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Abstract: Cadmium (Cd) is a non-essential heavy metal with high toxicity to plants. Plants have
acquired specialized mechanisms to sense, transport, and detoxify Cd. Recent studies have identified
many transporters involved in Cd uptake, transport, and detoxification. However, the complex
transcriptional regulatory networks involved in Cd response remain to be elucidated. Here, we
provide an overview of current knowledge regarding transcriptional regulatory networks and post-
translational regulation of the transcription factors involved in Cd response. An increasing number
of reports indicate that epigenetic regulation and long non-coding and small RNAs are important
in Cd-induced transcriptional responses. Several kinases play important roles in Cd signaling that
activate transcriptional cascades. We also discuss the perspectives to reduce grain Cd content and
improve crop tolerance to Cd stress, which provides a theoretical reference for food safety and the
future research of plant varieties with low Cd accumulation.

Keywords: cadmium stress; transporter; transcription factors; regulatory network; plants

1. Introduction

Cadmium (Cd) is one of the naturally occurring heavy metals, which is extremely toxic
to plants and humans [1]. In recent years, the increase in Cd content in soils has caused
serious and widespread pollution to farmland. The accumulation of Cd in plants has
toxic effects on the normal growth of plants. For example, Cd affects enzyme activity and
the absorption and consumption of essential elements, generates reactive oxygen species
(ROS), and impairs photosynthesis, respiration, and membrane systems. All these effects
ultimately result in plant tissue necrosis, chlorosis, and eventual death [2,3]. Cd is also a
threat for human health. The bone itai-itai disease in Japan in the 1950s was caused by
long-term consumption of rice (Oryza sativa L.) produced in Cd-contaminated soils [4]. Cd
enters the human body through the food chain and mainly accumulates in the kidneys,
causing a series of diseases, such as anaemia, cancer, heart failure, steoporosis, emphysema,
and renal function diseases [5–8]. Therefore, it is necessary to limit Cd in the food chain
from soils to reduce health risks to humans.

Recent studies have made important progress in elucidating the physiological and
molecular mechanisms of Cd transport and tolerance in plants. According to the relation
between the metal content in the soil and metal in the plants, plants are divided into three
groups: excluder, indicator, and hyperaccumulator plants [9]. So far, many transporters
related to Cd uptake, transport, sequestration, and detoxification in plants have been identi-
fied [10–13] (Table 1, Figure 1). Metal transporters and ROS-scavenging enzymes are major
functional proteins that are induced by Cd stress. Heavy metal accumulation and tolerance
in plants are associated with a highly complex regulatory network system involving a large
number of genes. Recent studies in rice, Arabidopsis thaliana, and other plants have revealed
multi-layered transcriptional networks comprising many transcriptional factors (TFs), long
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non-coding RNAs (lncRNAs), and microRNAs (miRNAs) in responses to Cd stress [14–16]
(Figure 2). An increasing number of reports indicate that epigenetic regulation, such as
DNA methylation, is important in Cd-induced transcriptional responses. Many kinases play
important roles in Cd signaling that activate transcriptional cascades [17,18]. In this review,
we focus on recent findings regarding the transcriptional network and post-translational
regulation of TFs that control the expression levels of metal-responsive genes. The review
on the regulatory mechanisms of Cd uptake, transport and accumulation in plants is of
great significance for reducing Cd content in food crops to ensure food safety.
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Figure 1. Transporters involved in the absorption and transport of Cd from soils to grains in rice. The
pathways of Cd absorption by roots include Cd absorption and efflux by transporters, Cd fixation by
the cell wall, and Cd chelation by vacuoles. Cd is transported to shoots by loading into the xylem.
Then, Cd will be redistributed through stems and nodes and further translocated to grains through
the phloem.
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Table 1. Genes involved in Cd uptake, transport, sequestration, and detoxification in plants.

Family Name Gene Name
Main

Expression
Organ

Subcellular
Localization Function Metal Concentration Exposure

Time Reference

ZIP
family

OsIRT1/
OsIRT2 Root Plasma

membrane
Cd absorption

by root Cd/Fe 300 µM CdCl2/
0.1 mM Fe-EDTA 10 d/7 d [19,20]

OsZIP1 Root
Endoplasmic

reticulum, plasma
membrane

Cd and
Zn transport Cd/Zn 5 µM CdCl2/

12 µM ZnCl2
6 d/21 d [21,22]

OsZIP3 Stem Plasma
membrane Cd accumulation Cd/Zn 10 µM CdSO4/

12 µM ZnCl2
7 d/21 d [21,23]

OsZIP6 Root,
stem

Plasma
membrane Cd transport Cd/Zn 0.05 µM CdCl2/

1, 20 µM ZnCl2
21 d [24]

OsZIP7 Root, node Plasma
membrane

Cd and Zn
accumulation Cd/Zn

0.1, 0.4, 40 µM
CdSO4/

0.1, 0.4, 40 µM ZnSO4

7–28 d/
7–28 d [25]

OsZIP9 Root Plasma
membrane

Cd and Zn
uptake Cd/Zn 5 µM CdSO4/

0.04, 0.4 µM ZnCl2
24 h/21 d [26,27]

NRAMP
family

AtNRAMP1 Root, leaf
Plasma

membrane,
tonoplast

Cd uptake Cd/Fe 2 µM CdSO4/0.2 mM
FeCl3

14 d/3 d [28,29]

