem cells and more accurately mimic tumour behaviour better than
2D systems, in terms of cell proliferation, microenvironment representation, and drug
sensitivity [37].

3.3. 3D-Bioprinting and Organs-on-a-Chip

Among other in vitro 3D models, there are 3D bioprinting, and organs-on-a-chip,
which are both technologies derived from the combination of cell biology with engineering
and biomaterials technology [14].

Cell models created with 3D bioprinting are innovative platforms based on the use
of bioinks containing living cells, decellularized ECM constituents, nutrients, growth
factors, and biomaterials with the purpose of engineering 3D constructs with tissue-like
architecture [38,39]. As a result, bioprinting technology may create systems that successfully
replicate the ECM, improving cellular proliferation rates and responses to chemotherapeutic
drugs compared to conventional 2D models [40].

In a recent research, authors developed a 3D model with HepG2 cells, using 3D-
bioprinting technology, in order to demonstrate the different effects and pharmacodynamics
of some anti-tumour drugs between 2D and 3D HepG2-derived systems [41]. Moreover,
Xie et al. proved that 3D bioprinted models are capable of performing drug screening
through the establishment of patient-derived HCC hepatorganoids [42]. Current advances
in 3D bioprinting technology have motivated bioengineers and scientists to also create
methods for “printing” in vitro tumour-mimicking models in order to study the molecular
mechanisms behind tumour growth. An example is represented by the bioprinter platform
made by Li et al., which includes in a single system both RBE (an iCCA cell line) and
stromal cells, including human umbilical vein endothelial cells (HUVEC), fibroblasts (CCC-
HPF-1) and human monocyte leukaemia THP-1, demonstrating how stromal cells affected
the proliferation, invasion, stemness, and drug resistance of CCA cells. As a result, this
3D bioprinted CCA model could be employed to more accurately mimic the tumour
microenvironment, potentially serve as a robust, clinically accurate platform for preclinical
research and drug testing, and offer a viable substitute for animal models [43].

Moreover, organ-on-a-chip models simulate real synthetic microenvironments, inte-
grating living cells that can mimic the in vitro functions of an organ. New studies have
successfully replicated the connection of several organ-on-a-chips to create body-on-a-
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chip models that represent multi-organ interactions and study the metastasis process in
cancer in a more thorough manner [27]. In addition, in order to investigate the dynamic
evolution of the tumour through proliferation, angiogenesis, and intravasation processes,
vascularized tumour-on-a-chip models were created [44]. In contrast to traditional 2D
models and animal testing, liver-on-a-chip technologies enable more effective management
of the cellular microenvironment, increasing hepatocytes activity, simulating cellular re-
sponses to medicines in vivo, and more closely simulating liver physiology [45]. In one
study, induced pluripotent stem cells were used to reconstruct the liver acinus, including
its vascularized form, in conjunction with the pancreas and adipose tissue; additionally,
fluorescent protein biosensors were added to the device to assess insulin resistance and the
production of reactive oxygen species [46]. Thanks to this system, authors can investigate
liver-specific biomarkers, identifying the progression from NAFLD to steatohepatitis within
an experimental timeline [47].

3.4. Organoids

Organoids are an in vitro 3D model that recapitulates some structures and functions
of the corresponding in vivo organ, not visible in 2D cultures, derived directly from the
dissociation of specialized epithelial tissues, from embryonic stem cells (ESCs) or induced
pluripotent stem cells (iPSCs), all capable of self-renewal and self-organization [48].

It has been discovered that organoids are a powerful system for studying development
and regenerative processes as well as for understanding some diseases [49]. These models
also provide new tools for translational research, making them a promise for drug develop-
ment and personalized treatments [50]. Organoids offer the following several benefits: they
combine the tractability of in vitro cell cultures with the architecture and differentiation of
in vivo models, making them comparable to standard 2D cell lines in terms of long-term
culturing, cryopreservation, and genetic manipulation [51].

