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Abstract: The development of targeted therapies for non-BRAF p.Val600-mutant melanomas remains
a challenge. Triple wildtype (TWT) melanomas that lack mutations in BRAF, NRAS, or NF1 form
10% of human melanomas and are heterogeneous in their genomic drivers. MAP2K1 mutations are
enriched in BRAF-mutant melanoma and function as an innate or adaptive resistance mechanism to
BRAF inhibition. Here we report the case of a patient with TWT melanoma with a bona fide MAP2K1
mutation without any BRAF mutations. We performed a structural analysis to validate that the MEK
inhibitor trametinib could block this mutation. Although the patient initially responded to trametinib,
he eventually progressed. The presence of a CDKN2A deletion prompted us to combine a CDK4/6
inhibitor, palbociclib, with trametinib but without clinical benefit. Genomic analysis at progression
showed multiple novel copy number alterations. Our case illustrates the challenges of combining
MEK1 and CDK4/6 inhibitors in case of resistance to MEK inhibitor monotherapy.

Keywords: cancer; MAP2K1; triple-negative melanoma; modelling; mutation

1. Introduction

Virtually all melanomas harbour MAPK pathway activation [1]. BRAF p.Val600
mutations are present in roughly half of melanoma patients, and therapies targeting BRAF
mutants are one of the greatest successes in molecular oncology [2,3]. Additional MAPK
pathway activating mutations can occur in NRAS and NF1 genes [4]. While it has been
suggested that NF1-mutant melanomas are sensitive to MEK inhibition [5], MAPK pathway
targeting in NRAS mutant tumours has not shown consistent benefit [6]. Melanomas
lacking BRAF, NRAS and NF1 mutations form a genomically heterogeneous group of
tumours, also called triple wild-type melanomas (TWT) [4]. MAPK pathway activation can
also be detected in a subset of TWT melanomas. Currently, it remains unclear if and how
TWT melanoma patients might respond to targeted therapies and whether combination
treatments could overcome the frequent co-alterations, which limit treatment efficacy.
Herein we report the case of a TWT melanoma patient with a dual MAP2K1 mutation,
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highlighting the challenges of MEK inhibition monotherapy in the presence of multiple
resistance mechanisms.

2. Results
2.1. Case Description

We present the case of a 55-year-old Caucasian male, initially in good general health. The
primary tumour was detected in 2003 as a nodular melanoma, Breslow 1.52 mm, Clark IV
in the right scapular region, and resected with a 2 cm safety margin. Sentinel lymph node
(SLN) histological examination revealed multiple scattered micrometastases, and the patient
benefited from a completion lymph node dissection (CLND), showing no further metastatic
lesions. The final staging of the primary melanoma was pT2a pN1a cM0 (Stage IIIA as per
AJCC 7th edition). Eleven years later, the patient presented with a solitary lung lesion that
was surgically removed by segmentectomy. The patient’s disease further progressed in 2016,
requiring systemic therapy. The patient also developed chronic renal failure secondary to
focal segmental glomerulosclerosis (FSGS) and received a kidney transplant, independent
of the melanoma diagnosis. The kidney transplantation limited immune therapy options
to CTLA4 inhibition (ipilimumab) and excluded PD-1 inhibitors, which could lead to acute
organ rejection. The patient started ipilimumab in June 2016 and received four 3 mg/kg doses
with a best objective response of stable disease (SD) according to RECIST1.1 (Figure 1A). Ipili-
mumab administration induced an autoimmune nephritis, reversible by immune-suppressive
corticosteroid therapies. The patient completely recovered renal functions and agreed to a
re-challenge with ipilimumab combined with denosumab for bone metastases. The patient’s
disease failed to respond to the re-challenge and progressed again in February 2018, prompting
next-generation sequencing (NGS) analysis for alternative targeted therapies.