AtNRAMP3 Root, leaf Tonoplast Cd uptake Cd/Fe 1, 10 µM CdCl2/0.2
mM FeCl3

3 d [29,30]

AtNRAMP4 Root, leaf Tonoplast Cd uptake Cd/Fe 500 nM CdCl2/0.2
mM FeCl3

14 d/3 d [29,31]

HvNRAMP5 Root Plasma
membrane Cd transport Cd/Fe/Mn

0.1, 0.5, 1 µM
CdSO4/0.1, 2, 10 µM

FeSO4/0.05, 0.5, 5
µM MnCl2

14 d [32]

OsNRAMP1 Root, leaf Plasma
membrane

Cd absorption
by root

Cd/
Mn

0.1, 1 µM CdCl2/0.5,
5, 20, 80 µM Mn 3 d/7 d [33]

OsNRAMP2 Shoot Tonoplast Cd transport and
accumulation Cd 5 µM CdCl2 1–5 d [34]

OsNRAMP5 Root Plasma
membrane

Cd transport into
vascular bundles Cd/Fe/Mn

100 nM CdSO4/
5, 20 µM Fe-EDTA/

2,4,6 µM Mn

21 d/
14 d/
18 d

[11,33,35]

HIR
family OsHIR1 —

Plasma
membrane and

nucleus
Cd uptake Cd/As 50 µM CdSO4/

150 µM As (V) 12 d [36]

CaCA
family

OsCDT1/
OsCCX2 Node Plasma

membrane
Cd loading

in xylem Cd/Ca 0.1, 100 µM
CdCl2/50 mM CaCl2

32 h, 7 d/
3 d [37,38]

P-type ATPase
family

AtHMA2 Root,
Stem, leaf

Plasma
membrane

Cd root-to-shoot
translocation Cd 0.06, 0.15, 0.3 Cd 14 d [39]

AtHMA3 Root, shoot Tonoplast Cd sequestrating
in vacuoles Cd 30 µM CdCl2 11 d [40]

AtHMA4 Root,
Stem, leaf

Plasma
membrane

Cd and Zn
root-to-shoot
translocation

Cd/Zn/Co
40 µM CdCl2/3, 200
µM ZnSO4/40 µM

CoCl2

24 h [41]

OsHMA2 Root, node Plasma
membrane

Cd loading
in xylem Cd 0.2, 1 µM CdCl2 10 d [42]

OsHMA3 Root Tonoplast
Transportation of

Cd from cytoplasm
to vacuoles

Cd 0.1, 1 µM CdSO4 8 d [43,44]

OsHMA9 Leaf Plasma
membrane Cd efflux Cd 500 µM CdCl2 12 d [45]

LCT
transporter OsLCT1 Node Plasma

membrane
Cd transporter

in phloem Cd 0.2 µM CdCl2 6 h, 60 d [46,47]

MFS
superfamily OsCd1 Root, grain Plasma

membrane

Cd uptake in roots
and accumulation

in grains
Cd 1 µM CdCl2 20 d [48]

ABC
transporter

OsABCG36 Root Plasma
membrane Cd efflux Cd 0.1, 1, 5 µM CdSO4 14 d [49]

AtPDR8 Root, leaf Plasma
membrane Cd efflux Cd/Pb

5, 10, 20, 30 µM
CdCl2/0.5 mM

Pb(NO3)2

14–21 d [50]

— CAL1 Root Cell
membrane

Cd accumulation
in leaves Cd 10 µM CdCl2 7 d [51]

PCR
family SaPCR2 Root Plasma

membrane Cd efflux Cd 10, 15, 30 µM CdCl2 7 d [52]

OPT
family OPT3 Root, grain Plasma

membrane
Cd transporter

in phloem Cd 50 µM CdCl2 14 d [53]
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Figure 2. Overview of the transcriptional regulatory network in the response to Cd stress. As in-
dicated in blue, H2O2 acts as a signaling molecule activating MAPK cascades. Key factors including 
TFs and metal transporters involved in Cd transport and efflux are indicated in green. Key factors 
involved in Cd chelation into vacuoles are indicated in orange. Key factors involved in ROS scav-
enge are indicated in purple. Arrows show simultaneous effects in the pathway, while the nail 
shapes represent repression. Dashed lines denote links to be confirmed. 
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Figure 2. Overview of the transcriptional regulatory network in the response to Cd stress. As
indicated in blue, H2O2 acts as a signaling molecule activating MAPK cascades. Key factors including
TFs and metal transporters involved in Cd transport and efflux are indicated in green. Key factors
involved in Cd chelation into vacuoles are indicated in orange. Key factors involved in ROS scavenge
are indicated in purple. Arrows show simultaneous effects in the pathway, while the nail shapes
represent repression. Dashed lines denote links to be confirmed.