Unfortunately, some significant restrictions on the use of organoids have been de-
scribed, most of which are related to laborious protocols; for example, the development of
tumour-specific organoids has only been successful in patients with highly differentiated
tumours with high proliferative rates, ruling out the possibility of using patients who are
still in the early stages of their disease [23]. Furthermore, because cancer is characterized
by a heterogeneous TME, in which both cellular (epithelial cells, fibroblasts, stem cells,
endothelial, and immune cells) and non-cellular (ECM, cytokines, chemokines, and growth
factors) components are essential for the development and progression of the tumour,
the lack of all of these components in a single 3D system represents a significant limita-
tion [27,52]. However, despite the lack of reliable experimental protocols and the high
cost of implementation, these 3D systems provide innovative tools for understanding the
mechanisms underlying tumour progression.

Furthermore, thanks to their ability to show high levels of genomic stability and mimic
the heterogeneity observed in real tumours, organoids can be propagated for long periods
with few genetic variations. Another aspect is the employment of organoids may decrease
the requirement for using animal models and, thus, any associated animal ethics issues [53].

The first experiments that enabled the development of organoids were based on the
isolation, from murine intestinal epithelium, of single leucine-rich repeat-containing G-
protein-coupled receptors 5 (LGR5) positive adult stem cell, capable of self-renewing. These
cells LGR5+ were placed in suspension, embedded in Matrigel with a medium containing
a variety of growth factors, in order to mimic the combination of signals that persist in
the niche, giving rise to three-dimensional structures with a total cytoarchitecture that is
similar to that observed in vivo [54].

Following these unexpected extraordinary results, in recent years, organoids derived
from various types of tumours have been described, including the brain [55], prostate [56],
pancreas [57], colorectal [58], breast [59], bladder [60], and liver cancer [23,61,62], starting
to embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells
(ASCs) [27].
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4. Liver Organoids

Huch and colleagues have reported the discovery of the first system of intestinal
organoids obtained from epithelial biliary LGR5+ cells that were isolated from hepatic
injury mice models and placed in a cultured medium enriched with R-Spondin 1 (R-Spo1)
and Wnt3a, both WNT pathway activators [61].

The organoids thus obtained, termed cholangiocyte-derived organoids (chol-orgs), are
an accurate in vitro model that captures the main characteristics of the biliary epithelium
in vivo in terms of morphology, functions, and markers expression. However, they also
exhibit higher levels of foetal markers and lower levels of mature markers, indicating a
partial differentiation of the cholangiocytes [19]. In contrast to chol-orgs, recently it is
developed hepatocytes-derived organoids (hep-orgs), organoids derived from primary
hepatocytes, which exhibit phenotypic properties of hepatocytes more accurately in terms
of molecular expressions of particular markers, as well as functional characteristics [63].
Using an appropriate differentiation medium that includes some new factors, such as
fibroblast growth factor-19 (FGF-19), DAPT (a Notch inhibitor), and dexamethasone, chol-
orgs at early passages may be differentiated into cells with a hepatocyte-like phenotype
that are able to secrete albumin and carry out a variety of hepatic functions [19,53].

As a demonstration of the hepatoblasts’ bipotential plasticity, from a single subpopu-
lation of LGR5+ cells, both chol-orgs and hep-orgs can be produced [25,64].

Moreover, the culture environment, both in terms of signalling and cell type, has a
crucial role in the development and maintenance of organoids [65]. The organoids resulting
from the hepatic tumour may be established by adult tissues surgically exported [62] or,
more recently, by needle biopsies of patients affected by HCC, CCA, and CHC [23]. ESCs
and iPSCs are alternative sources for the in vitro generation of organoid models [66].

During organoid formation, the starting cell population begins to assemble in a specific
signalling environment, where it is necessary to provide signals related to liver development
in order to trigger self-organization [25,64] (Figure 2).

Human liver organoids from adult tissues need the identification of mitogenic signals
through a variety of factors, including epithelial growth factor (EGF), fibroblast growth
factor (FGF), and hepatocytes growth factor (HGF) [61,67,68]. Forskolin (FSK), an activator
of cyclic adenosine monophosphate (cAMP) and the inhibitor of TGF-β signalling, A8301,
are also added to the culture medium to allow long-term expansion [61,67]. A few days
after seeding, ROCKi, an inhibitor of the Rho-associated kinase protein (ROCK), is added
to the medium to prevent the apoptotic process [61,69] (Figure 2).