2.2. Genomic Analysis

After an initial hotspot NGS analysis had shown the absence of mutations in BRAF,
NRAS and KIT genes, we performed an extended NGS using an in-house developed panel
covering the full-coding sequences of 394 cancer-associated genes. We achieved mean
sequencing coverages of 1128X and 390X for tumour and normal genomic DNA extracted
from peripheral blood mononuclear cells (PBMCs), respectively. The estimated tumour
content was 70%. We identified two MAP2K1 mutations, located in cis (on the same al-
lele), both at 68% variant allele frequencies: p.Cys121Ser known as activating [7–13], and
p.Pro124Arg. A truncating mutation in exon 13 of TAOK1 gene was classified as pathogenic,
and five additional mutations in other genes were classified as variants of uncertain sig-
nificance (VUS), according to the American College of Medical Genetics and Genomics
(ACMG) guidelines (Figure 1B). The tumour mutation burden (TMB) was calculated at
5.4 non-synonymous mutations/megabase, which is relatively low for melanomas. Ad-
ditionally, copy number analysis found focal, likely homozygous deletions of CDKN2A
and CDKN2B (Figure 1C), in conjunction with other large-scale, non-focal copy number
variations (CNVs). We estimated a low large-scale state transition (LST) score, a marker of
homologous recombination deficiency (HRD).

In melanoma, MAP2K1 mutations are usually associated with other MAPK pathway
mutations, including in BRAF and NRAS. Indeed, an analysis of The Cancer Genome Atlas
(TCGA) database of the melanoma cohort (SKCM) identified only one patient
(1/287 patients) with MAP2K1 mutant melanoma without other MAPK pathway muta-
tions (Figure 1D), underscoring the rarity of the patient’s genetic constellation. The analysis of
all TCGA datasets, excluding melanoma, showed that patients with MAP2K1 mutations in
tumours were largely devoid of mutations in other MAPK pathway genes (Figure 1E).

2.3. Molecular Modelling Analysis of MAP2K1 Mutations

Although mutation MAP2K1 p.Cys121Ser was previously identified as pathogenic, we
were concerned that its association with p.Pro124Arg, whose functional impact is less well
understood, might influence or prevent response to MEK1 inhibitors, such as trametinib.
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In addition, the vast majority of reads supported the haplotype with the two mutations
showing an allele frequency close to the tumour content, suggesting a clonal origin of such
combination. Therefore, we performed structural analysis of the MAP2K1 protein to better
understand the potential impact of the two mutations combined.

Int. J. Mol. Sci. 2023, 24, 4520 3 of 13 
 

 

 
Figure 1. Treatment and analysis of the patient data. (A) Schematic figure showing the treatments 
received by the patient from the diagnosis of metastatic melanoma; (B) List of mutations detected 
by NGS of pre-treatment biopsy; (C) Selection of copy number variations detected by next-genera-
tion sequencing of pre-treatment biopsy; (D) Oncoprint analysis of MAP2K1-mutant melanoma pa-
tients of the TCGA melanoma (SKCM) cohort for other MAPK genes and CDKN2A/B; (E) Oncoprint 
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Figure 1. Treatment and analysis of the patient data. (A) Schematic figure showing the treatments
received by the patient from the diagnosis of metastatic melanoma; (B) List of mutations detected by
NGS of pre-treatment biopsy; (C) Selection of copy number variations detected by next-generation
sequencing of pre-treatment biopsy; (D) Oncoprint analysis of MAP2K1-mutant melanoma patients of
the TCGA melanoma (SKCM) cohort for other MAPK genes and CDKN2A/B; (E) Oncoprint analysis
of MAP2K1 mutant cancer patients of the TCGA cohorts except for melanoma for other MAPK genes
and CDKN2A/B. * is a symbol used for nonsense and frameshift mutations.