2. Cd Transport and Accumulation in Plants

Cd transport and accumulation in plants have been most extensively investigated in
rice and involve four steps: (1) uptake by roots, (2) xylem-loading-mediated translocation
to shoots, (3) redistribution through stems and nodes, and (4) further translocation to grains
through the phloem [4]. As shown in Table 1, many metal transporters related to Cd uptake,
transport, and detoxification have been cloned in plants, including iron (Fe)-regulated
transporter1 (OsIRT1) [20,54], OsIRT2 [54,55], natural resistance-associated macrophage
protein 1 (OsNRAMP1) [33], AtNRAMP1, AtNRAMP3, AtNRAMP4 [28–31], zinc (Zn)-/iron-
regulated transporter-like protein 1 (OsZIP1) [21,22], OsZIP3 [21,23], Cd accumulation in
leaf 1 (CAL1) [51], OsNRAMP5 [35,56], HvNRAMP5 [32], cation/calcium (Ca) exchanger
(OsCCX2) [38], heavy metal ATPase 2 (OsHMA2) [42,57], OsHMA3 [43,58], low-affinity
cation transporter 1 (OsLCT1) [46], and oligopeptide transporter 3 (OPT3) [53]; excluders–
ATP-binding cassette, subfamily C/G (OsABCG36) [49], pleiotropic drug resistance 8
(AtPDR8) [50], and plant cadmium resistance protein 2 (SaPCR2) [52]. The discovery of
these genes provides an important theoretical and practical basis for molecular breeding of
crops with low Cd accumulation.

2.1. Cd Entry into the Roots
2.1.1. Cd Absorption by Transporters

At present, there are no transporters in plant roots that specifically absorb Cd. Cd can
be absorbed mainly through synergistic action by other essential mineral elements, such as
Zn, Fe, and manganese (Mn) ions. Several metal transporters, like OsIRT1, OsNRAMP1,
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and OsNRAMP5 have been reported to be responsible for Cd entry into rice roots [33,54].
OsIRT1 and OsIRT2 are located on the plasma membrane. After 10 days of 100 µM
CdSO4 treatment, the expression of OsIRT1 and OsIRT2 was highly increased in rice
roots [59]. OsIRT1 and OsIRT2 both display Cd, Fe, and Zn influx activities in yeast, and
overexpression of OsIRT1 increases these metals in different plant tissues [20]. These results
indicate that both OsIRT1 and OsIRT2 play important roles in rice by uptaking Cd from
soil to roots. OsCd1, a major facilitator superfamily (MFS) protein, has been demonstrated
to be involved in Cd uptake in root cells. OsCd1 resides in the plasma membrane of
roots and contributes to Cd accumulation in rice grains [48]. In addition, OsNRAMP5 is
located in the plasma membrane and is mainly responsible for the transport of Cd, Fe,
and Mn in the rice root system. The osnramp5 knockout mutants significantly reduced
Cd concentration in roots and buds and increased Cd tolerance [11,60,61]. OsNRAMP1 is
highly homologous to OsNRAMP5 and is also involved in Cd uptake and transport by
root cells. Knockout of OsNRAMP1 resulted in a significant decrease in the uptake of Cd
and Mn by rice roots [33]. These results have important implications for the application of
OsNRAMP1 and OsNRAMP5 mutations in mitigating Cd toxicity and reducing the risk of
Cd contamination in rice grains. Under 10 µM CdCl2 stress for three days, compared with
the yeast transformed with an empty vector, the growth of yeast expressing AtNRAMP1,
AtNRAMP3, and AtNRAMP4 was seriously impaired. In the meantime, after 3 µM CdCl2
treatment for 24 h, these three kinds of yeasts contained more Cd in yeast cells than the
yeast transformed with empty vector [29]. Under 2 µM CdSO4 stress for 14 days, the
growth of the nramp1 Arabidopsis mutant roots was little affected compared to the wild type
(WT) [28]. Under both 1 and 10 µM CdCl2 stress for 10 days, the growth of AtNRAMP3
overexpression in Arabidopsis roots was significantly reduced compared to WT [29]. Under
500 nM CdCl2 treatment for 14 days, the AtNRAMP4 overexpression in Arabidopsis roots
accumulated more Cd than WT [31]. These results indicate that these genes are related to
Cd transport in Arabidopsis roots. HvNRAMP5, located in the plasma membrane, is also a
major transporter for the uptake of Cd and Mn in barley [32].

2.1.2. Cd Efflux by Transporters

OsZIP1 functioned as a metal-detoxified transporter through preventing excess Cd
and Zn accumulation in rice [22]. OsZIP1 is located at the endoplasmic reticulum and
plasma membrane [62]. OsZIP1 overexpression in rice grew better under 5 µM CdCl2
stress for six days, but accumulated less Cd in plants. By contrast, the oszip1 mutants
and RNA interference (RNAi) lines accumulated more Cd in roots and displayed Cd-
hypersensitive phenotypes. Tian et al. (2019) [23] found that both roots and shoots of
OsZIP3-overexpressed transgenic rice plants were longer than those of WT plants under
10 µM CdSO4 for seven days. OsZIP3 overexpression also reduced the Cd content in the
roots and shoots. In addition, OsABCG36 localized at the plasma membrane was also
involved in Cd efflux in rice roots. Knockout of OsABCG36 increased Cd accumulation in
root cell sap and enhanced Cd sensitivity [49]. SaPCR2 is localized at the plasma membrane
and plays an important role in Cd detoxification. Under 15 and 30 µM CdCl2 stress for
seven days, the Cd content in the roots of SaPCR2-overexpressed transgenic Arabidopsis
plants were decreased compared to WT. Under 10 µM CdCl2 stress for seven days, the Cd
content in the roots of SaPCR2-overexpressed transgenic Sedum alfredii plants were also
decreased compared to WT plants. That means SaPCR2 provided a route for Cd efflux
in both Arabidopsis and non-hyperaccumulating ecotype (NHE) S. alfredii [52]. AtPDR8
is localized at the plasma membrane and was expressed in Arabidopsis roots and leaves.
Kim et al. [50] found that under 5, 10, 20, and 30 µM CdCl2 for two to three weeks, atpdr8
knockout plants and atpdr8 RNAi plants were more sensitive to Cd than WT, while AtPDR8-
overexpressed plants were resistant to Cd. That means AtPDR8 acts as an efflux pump of
Cd2+ in plants.