In addition, as described by Peng et al. approach, liver-resident macrophages release
large amounts of inflammatory cytokines, including TNF-α, following liver damage to help
in regeneration; based on these findings, hepatocytes growth was certainly aided by the
addition of 100 ng/mL TNF-α to the hep-orgs culture medium [70].

According to the protocols from Huch [61], Broutier [71], and Nuciforo [23] laborato-
ries, all factors, with their respective concentrations, added to the culture medium for liver
organoids development are illustrated in Table 2.

For human organoids generation from iPSCs, changes in the culture medium were
applied, with the WNT signalling inhibition [53], and the addition of different nutrients,
such as activin A, bone morphogenic protein 4 (BMP4), and phosphoinositide 3 kinase
inhibitor (PI3Ki) that help the differentiation of iPSCs through stages, resembling human
liver during its embryonic development [66]. To differentiate the hepatic progenitors into
hepatocytes, HGF and Oncostatin M were also added in the medium [72].

To allow three-dimensional suspension growth, it is necessary to provide the organoids
with structural support using hydrogels such as Matrigel or Cultrex Basement Membrane
Extract (BME) [19] (Figure 2).

At the level of Disse space, hepatocytes are located near the ECM, linked to collagen
type I, fibronectin, and laminin, affecting cell proliferation, differentiation, and migration.
In particular, biochemical signals, such as the composition of the matrix, and mechanical
properties, such as rigidity, act on the differentiation of the liver progenitor cells toward the
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hepatocytes or cholangiocytes lines [73]. For this reason, it is crucial to replicate both the
biochemistry and the biomechanics of the native ECM of the in vitro liver tissue.

As mentioned above, Matrigel has an advantageous protective complexity that enables
it to mimic the structure of basal membrane; on the other hand, its murine origin has an
elaborate process that results in elevated batch-to-batch variations in terms of composition
and rigidity that interfere in vivo applications [73]. Recently, it has been discussed new
approaches that could replace the use of Matrigel with alternative biological hydrogels
that are appropriate from a chemical and physical standpoint in the regulation of mechan-
ical properties [74]. Based on these findings, it is possible to intervene by altering the
component ratio of miscellaneous components or by reinforcing sticky gels with more
stable mechanical and spatial structures [73]. This is especially significant when used in the
organoids culture since they are significantly controlled through mechanotransduction [75].
Synthetic hydrogels’ use is also becoming more successful, but since synthetic polymers lack
biological activity, ECM’s biological functions must be restored by including biomolecules.
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Figure 2. (A). Representation of the generation of liver organoids from ASCs. Under sterile conditions,
biopsies undergo mechanical and enzymatic digestion to isolate liver cells for organoid development.
Cells are then seeded in a suitable matrix that mimics the ECM, and after polymerization, the culture
medium containing a cocktail of growth factors is added. For organoids’ characterization several
techniques, including immunofluorescence and sequencing, could be used. (B). Representative
bright-field images of tumour organoids from a iCCA patient. Organoids were imaged every three
days, growing like a cystic structure. Scale bar: 200 µm. (C). Representative immunofluorescence
analysis for CCA marker cytokeratin 19 (green) on tumour organoids. Nuclei were counterstained
with Hoechst33342 (blue). Scale bar: 50 µm.
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Table 2. Components of liver organoids expansion medium. R-Spo1 and Wnt3a were removed from
medium of healthy organoids after 3 days of culture [23,61].

Components Concentrations Functions

B-27 1:50
Serum-free supplement, without vitamin A, it

increases differentiated cell vitality during long
term expansion culture condition.

N-2 1:100 Serum-free supplement, it promotes neuronal
primary cell cultures’ growth.

Nicotinammide 10 mM
Anti-inflammatory agent, it controls cell

metabolism, mitochondria functionality and
energy production.