Protein kinases, such as MAP2K1, catalyse the transfer of a phosphate group from ATP
to specific protein substrates. The MAP2K1 kinase is involved in many cellular processes
such as cell proliferation, development and differentiation. It is activated by RAF1, which
is activated upstream with RAS, by extracellular signals, such as a MAP2K1/MEK1 dual-
specific protein kinase. Kinase common architecture contains N- and C-lobes connected by
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a flexible hinge, seat of the enzymatic reaction including ATP/ADP binding site. The N-lobe
gathers Helix-A, five-stranded β-sheets and C-helix (Figure 2A). Helix-A is specific to the
MAP2K1 kinase. It is situated in the early section of the N-lobe and allows conformation-
dependent autoregulation of the protein activity [14]. In the inactive conformation, it
interacts with the N-lobe, unlike in the active one. The C-lobe comprises helices around
a hydrophobic core, and contains the A-loop, including the highly conserved motif Asp-
Phe-Gly (DFG), important for enzyme activity and ligand binding (Figure 2A) [15,16].
The MAP2K1 p.Cys121Ser mutation is known in the literature as activating, including in
melanoma [7–13]. Its analysis is provided in the Supplementary Figure S1.
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Figure 2. Molecular modelling analysis: (A) Representation of the MAP2K1 kinase structure in the
presence of the ADP and the Mg2+ in ball-&-stick. The P-loop is coloured in green, the C-helix in
magenta, the A-loop in blue, the Helix-A in pink and the DFG motif in dark red. Cys121 and Pro124
are in orange ball-&-stick (pdb: 3eqi) [17]; (B) MAP2K1 Pro124 environment. (a) Kinase structure;
(b) Zoom on MAP2K1 Pro124, represented in orange ball-&-stick, and its neighbour residues in
a sphere of 5Å, represented in sticks and coloured in yellow. MAP2K1 kinase structure is in the
presence of the ADP and the Mg2+ in ball-&-stick. The P-loop is coloured in green, the C-helix in
magenta, the A-loop in blue, the helix-A in pink and the DFG motif in dark red. (pdb: 3eqi) [17];
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(C) Folding free energy distribution calculated with FoldX, in kcal/mol, for MAP2K1 p.Cys121Ser,
p.Pro124Leu, p.Pro124Ser and p.Pro124Arg. The center line of the boxes represents the median and
the whiskers extent from the ends of the box to the most distant point. The value outside of the
limits is drawn individually. MAP2K1 p.Cys121Ser is mentioned for information and is discussed in
the Supplementary Materials; (D) TAK-733 and trametinib MEK inhibitors. The common molecular
moieties between these two molecules is framed; (E) Structural analysis. (a,c): Structure of Tak-733
bound to MAP2K1 in presence of Mg2+ and NADPH (pdb: 3pp1) [18]; (b,d): Model of trametinib
bound to MAP2K1 in the presence of Mg2+ and NADPH. Residues interacting with Tak-733 or
trametinib are in sticks, ligands in ball-&-stick and the protein in ribbons. The key regions P-loop,
Activation loop, DFG motif and C-helix are coloured as follows: green, blue, dark red and magenta.
Cys121 and Pro124 are represented in orange ball-&-stick; (F) Trametinib binding. (a) Trametinib
binding in MAP2K1:KRS1complex in the presence of Mg2+ and ANP (pdb: 7jux) [19]; (b) Trametinib
binding in MAP2K1:KRS2 complex in the presence of Mg2+ and ANP (pdb: 7jur) [19]; (c) Trametinib
binding in a MAP2K1 docked model in the presence of Mg2+ and ATP; (d) superimposition of the
three binding modes. Ligands are in ball-&-stick, protein in ribbons.

Several MAP2K1 p.Pro124 mutations were previously identified. The MAP2K1
p.Pro124Ser/Leu/Gln mutations alone are predicted to be activating in several cancers, in-
cluding melanoma. MAP2K1 p.Pro124Ser/Leu shows resistance to PLX4720, a pan-RAF in-
hibitor. MAP2K1 p.Pro124Ser/Gln presents moderate resistance to Dabrafenib [9,12,20–22],
a BRAF V600 inhibitor. Pro124 is in the N-lobe bend, following C-helix. Proline is often
involved in bends because of its cyclic structure, constraining the protein backbone. In
inactive conformation, Pro124 interacts via hydrophobic interactions with Helix-A residues:
Leu42, Gln46, Leu50 (Figure 2B). Pro124 also participates in hydrophobic interactions with
Tyr125. These interactions induce a tight hydrophobic cluster, allowing Helix-A protein
activity regulation.