Int. J. Mol. Sci. 2023, 24, 4378 6 of 19

2.2. Cd Transport to Shoots by Loading into the Xylem

Cd is transported to shoots by loading into the xylem vessel. Xylem-mediated root-
to-shoot translocation is shown as a major determinant for shoot Cd accumulation in
many plants including rice [63,64]. CAL1 was a major quantitative trait locus (QTL) for
Cd accumulation in rice leaves. CAL1 protein reduced Cd accumulation in rice leaves by
specifically chelating Cd in the cytosol and promoting Cd secretion to extracellular spaces.
CAL1 also regulated Cd root-to-shoot translocation through the xylem, and cal1 knockout
mutants significantly reduced Cd concentration in rice leaves after 10 µM CdCl2 treatment
for seven days [51]. OsHMA2 is mainly expressed in rice roots and enriched in the vascular
tissues, facilitating root-to-shoot Cd translocation. Knockout of OsHMA2 significantly
reduced Cd accumulation in shoots and grains [57]. The expression of OsHMA2 was
prominent in rice, which accumulated more Cd in its grains [65]. These results mean Cd can
be transported from shoots to the xylem and, finally, to grains through OsHMA2. OsHMA3,
a close homolog of OsHMA2, is a tonoplast-localized transporter for Cd in rice roots and is
responsible for sequestering Cd in vacuoles [43]. Overexpression of OsHMA3 significantly
reduced Cd transport from roots to shoots and Cd content in grains (≥90%) [58,66]. Even
in seriously Cd-contaminated soils, overexpression of OsHMA3 alone produced rice grains
with Cd concentration below the Chinese limit (Cd, 0.2 mg kg−1) [67], representing an
ideal target for breeding low grain Cd rice. In Arabidopsis, the P1B-type ATPases, AtHMA2
and AtHMA4, both regulate root-to-shoot translocation of Cd and Zn and were mainly
expressed in the vascular tissues of roots, stems, and leaves [39]. Overexpression of
AtHMA4 led to an increased tolerance to Zn, Cd, and Co and accumulated more metals
in stems than WT [41]. Another P-type ATPase family member, AtHMA3, located at the
vacuolar membrane, also participates in the vacuolar storage of Cd. Under 30 µM CdCl2
stress for 11 days, the roots and shoots of AtHMA3-overexpressed transgenic Arabidopsis
plants accumulated more Cd than WT [40]. These results suggest that AtHMA3 plays a
role in the detoxification of Cd through the vacuolar sequestration.

2.3. Cd Transport through the Phloem to Grains

Cd transported from the xylem to the shoots in rice is stored in nodes, transferred
to the phloem, and then transported to rice grains through leaves, especially flag leaf
phloem [48,68]. Phloem mediates nearly 100% of Cd deposition into grains in rice [69].
Cd can also be transferred to the grains through phloem in other plants, such as peanut
(Arachis hypogaea L.), linseed (Linum usitatissimum L.), and potato (Solanum tuberosum
L.) [70,71]. Cd mediated by phloem in S. alfredii participated in Cd remobilization from
the older to younger leaves [72]. This reallocation could avoid excessive accumulation
of Cd in leaves and stems. OsLCT1 is the first identified transporter for phloem Cd
transport in plants [46]. OsLCT1 is mainly expressed in leaf blades and nodes during the
reproductive stage. The Oslct1 knockdown mutant significantly reduced Cd content in
rice grains as well as in phloem sap [46]. The expression of OsLCT1 was significantly
enhanced in rice, which over-accumulated Cd in grains, indicating possible translocation
of Cd from shoots to grains [65]. These results suggest that OsLCT1 in leaf blades functions
in Cd remobilization by the phloem. In addition, OsCCX2, a putative Ca exchanger, is a
node-expressed transporter involved in Cd accumulation in the grains of rice. OsCCX2 is
mainly expressed in the xylem region of vascular tissues at the nodes and plays a crucial
role in mediating Cd translocation and distribution. Knockout of OsCCX2 resulted in
a significant decrease in Cd accumulation in rice grains when planted in 3.89 mg kg−1

Cd-contaminated paddy soils [38]. More recently, Gu et al. (2023) [69] identified a defensin-
like gene, DEFENSIN 8 (DEF8), as the phloem Cd unloading transporter. DEF8 is mainly
expressed in rice grains. The DEF8 mutant significantly decreased Cd accumulation in
rice grains, offering an effective strategy to reduce the risk of Cd contamination without
affecting important agronomic traits or the concentration of essential micronutrients. OPT3
is located at the plasma membrane and preferentially expressed in the Arabidopsis phloem.
After 50 µM CdCl2 stress for two weeks, the OPT3-overexpressed transgenic Arabidopsis
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plants reduced the accumulation of Cd in grains and the opt3 mutant Arabidopsis plants
accumulated more Cd in grains and roots [53]. These results suggest that OPT3 plays an
important role in the transport of Cd from phloem to grains.