N-acetil-L-cisteine 1.25 mM

Mucolytic agent, with cytoprotective,
anti-inflammatory and antioxidant effects, through

NF-Kb and HIF-1α regulation and ROS
levels modulation.

Forskolin 10 µM

Diterpenes, agonist of cAMP pathway, it has an
anti-inflammatory effect and promotes mRNA
expression in primary hepatocytes; it supports

long-term expansion of organoids.
Y-27632 (ROCKi) 10 µM Rho-kinase inhibitor, it blocks apoptosis process.

A83-01 5 µM

TGF-β signalling inhibitor, it blocks the epithelial
to mesenchimal transition TGF-β induced; it

supports long-term expansion of
organoids culture.

[Leu15]-Gastrin I 10 nM
Essential for digestive system, gastrin stimulates
the production of gastric acid from paretial cells
and prolong the survival time of liver organoids.

FGF-10 100 ng/mL Growth factors with mitogen effect, they promote
cell proliferation, differentiation, and survival.EGF 50 ng/mL

HGF 25 ng/mL
Noggin 100 ng/mL Bone morphogenic protein (BMP) inhibitor.

R-Spo1 10%
Agonist of WNT/β-catenin and WNT/PCP
pathways and ligand of LGR5+ receptor, it

improves efficiency of organoids expansion.

Wnt3a 30%
Agonist of WNT pathway, it promotes stem cell

LGR5+ proliferation, essential for
organoids expansion.

Decellularized ECM acquired from both human and animal donors has also been
used to develop some organoids accurately recapitulating the composition, structure,
and vascularization of native ECM. The particular ECM for the liver may be obtained
from a portion of surgical resection of a patient’s damaged liver or unsuitable livers for
transplantation [33]. Recently, Willemse et al. described the culture and the expansion
of human cholangiocyte organoids in hydrogel derived from decellularized liver tissue,
showing the preservation of the cholangiocyte-like phenotype and the expression of selected
cholangiocyte markers [76].

Different available materials to mimic the ECM in the generation of liver organoids
are listed in Table 3.

According to Nuciforo and Heim, the success rate of the experiment varies significantly
between the generation of chol-orgs and hep-orgs: one-fourth of all cholangiocytes can
start a transformation into an organoid with extremely rapid proliferation and long in vitro
expansion, while just one hepatocyte out of every 100 produces hep-orgs, which proliferates
more slowly and divides every 50–75 days when derived from the adult liver [19].

Once obtained, it is possible to cryopreserve liver organoids for long-time periods that
can reach as long as 1–2 years, allowing the creation of biobanks of heterogenous tumour
organoids, in which each sample is representative and exhibits a variety of histopathologic
and molecular PLC characteristics [23].



Int. J. Mol. Sci. 2023, 24, 4529 10 of 18

Table 3. Different types of materials are used to mimic ECM during organoid generation. PEG:
polyethylene glycol; PLA: polylactate; PVA: polyvinyl alcohol; PLGA: poly lactic glycolic acid;
PCL: polycaprolactone.

Scaffold Materials Advantages Disadvantages

Natural

Matrigel, Cultrex Basement
Membrane Extract (BME)

Commercially available; widely
used in the majority of
developed protocols

Indeterminate culture system with no
control over mechanical properties and
a lot-to-lot variability; may not include

all chemical signals required for
differentiation; immunogenicity

Decellularized tissue
Developed organoids can be large

and still retain mechanical qualities
and natural chemical signals

Difficult preparation, limited by
donors’ resources

Biomacromolecules (collagen,
alginate, hyaluronic acid, silk) Low cost and wide availability

Lack of retained structural information,
absence of the required chemical
signals, and lot-to-lot variability

Synthetic PEG, PLA; PVA PLGA, PCL

Improved control over mechanical
and chemical features; easily

reproducible experiments; variable
degradation rate

It requires the functionalization using
peptides that are attached to the cell
membrane; potential cytotoxic issues

5. Liver organoids Characterization

Following generation, PLC-derived organoids could be characterized both at the
molecular level using whole genome sequencing or RNA sequencing in order to detect
gene expression or compare the presence and maintenance of some mutations, and pro-
teomic techniques, such as immunohistochemistry and immunofluorescence that enable
the assessment of the potential presence/absence and the quantification of specific markers
levels (Figure 2).