Arginine is large and positively charged, whereas proline is small and uncharged.
Due to its size and Helix-A proximity, MAP2K1 p.Pro124Arg is predicted to generate
a substantial steric clash, leading to the destabilisation of the inactive conformation in
favour of the active one. With Helix-A repelled, the mutant will be oriented toward
solvent but will not impact the kinase binding site. To address time constraints in
the context of the patient’s emergency, FoldX [23] was used to estimate the impact of
the MAP2K1 p.Pro124Arg mutation on 3D structures, including Helix-A (Figure 2C).
The FoldX folding free-energy distribution ranged from 1.7 to 5.9 kcal/mol, with a
median at 3.5 kcal/mol, which indicates that the mutant is expected to have a significant
adverse impact on protein folding. The same calculations were performed for MAP2K1
p.Pro124Ser/Leu mutations. Estimated folding free-energies increased with the polarity
of the mutant, as p.Pro124Leu values were the lowest, followed by p.Pro124Ser and
p.Pro124Arg. This observation is consistent with our previous structural analysis (i.e.,
Pro124 contributes to the stabilization of the region via hydrophobic interactions with
its environment). The impact of p.Pro124Arg was determined experimentally after our
molecular modelling analysis and found to enhance the protein activity, in agreement
with our prediction [24].

2.4. Investigation of a Potential MAP2K1 Inhibitor and Mutations

Trametinib is an established clinically approved MEK inhibitor. At the time of our
analysis, no experimental structure of trametinib with MAP2K1 existed. Therefore, we
used structural bioinformatic methods to predict its binding mode to the MAP2K1 double
mutant. Since similar molecules bind similarly to similar targets [25], the experimental
structure of TAK-733 (pdb: 3pp1 [18], see Supplementary Materials; Figure 2D), which has
the highest FP2 similarity to trametinib among all crystallised MAP2K1 ligands, was used
to predict the trametinib binding mode.

The 2-fluoro-4-iodoaniline group of the trametinib inhibitor was predicted to bind
similarly to the one present in TAK-733 in the 3D structure 3pp1 [18]. Both moieties
made similar hydrophobic and polar interactions (Figure 2E). Trametinib-substituted pyri-
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dopyrimidine and 2-fluoro-4iodoaniline groups were expected to make: (i) hydrophobic
interactions with Leu115, Leu118 from the C-helix; Ile99, Ile126, Val127, Gly128, Phe129,
Ile141, Met143 from the N-lobe; Phe209, Gly210 from the DFG motif; Ser212, Leu215, Ile216,
Met219 from the A-loop; (ii) hydrogen bonds with Lys97, Ser212 backbones. The main
differences between TAK-733 and trametinib came from pyridopyrimidine substitutions.
Trametinib was substituted by cyclopropane and acetanilide moieties that were predicted
to reinforce hydrophobic contacts with the A-loop by interacting with Met219. They may
also have stabilised the P-loop through potential interactions with Gly79. The acetanilide
group reached the C-ter part of the A-loop, allowing potential hydrogen bonding with
Arg234 and hydrophobic interactions with Met230. However, the acetamide function may
have had a local steric impact, especially with Arg189 and Asp190. Finally, p.Cys121Ser
and p.Pro124Arg mutations were not oriented toward the predicted trametinib binding site
(Figure 2E) and should not have significantly decreased its binding affinity. Based on this
analysis, trametinib was suggested as a potential treatment for the patient.

Recently, M. Khan et al. published experimental structures of MAP2K1:KRS1 and
MAP2K1:KRS2 [19], both with trametinib binding to the allosteric inhibitor site, as predicted
in our model (Figure 2F). The RMSDs between their MAP2K1:KRS1 and MAP2K1:KRS2
trametinib conformations and our model were only 0.76 Å and 0.71 Å, respectively, showing
that our model was accurate (See Supplementary Materials for more information).