3. The Transcriptional Regulation of Cd Response by TFs

Recent studies have identified the complex transcriptional networks of plant Cd stress
responses (Figure 2). TFs are major regulators of plant growth and development, as well
as in abiotic and biotic stress responses. TFs belong to different families, such as WRKY,
myeloblastosis protein (MYB), basic leucine zipper (bZIP), and heat shock transcription
factor (HSF) [73–75]. They play important roles in signal transduction of Cd stress response
by activating or repressing a series of genes involved in Cd uptake, transport, and tolerance
in rice. The sensing of heavy metals by plants generates responses such as modulation
of molecular and biochemical mechanisms of cells [58,76]. The ultimate plant Cd stress
responses include altered synthesis of metal transporter proteins and metal binding proteins
to counteract excessive metal stress in plants [74,77].

3.1. WRKY

The WRKY family is a unique plant TF family and plays an important regulatory
role in plant development and response to various environmental stresses [75]. Under Cd
stress, 35 WRKY genes were differentially expressed in rice, of which 25 were up-regulated
and 10 were down-regulated. Under Cd treatment, the expression of OsWRKY15 was
induced in both leaves and roots, which may participate in Cd response via NO and ABA
signaling pathways. The expression of WRKY104 increased more than 90-fold after 24 h
of Cd treatment [78]. Under Cd stress, WRKY12 negatively regulated Cd tolerance via
the glutathione (GSH)-dependent PC synthesis pathway in Arabidopsis. WRKY12 directly
targeted GSH1 by binding to its promoter and indirectly inhibited the expression of other
PC synthesis-related genes (GSH1, GSH2, PCS1, and PCS2), thereby negatively regulating
Cd accumulation and tolerance in Arabidopsis [79]. The expression levels of TaWRKY74 were
significantly induced by Cd stress in wheat. TaWRKY74 alleviated Cd toxicity in wheat by
regulating the expression of Ascorbic Acid (ASA)-GSH synthesis genes [16]. In addition,
Cd stress induced the expression of WRKY13. Overexpression of WRKY13 decreased Cd
accumulation and enhanced Cd tolerance, while the loss of function of WRKY13 led to
Cd accumulation and increased Cd sensitivity. WRKY13 can bind the promoter of the Cd
extrusion pump gene PDR8 and activate its expression to positively regulate Cd tolerance
in Arabidopsis [80].

3.2. MYB

The MYB TF family is a large and functionally important class of proteins involved in
the regulation of diverse biological processes. MYB proteins are divided into four classes
according to the number and position of MYB repeats: 1R-MYB/MYB-related, R2R3-MYB,
R1R2R3-MYB, and 4R-MYB [81]. BnMYB2, encoding a 1R-MYB protein from Boehmeria
nivea (ramie), was significantly up-regulated in roots and leaves under Cd stress. The
overexpression of BnMYB2 in Arabidopsis resulted a significant increase in Cd tolerance
and accumulation [82]. In addition, Tiwari et al. (2020) [83] identified another member
of the rice 1R-MYB family involved in heavy metal tolerance. OsMYB-R1-overexpressed
rice plants exhibited a higher auxin accumulation and a significant increase in lateral roots,
which resulted in the increased tolerance under 150 µM and 300 µM Chromium (Cr) (VI)
exposure for 21 days. RNA-seq analysis revealed over-representation of salicylic acid
(SA)-regulated genes in OsMYB-R1-overexpressed rice plants [83]. These results imply that
OsMYB-R1 is part of a complex network of TFs controlling the cross-talk of auxin and SA
signaling, which regulates heavy metal response.

The R2R3-MYB genes are more prevalent in plants and involved in regulating re-
sponses to environmental stresses [82,84]. Recent reports have established the role of
OsMYB45 in rice tolerance to Cd stress (Figure 3). The expression of OsMYB45 was induced
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by Cd stress and highly expressed in the leaves, husks, stamens, pistils, and lateral roots of
rice. Under 5 µM CdCl2 treatment for three days, the Osmyb45 mutant was hypersensitive
to Cd, which is associated with increased accumulation of hydrogen peroxide (H2O2) and
reduced expression of antioxidative enzymes compared with WT. Catalase (CAT) is the
main antioxidant enzyme and is encoded by three genes in the rice genome (OsCATA,
OsCATB, and OsCATC). OsCATA and OsCATC expression was inhibited in Osmyb45 mu-
tations, which may be associated with Cd-sensitive phenotypes. The overexpression of
OsMYB45 in the mutant complemented the mutant phenotype [85]. In addition, another
R2R3-type MYB member, MYB49a, was reported to be involved in the regulation of Cd
accumulation in plants by physically interacting with the central ABA signaling molecule
ABI5 [14]. MYB49 was induced under Cd stress. Overexpression of MYB49 in Arabidopsis
significantly increased Cd accumulation, whereas myb49 knockout plants reduced Cd accu-
mulation. Further investigations revealed that MYB49 positively regulated the expression
of basic helix-loop-helix (bHLH) TFs, bHLH38 and bHLH101, by directly binding to their
promoters and indirectly up-regulating expression of the IRT1 transporter gene. MYB49
also binds to the promoter regions of the heavy metal-associated isoprenylated plant pro-
teins, HIPP22 and HIPP44, leading to the activation of their expression and subsequent Cd
uptake and accumulation [14].
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Figure 3. Transcriptional regulatory pathways of MYB TFs. MYB proteins are divided into four
categories: 1R-MYB, R2R3-MYB, R1R2R3-MYB, and 4R-MYB. MYB2, as a 1R-type MYB, was up-
regulated significantly under Cd stress. MYB-R1 is crucial for controlling the cross-talk of auxin
and SA signaling and heavy metal response. The R2R3-MYB proteins are more prevalent in plants
including MYB45 and MYB49. MYB45 regulates Cd tolerance and accumulation by producing CAT
and SOD. MYB49 has three ways to regulate Cd tolerance and accumulation: (I) up-regulates the
expression of metal transporter IRT1 by directly binding to bHLH38/101 promoter; (II) binds to the
promoter regions of HIPP22/44 and activates their expression; (III) physically interacts with ABI5
and prevents its binding to the promoters of downstream genes.