The transmembrane glycoprotein epithelial cell adhesion molecule (EpCAM) is one of
the markers that has received the most attention for characterizing CCA-derived organoids.
In the liver, EpCAM is a biliary marker, often not detected in mature hepatocytes [77], which
has a physiological role in mediating intercellular adhesion in epithelial tissues and occurs
at an early stage of the neoplastic transformation of CCA cells [78]. Another potential
biomarker for CCA is Sex Determining Region Y-box 2 (SOX2), a transcriptional regulator
in maintaining regeneration for embryonic stem cells. Numerous malignancies depend
on SOX2 for carcinogenesis and tumour growth, and in CCA, SOX2 over-expression was
linked to poor overall survival, increased cell proliferation and invasion, and reduced cell
apoptosis; however, its exact role in CCA must be clarified with more studies [78].

Other two PLC biomarkers that have been studied include cytokeratins 7 and 19
(CK7 and CK19), which are crucial for maintaining epithelial barriers, regulating innate
immunity, and cell adhesion, proliferation, and differentiation [79]. It has been observed
that these two molecules are useful histochemical markers for the differential diagnosis of
HCC and iCCA [80], as well as potential post-operative prognostic factors for CCA [81].
Therefore, a greater sense of security regarding the true nature of cells cultured is provided
by the presence of these molecules in tumour organoids.

On the other hand, the most significant HCC markers are albumin (ALB), hepatocyte
nuclear factor 4 (HNF4), and α- fetoprotein (AFP) [62]. This latter one represents a marker
of liver function, such as synthesis and secretion, typical of differentiated hepatocytes [62],
and its up-regulation is present in more than 40% of tumour samples [82]. Moreover,
the panel of immunohistochemical markers composed of heat shock proteins 70 (HSP70),
glypican-3 (GPC3), and glutamine synthetase (GS) was recommended for the differentiation
of early HCC. In particular, the HSP70s family was revealed to have a critical role in the
development and progression of various cancers, including HCC [83]. HSP70s are involved
in protein synthesis and transport, in order to maintain protein homeostasis, and it was
observed that an over-expression of several HSP70s in HCC is associated with the overall
survival, tumour grade and cancer stage [84]. In addition, GPC3 is considered a potential
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early diagnostic marker, associated with poor prognosis, of HCC, due to its involvement
in cell proliferation through WNT/β-catenin pathway activation [82]. Recently studies
evidenced how GPC3 could be a potential drug target that has significantly reduced tumour
growth and prolonged survival in Phase I clinical trials [85]. Finally, GS levels also gradually
increase with the development of HCC and were observed in its involvement in promoting
epithelial-to-mesenchimal transition (EMT) [86].

During the last decades, the presence of the nuclear antigen Ki-67, a marker of tumour
cell proliferation capability, has also received considerable attention [87]. This protein
undergoes a rapid degradation during the G1 phase of the cell cycle, causing a reduction
in intracellular levels in cells that are quiescent or have limited proliferation [88] and an
increment in tumour cells that have a rapid division [89], underlying a correlation between
Ki-67, the severity of the tumour, and the likelihood of a favourable prognosis [90].

6. Liver Organoids Potential Applications

As a result of the ability to use liver tissue samples for the assessment of organoid
cultures, research is moving toward the use of these 3D systems as disease models, in
addition to being an extremely helpful tool for precision and personalized medicine [74]
(Figure 3).
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Recent studies have shown that tumour-derived organoids are capable of retaining
the morphological characteristics and biomarkers of the original tumour tissue while also
preserving the patient-specific gene expression profile, even when cultivated for extended
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periods [23,62]. Using gene editing techniques, such as CRISPR/Cas9, it is thus possible to
engineer organoids, introducing or correcting certain mutations that may be appropriately
studied and assessed for their function and pathogenicity [91,92].