2.5. Clinical Course

Considering the MAP2K1 activation as the unique driver oncogene of the patient’s
tumour, we initiated therapy with trametinib with a full dose of 2 mg/day. However,
the dose had to be reduced to 1 mg/day due to grade three toxicities (fatigue and rash).
After two months of treatment, we detected a good partial response (PR) (Figure 3).
After an additional three months, we detected an increase in tumour volumes from the
maximum response, though still below the initial tumour volumes. Therefore, we in-
creased trametinib doses back to 2 mg/day. Despite the increased trametinib dosage with
better tolerance than at first exposure, the patient’s disease continued to progress. In the
absence of viable therapeutic options, we hypothesised that the deletion of the CDKN2A
locus could be a mechanism of resistance to MEK inhibition. We therefore proposed
the off-label use of the CDK4/6 inhibitor palbociclib in combination with trametinib.
After obtaining approval from the patient’s insurance, he was started on palbociclib
125 mg/day for 21 days every 28 days with continuous trametinib at 1 mg/day. However,
the palbociclib dosage had to be adjusted to 100 mg and eventually 75 mg/day due to
recurrent grade three fatigue. After two months of combined palbociclib and trametinib
therapy, the patient’s disease continued to progress, and trametinib and palbociclib
were discontinued (Figure 3). The patient then received additional chemotherapy, and
his disease was again re-challenged with ipilimumab. He ultimately succumbed to
melanoma in 2019.

2.6. Genomic Changes in Response to MEK Inhibition

We performed a new NGS analysis on a tumour sample obtained from a pleural
biopsy after trametinib monotherapy failed. The assay showed the persistence of the
original MAP2K1 mutations and the absence of any new MAP2K1 gatekeeper mutation
that would have prevented inhibition by trametinib (Figure 4A). We detected the loss of a
class 3 EFGR mutation in a minor clone and the appearance of mutations in TERT promoter
and PPP6C. The TMB was similar to the baseline. In contrast with the relative lack of
changes in the mutation profiles, we detected many novel CNVs (Figure 4B). Notably, the
tumour developed high-level amplification of MDM2, FGFR1 and MITF while maintaining
the homozygous loss of CDKN2A and CDKN2B. We found no evidence of homologous
recombination deficiency.
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JUN NM_002228.3 c.286C>T (p.Gln96Ter) 41% 743X Uncertain  significance (PM2)
IL7R NM_002185.3 c.835C>T (p.His279Tyr) 38% 604X Uncertain  significance (PM2, BP1)
FGFR4 NM_213647.2 c.385G>A (p.Asp129Asn) 41% 1259X Uncertain  significance (PM2, BP1)
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(p.Asp193Glu) 5% 616X Uncertain  significance (PM2, PP3, BP1)

Figure 4. (A) List of mutations detected by next-generation sequencing in a tumour biopsy after
failure of MEK inhibition alone; (B) Selection of copy number variations detected by next-generation
sequencing in a tumour biopsy after failure of MEK inhibition alone.
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3. Discussion

We found it unusual that the patient harboured two cis MAP2K1 mutations, p.Cys121Ser
and p.Pro124Arg, shared by most cancer cells. Our structural analysis validated that
even the dual mutant was amenable to MAP2K1 inhibition. This study shows the power
of structural analysis to complement genomic analyses in guiding treatment selection
for precision medicine. MAP2K1 has been described as an active therapeutic target in
Langerhans cell histiocytosis (LCH) [8,26]. Trametinib monotherapy has shown exceptional
levels of tumour responses, frequently achieving complete responses in LCH [27]. In
melanoma, MAP2K1 mutations are typically detected along with other MAPK-activating
mutations, such as those in BRAF and NRAS, and serve as resistance mechanisms to BRAF
and dual BRAF/MEK inhibitor therapies [28]. In contrast, our analysis showed that in
non-melanoma solid tumours, MAP2K1 mutations typically exist without additional BRAF,
RAS, or NF1 which could also be sensitive to MEK inhibitors. Our patient’s tumour showed
a clinically significant partial tumour response. However, after five months the treatment
failed, which is suggestive of adaptive resistance mechanisms. CDK4/6 inhibitors, such
as palbociclib or abemaciclib, have now been approved for the treatment of metastatic,
hormone-receptor-positive breast cancer [29], irrespective of genomic alterations. To date,
no genomic alteration or biomarker has been shown to predict sensitivity to CDK4/6
inhibitors [30]. CCND1 amplification has been suggested as a potential predictor of CDK4/6
inhibitor benefit, although recent work by the NCI-MACTH consortium has shown an
absence of correlation [31]. Previous preclinical work also suggested that CDK4/6 inhibitors
could overcome resistance to the MAPK pathway, specifically to MEK inhibition [32]. In the
absence of other therapeutic options, we started the trametinib/palbociclib combination.