Int. J. Mol. Sci. 2023, 24, 4378 9 of 19

3.3. bZIP

The bZIP family is one of the largest TF families in plants with important regulatory
roles in various biological processes, including plant defense and responses to environmen-
tal challenges [86–88]. RNA-Seq results indicated that three differentially expressed genes
encoding bZIP6, bZIP19, and bZIP43 were involved in Cd stress in bentgrass [89]. After
400 µM CdCl2 treatment for four days in Sedum plumbizincicola, the expression levels of
32 SpbZIP genes changed and most of their expression levels peaked earlier in roots than
in stems and leaves [88]. These results suggest that SpbZIP may play a major role in the
initial response to Cd stress in the roots. In addition, TGACGTCA cis-element-binding
protein (TGA) factors in Arabidopsis represent a subfamily of bZIP TFs. In Arabidopsis,
TGA3 transcription was induced by Cd [90]. Compared with WT plants, the tga3 mutant
accumulated higher amounts of Cd in the roots and lower amounts in the shoots [91]. Fusco
et al. (2005) [92] found that under Cd treatment, BjCdR15, acting as orthologue of TGA3 in
Arabidopsis, regulated the expression of several metal transporters in Brassica juncea, such
as PDR8, HMA4, and NRAMP3, thus mediating long-distance root-to-shoot transport of
Cd. Overexpression of BjCdR15 in Arabidopsis and Nicotiana tabacum (tobacco) enhanced Cd
tolerance and accumulation in shoots [91]. These results indicate that bZIP TFs play crucial
roles in the regulation of Cd accumulation, which provide useful candidates for potential
biotechnological applications in the phytoextraction of Cd-contaminated soils.

3.4. HSF

The HSF family is an important member in plant stress response to several abiotic
stresses by regulating the expression of stress-responsive genes, such as heat shock proteins
(Hsps). In Arabidopsis, the Hsfs family is systematically divided into three classes of HsfA, B,
and C [93]. In the plant response network, HsfA1 specifically interacts with HsfA2 to mediate
the expression of genes encoding molecular chaperone HSPs such as HSP70 and HSP90 [94].
HSFs have been reported to play crucial roles in Cd tolerance in plants. HsfA1a conferred Cd
tolerance in Solanum lycopersicum (tomato) by partially up-regulating Hsps expression [95]
(Figure 4). After 100 µM CdCl2 stress for 15 days, Hsfa1a-silenced plants exhibited reduced
melatonin levels, while HsfA1a overexpression stimulated melatonin accumulation and the
expression of the melatonin biosynthetic gene caffeic acid O-methyltransferase 1 (COMT1).
Exogenous melatonin promotes the modulation of GSH and PC biosynthesis which can
detoxify Cd under Cd stress [96].

In S. alfredii, SaHsfA4c also played an important role in Cd tolerance. Compared with
WT, the accumulation of ROS in SaHsfA4c-overexpressed Arabidopsis was reduced, and
the expression of ROS-scavenging enzyme genes and Hsps was increased [97]. It has been
found that the TaHsfA4a gene confers strong Cd tolerance in yeast and rice. CUP1, which
encodes metallothioneins (MTs), contributes to the TaHsfA4a-induced Cd tolerance by
acting as a downstream target of HsfA4a. OsHsfA4a is a rice homolog of TaHsfA4a. In rice
plants expressing TaHsfA4a, Cd tolerance was enhanced, but in oshsfa4a knockdown rice
plants, Cd tolerance was decreased. In addition, TaHsfA4a mediated Cd resistance in yeast
by regulating MTs. The expression levels of HsfA4a and the MT gene were increased in rice
roots under Cd stress. Therefore, HsfA4a in rice induced Cd tolerance by up-regulating
MT gene expression in plants [98,99] (Figure 4).

3.5. Other TFs

The no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF1/2),
and cup-shaped cotyledon (CUC2) (NAC) family is a kind of pivotal TF in the response to
various abiotic stresses [100]. They contain a conserved N-terminal DNA-binding NAC
domain and a highly variable C-terminal domain. In Aegilops markgrafii, AemNAC2 was
found to be associated with reducing accumulation of Cd. Overexpression of AemNAC2
could decrease accumulation of Cd in roots, shoots, and grains of transgenic wheat. In
this type of transgenic wheat, AemNAC2 suppressed the expression of TaNRAMP5 and
TaHMA2 [101].
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Figure 4. Transcriptional regulatory pathways of HSF TFs. HSFs are divided into three types: A, B,
and C. HsfA plays a major role in enhancing Cd tolerance. HsfA1 interacts with HsfA2 to mediate
the expression of HSPs such as HSP70 and HSP90. HsfA1a, as a kind of HsfA1, stimulates COMT1
gene expression and produces melatonin under Cd stress. Melatonin promotes the regulation of GSH
and PC synthesis, causing Cd to enter the vacuole for sequestration. HsfA4 not only increases the
expression of ROS-scavenging enzymes and HSPs, but also up-regulates the MT producing gene,
CUP1, to enhance Cd tolerance.