Additionally, thanks to their peculiar metabolic capacity, liver organoids are promising
tools for the development of new treatments for clinical use. Indeed, due to their ability
to be expanded in vitro for long periods and to be cryopreserved, biobanks have been
developed to be used as platforms for high-throughput drug screening of anti-cancer
treatments [19,93]. Biobanks of healthy organoids, on the other hand, can represent a useful
predictive investigation tool for the in vivo toxicity of drugs [25].

As previously described, one of the main issues with organoids is related to the
fact that these systems are characterized by a single cellular type of representative of
the neoplastic epithelium and do not fully represent the typical multi-cellular tumour
environment. One of the solutions is represented by the setting up co-culture systems of
liver tumour organoids with a variety of cell types, including patient-derived immune cells
or cancer-associated fibroblasts (CAFs), thus offering a promising tool for modelling the
dynamic interactions between expanding cancer cells and the immune system [30,66].

Recent improvements in co-culture techniques make it possible to create ever-more
complex and cutting-edge systems, such as vascularised liver organoids, and to research
host-pathogen interactions in vitro, such as the host-HBV/HCV interactions, a key fac-
tor in the development of PLCs [94,95]. An example is represented by Natarajan et al.
who developed a co-culture system to study adaptive immune responses to HCV, using
patient-derived CD8+ T-cells specific for HCV non-structural protein 3 to generate liver
organoids [96].

During recent years a technique known as “interface liquid-air” (ALI) has also been
developed, allowing the combination of organoids with both epithelial and stromal cells
using standard Boyden chambers. The functioning of this system is based on cells that
are embedded in ECM gel and placed on the upper surface of cell inserts with a below
porous membrane, directly exposed to oxygen, while nutrients and growth factors are
supplied from the external medium by diffusion through the porous membrane on the
lower surface [27].

Liver engineering organoids may be further used in the future to study the early stages
of liver tumours, offering an innovative perspective on preventive therapy. The advantages
of maintaining the molecular and structural abnormalities brought about by oncogenes
make organoids an ideal in vitro model for understanding oncogenic processes during
tumour development [1].

In recent years, additional advancements in the organoid model have resulted in the
creation of the organoid-on-a-chip, a micro-fabricated, integrated system that combines
the architectural and genomic recapitulation of organoids with the highly customised
flexibility of organ-on-a-chip models [97]. Numerous issues with traditional organoid
models are resolved by the organoid-on-a-chip, such as a major control over the organoids’
microenvironment. Moreover, the organoid-on-a-chip model may also contain vascu-
lar and immunological components, significantly enhancing its therapeutic relevance in
drug screening and clinical trials. A vascularized cancer model is required for research-
ing tumorigenesis and metastasis because abnormal angiogenesis is a key component of
carcinogenesis [53].

Another interesting area is the possibility of using liver organoids as instruments to
simulate significant chronic liver diseases, such as NAFLD and liver fibrosis [98]. Growing
evidence indicates that NAFLD is becoming a dominant cause of HCC [99] and CCA [100],
but the mechanisms of NAFLD progression are largely unknown. NAFLD is characterized
by intracellular deposition of lipids in hepatocytes, often associated with a wide spectrum
of metabolic abnormalities, such as dyslipidemia, hypertension, and insulin resistance.
The disease then ranges to non-alcoholic steatohepatitis (NASH), a more severe condition
that includes inflammation and additional hepatocyte damage and can progress to cirrho-
sis [101]. For example, by exposing liver organoids to free fatty acids (FFAs) in perfused
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3D cultures over an extended length of time, it is enabled to define the pathological char-
acteristics of NAFLD. In this way, liver organoids could show lipid droplet production
and triglyceride buildup after FFAs induction, demonstrating increased expressions of
genes linked to lipid metabolism and highlighting the aberrant lipid metabolic pathway in
NAFLD [102].

In conclusion, a significant characteristic of tumour organoids is the ability to predict
their potential for in vivo metastasis, in addition to maintaining the genetic model of the
primary tissue [74]. The animal models receiving transplants of liver organoids have shown
encouraging outcomes [63,69,70]. However, the protocols must be further improved, to
increase the rate of engraftment and to promove circulation in patients for the delivery of
oxygen and nutrients [103]. The final stage in making tissue engineering a reality for the
treatment of liver disease is to find solutions to these problems [74].