However, the dual therapy failed only after 2 months. Genetic analysis of the biopsy
after trametinib failure excluded the presence of novel MAP2K1 gatekeeper mutations. One
could hypothesise that, unlike receptor tyrosine kinases (EGFR, ALK), intracellular MAPK
pathway inhibitors of BRAF or NRAS do not induce secondary gatekeeper mutations.
In contrast to mutations, the numerous copy number alterations could be the source
of resistance. The MDM2 amplification could explain the combination treatment’s lack
of efficacy. In absence of TP53 mutation, MDM2 amplification could inhibit wildtype
TP53 functions, including cell cycle control. Hence, TP53 dysregulation could prevent
the control of the cell cycle by CDK4/6 inhibition. Combined treatment with blockers of
TP53/MDM2 interaction, such as nutlins, could have been proposed to the patient [33].
However, we could not find any clinical trial that would have accepted our patient with
kidney transplantation. Alternatively, FGFR1 amplification could also lead to resistance
to MAPK pathway inhibition [34]. FGFR1 amplification would lead to the PI3K pathway
activation [35], limiting MAPK pathway inhibition [36]. We could not obtain a pan-FGFR
inhibitor to co-target with trametinib and palbociclib.

Finally, we could only consecutively administer trametinib and the trametinib/palbociclib
combination. Ideally, the dual genomic alterations of MAP2K1 and CDKN2A could have
been co-targeted from the beginning, which might have resulted in a deeper and lasting
tumour response. However, it is currently impossible to obtain inhibitor combination for
rare, off-label indications, despite the absence of therapeutic alternatives.

This case presents strong evidence supporting MAP2K1 mutation identification for
TWT melanoma and solid tumours. Our analyses underscore the need to better define
rational combination therapies for genomic co-alterations and to consider combination
therapies before monotherapies. Analysis of treatment failures could highlight the rapid
tumour adaptation, opening potential avenues for combination therapies. This study
underscores the utility of genomic analysis in TWT melanoma as well as the usefulness of
molecular modelling analysis to assess potential impacts of uncharacterised mutations on
protein activity and drug resistance in the context of personalised medicine.
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4. Materials and Methods

Amino acid sequences were retrieved from the UniProt database [37] and sequence
alignments were performed using MUSCLE v3.8.31 (EMBL-EBI, Cambridge, UK) [38]. The
visualization software UCSF Chimera v1.13.1 (University of California San Francisco, San
Franscico, CA, USA) [39] was used for analysis of the structures and sequence alignments.
The Foldx5 software (CRG-EMBL-VIB consortium) [23], was used for the estimation of the
impact of a mutation on protein structures via the PositionScan command line. The Protein
Data Bank [40] ID of the structures used for this study are: 3zlw [41], 3zls [41], 5bx0 [42],
5eym [43], 5hze (to be published), 3zly [42], 3zlx [42], 3zm4 [42], 3eqc [17], 3eqg [17],
3eqf [17], 3sls [44], 3w8q (to be published), 3eqd [17], 3eqi [17], 3eqh [17], 6u2g [45], 5yt3
(to be published), 3pp1 [18], 7jux [19], 7jur [19]. Only structures in which both residues
Cys121 and Pro124 and the Helix-A are resolved were used for the analysis. Openbabel
v2.4.1 (University of Pittsburgh, Pittsburgh, PA, USA) was used for the molecular similarity
calculations [46] using FP2 molecular fingerprints. The Tanimoto coefficient was used
to quantify the molecular similarity, and ranges from 0 for totally different molecules
to 1 for identical compounds. The predicted binding mode of trametinib on MAP2K1
was calculated using the Attracting Cavities [47] docking tool applied to the protein 3D
structure 3pp1, after removing the TAK-733 ligand, using default parameters. To relax
potential constraints and obtain the final docked structure, the calculated binding mode
was minimised via 1000 steps of SD algorithm followed by 1000 steps of ABNR algorithm
using the CHARMM [48] v40 program (University of Harvard, Cambridge, MA, USA),
the CHARMM36 [49] force field to describe the protein and SwissParam parameters for
the ligand [50]. The solvation effect was taken into account using the GB-MV2 implicit
solvation model [51].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24054520/s1.
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