The ethylene responsive factor (ERF) family belongs to APETALA2/ethylene respon-
sive factor (AP2/ERF) superfamily, which is one of the largest group of TFs involved in
abiotic stress response in plants [102]. In Glycyrrhiza uralensis, overexpression of lrERF061
led to maximum Cd uptake and enhanced antioxidant enzyme activities (SOD, CAT, and
POD) under 10 mg L−1 Cd treatment [103]. This study contributes to the understanding of
the role of LrERF061 in Cd resistance and offers a useful way to increase the phytoextraction
efficiency of Cd-polluted soils.

4. Regulation of Cd Response by DNA Methylation, Long RNAs, and Small RNAs

As discussed above, TFs are the core regulators of transcription under Cd stress.
However, increasing evidence has revealed a complex regulatory system comprising not
only TFs, but also DNA methylation, long RNAs, and small RNAs with crucial roles in Cd
response (Figure 2).

4.1. DNA Methylation

Heavy metal stress has an effect on DNA structure, DNA stability, DNA methylation,
and the regulation of gene expression. When these effects occur in plants, changes in DNA
methylation can make plants adapt to heavy metal stress, especially to Cd stress [18,104].
DNA methylation can regulate gene expression and induce corresponding phenotypic
changes without altering DNA sequence [105].

Cd treatment can lead to an increase in DNA methylation levels in rice, Arabidopsis,
Zostera marina, and barley, which endows plants with higher tolerance to Cd [106–109].
Feng et al. (2016) [110] used high-throughput single-base-resolution bisulfite sequencing
(BS-Seq) and RNA-Seq to analyze DNA methylation patterns in Cd-treated rice seedlings.
A group of genes encoding metal transporters, Cd-detoxified proteins, and metal-related
TFs were found to be differentially methylated, implying their roles in regulating rice
tolerance to Cd stress. After 80 µM CdSO4 for four days, both GSH2 and GSHU35 upstream
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regions were hypermethylated. The sequence downstream of the coding region for iron-
related transcription factor 2 (OsIRO2, a bHLH TF gene) was hypermethylated, while the
coding region of metal transporter OsZIP1 was hypomethylated. The expression level of
OsIRO2 was repressed, while OsZIP1 was induced by Cd. These results suggest that DNA
methylated modification was most likely involved in transcriptional regulation of metal
transporter genes. Sun et al. (2022) [111] found that grafting significantly reduced the total
sulfur and Cd accumulation in soybean, which was mediated by DNA methylation. The
expression level of methyltransferase genes decreased, leading to the decreased expression
of sulfur metabolism-related genes, especially S-adenosylmethionine (SAM). These results
imply that DNA methylation was involved in a decrease in total sulfur and Cd content.
In addition, Cd treatment can lead to a decrease in DNA methylation levels in Trifolium
repens and Cannabis sativa, which reduces the tolerance of plants to Cd [112]. These results
indicate that DNA methylation dynamics in response to Cd vary with species.

4.2. lncRNAs

LncRNAs are a class of non-protein coding RNAs with >200 nt, which act as ‘biological
regulators’ to control transcriptional regulation and genome imprinting [106,113]. Many
lncRNAs in plants were induced or inhibited by Cd stress, affecting plant morphology,
physiology, and biochemistry, and thus producing response to stress. They were reported
to play key roles in controlling the uptake of heavy metals by the plant system in order to
minimize the uptake of heavy metals from soil to plants [15,114].

Chen et al. (2018) [115] used deep sequencing to study the differential expression
of lncRNAs under Cd stress in rice. A total of 75 lncRNAs were down-regulated and
69 lncRNAs were up-regulated by Cd treatment. Analysis of the target gene related
pathways revealed significant changes in genes associated with the cysteine (Cys) and
methionine (Met) metabolic pathways, for example, Os03g0196600, which was involved
in these pathways, was clearly up-regulated and might contribute to the production of
Cys-rich peptides. XLOC_086307, the lncRNA targeted Os03g0196600 in cis, was also
up-regulated significantly, which suggests that XLOC_086307 likely participated in Cd
response in rice by regulating the Cys-rich peptide metabolism-related gene Os03g0196600.
In addition, Feng et al. (2016) [106] identified 301 Cd-responsive lncRNAs in Brassica napus
by RNA-seq analysis, of which 67 acted as competing endogenous target mimics (eTMs) for
36 Cd-responsive miRNAs. Four lncRNAs were identified to serve as precursors of miR824,
miR167d, miR156d, and miR156e in response to Cd stress. Interestingly, TCONS_00035787
was shown to target miR167d in B. napus. The target gene of miR167d encodes a NRAMP1-
type metal transporter, which plays an important role in Cd uptake in plants [106,116].
This is the first report of a lncRNA (TCONS_00035787)–miR167-Nramp1 pathway in plants,
indicating that lncRNAs can serve as new transcripts involved in the regulation of Cd
uptake and accumulation in plants.