7. Conclusions and Future Directions

Due to the lack of reliable in vitro models and available treatments for PLC, there is
an urgent need for an improved preclinical tumour system that can mimic the genetic back-
ground and architecture of the primary tissue. Moreover, significant variations between
human and mouse physiology, metabolism, size, and longevity are among the shortcomings
of in vivo animal models [104].

The 3D organoid systems represent an enormous promise for solving these limitations,
besides providing several practical applications that potentially change biomedical research,
drug development, and disease modelling. Traditional 3D cultures have faced issues in
order to accomplish the right control of organoid production and to realise the complex
microenvironment of a specific organ due to the quick development and broad needs
of organoid technology [1]. Until now, the use of organoid models has permitted the
development of novel possible treatments as well as a better knowledge of the underlying
mechanisms of disease onset and progression.

For efficient diagnosis and therapy decisions, patient-derived organoids represent
an innovative option, thanks to their strong advantage of retaining personalized genetic
information [105]. Moreover, the creation of liver organoids by bioengineering has the
potential to produce more physiologically realistic and biomedical useful specimens. The
potential to reproduce in vitro liver epithelial cells has been improved by the ability of liver
cells to produce liver organoids.

Despite the fact that liver organoids are among the most advanced human cell-based
3D liver models, and organoid-based drug testing may accurately predict clinical outcomes
in personalized medicine and drug toxicity and efficacy evaluation [105], there are still
several issues that need to be addressed, such as increased costs, absence of highly re-
producible results, lack of other TME cell types and 3D culture platforms to model their
interactions, and use of animal-derived 3D-matrices [106]. In part, these limitations can
be attributed to the current use of non-standardised and well-defined protocols, which
introduces technical variability into in vitro organoid cultures and reduces their accurate
representation of cancer’s intrinsic biological heterogeneity [106].

Recent advancements in microfabrication techniques offer the ability to standardise
cancer organoid derivation, analysing how the size of the starting cell cluster affects the
rate of organoid development, for example. These improvements in cancer modelling will
be well complemented by the increased availability of methods that monitor and measure
organoid proliferation at the cellular level [106]. In addition, creating multi-cellular liver
organoids in which epithelial cells interact with endothelial, mesenchymal, and immuno-
logical cells is necessary for the disease modelling of PLC, where the microenvironment
plays a crucial role [25]. Microphysiological systems represent a promising approach for
building organoid/tumour-on-a-chip models with more tissue complexity, including the
incorporation of mature vasculature [107]. Several microfluidic devices have been devel-
oped to simulate how cancer interacts with vascular networks, allowing the evaluation of
cancer extravasation, drug delivery, and tumour growth [107]. Finally, the implementation
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of engineered matrices animal-free, using hyaluronic acid or PEG, for example [108], will
represent a future opportunity for high batch-to-batch reproducibility, standardisation of
organoid development and culture protocols, and for understanding the roles of the ECM
in regulating patient-specific tumours.

Because of the potential applications of these 3D models, in the future, organoids
will open the road to the regeneration of injured or diseased organs, a proposal that was
previously thought to be unlikely to be accomplished in medicine. The ability of liver
organoids to regenerate diseased livers may be very promising, and for this reason, the
goal of current research is the creation of organoid liver buds that can be delivered to
patients who are in urgent need of a liver transplant via the portal vein [53]. In this way, a
structured patient-based treatment system may require everyone to have organoid tissue
maintained in large-scale biobanks in the future, improving the core strategies and tenets
of personalized medicine. Furthermore, working closely with bioengineers to add blood
vessels to liver organoids may be considered crucial, and doing so is a feasible solution to
the problem of the limited nutrition availability that eventually affects the development of
organoids [25].

In conclusion, the repeatability of organoid systems, the addition of cells from different
functional lineages, and the use of gene editing techniques for the acquisition of complex
organoids, therefore, opened up new research fields.
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