4.3. miRNAs

MiRNAs are a new class of small non-coding RNA molecules in plants, which nega-
tively regulate specific target mRNAs at the post-transcriptional level. They are involved
in plant growth and development, organ morphogenesis, and responses to heavy metal,
drought, and chilling stress [117,118]. In our lab, Ding et al. (2011) [119] used miRNA
microarray to analyze miRNA expression patterns in 60 µM Cd-treated and untreated rice
seedlings. In addition to the up-regulation of miR528 under Cd stress, miR166, miR171,
miR159, miR390, and miR192 were significantly inhibited [119,120]. Most of these miR-
NAs were reported to target TF genes, for example, miR166, miR171, and miR396 target
homeodomain-leucine zipper TFs, scarecrow-like TFs, and growth regulating factor TFs,
respectively. These results imply that miRNAs are key components of the transcriptional
regulatory network of heavy metal stress responses in plants. The expression of miR166
was significantly repressed under 60 µM CdCl2 exposure in rice seedlings. Overexpression
of miR166 reduced both Cd translocation from roots to shoots and Cd accumulation in the
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grains. In 35S: miR166 plants, the expression of OsHMA2 decreased. Thus, the reduced
Cd translocation in plants overexpressing miR166 may be at least partly attributable to
the effect on OsHMA2 expression [121]. In addition, miR390 was found to be significantly
down-regulated under Cd stress. Overexpression of miR390 increased Cd accumulation
and reduced tolerance to Cd toxicity in rice [122].

Meng et al. (2017) [123] found that miR167 could cleave BnNRAMP1b (one of the
NRAMP genes), thus BnNRAMP1b was a target of miR167. Huang et al. (2010) [124]
validated that miR395 targeted the sulfate assimilation related genes-sulfate transporter
2; 1 (SULTR2; 1) and ATP sulfurylases (APS) by using 5′-RACE assay in B. napus. After
40 µM CdCl2 treatment for seven days, miR395-overexpressed B. napus plants exhibited
high Cd accumulation and fewer toxicity symptoms in comparison to WT, due to increased
synthesis of sulfur-containing compounds used for heavy metal chelation [125]. These
results demonstrate the role of miR395 in the detoxification of Cd in B. napus. MiR398 tar-
gets two closely related cuprums (Cu)/Zn-SODs (CSDs), CSD1 and CSD2, which promote
defense against ROS accumulation in Arabidopsis. Transgenic Arabidopsis plants overex-
pressing a miR398-resistant form of CSD2 accumulated more CSD2 miRNA than plants
overexpressing a regular CSD2 and were consequently much more tolerant to heavy metals
and other oxidative stresses [126]. Wang et al. (2022) [127] used high-throughput sequenc-
ing to analyze miRNA expression patterns in Cd-tolerant/sensitive barley. MiR156g was
identified to be Cd-induced and target nucleobase-ascorbic acid transporters 2 (HvNAT2).
HvNAT2 was negatively regulated in the high-Cd-accumulating and Cd-tolerant genotype
Zhenong8. Overexpression of HvNAT2 enhanced ROS enzyme activities and GSH content,
thus enhancing Cd tolerance in barley. These results indicate that metal-regulated miRNAs
and their target genes are involved in the diverse processes of Cd response, including metal
uptake and transport, sulfate allocation, metal chelation, and ROS detoxification.

5. How Plants Sense and Transduce Cd Signals to Transcriptional Regulators

How plants sense and transduce Cd signals to transcriptional regulators is one of the
most important open questions. Recent studies revealed that heavy metal stress activates
Ca2+ and ROS signaling that mediate signal transduction and enhance the expression of
stress-responsive genes or TFs. ROS can also act downstream of the mitogen-activated
protein kinase (MAPK) pathway [128]. MAPKs are among the most important and highly
conserved signaling molecules that are activated by ROS production and induced upon
metal stress. MAPK cascade consists of three tier components MAP kinase kinase (MAP-
KKKs/MEKKs), MAP kinase kinase kinase (MAPKKs/MEKs), and MAPKs/MPKs mediat-
ing phosphorylation reactions from the upstream receptor to the downstream target [129].
It has been shown that Cd stress activates different kinase enzymes belonging to the MAPK
family. The phosphorylation cascade is therefore thought to be involved in Cd signaling to
the nucleus. Research confirms that transcripts for OsMSRMK2 (OsMPK3 homolog), OsM-
SRMK3 (OsMPK7 homolog), OsBWMK1 (or OsMPK12), and OsWJUMK1 (OsMPK20-4
homolog) increased in response to Cd and Cu treatment in rice roots and leaves [130,131].

A connection between miRNA and MAPK signaling was deciphered by a study which
showed regulation of miR398b/c by oxidative signal-inducible kinase 1 (OXI1) upon Cd and
Cu treatment [132]. OXI1 can enhance MAPK3 and MAPK6 activities based on the finding
that knockout mutant plants for OXI1 could not activate MAPK3 and MAPK6 under H2O2
treatment [133]. MEKK1 and ANP1 are both Arabidopsis MAPKKKs, which are regulated by
H2O2 under Cd stress and can activate MAPK3 and MAPK6 through MKK4 or MKK5 [134].
Apart from this, several TFs, like bZIP-, MYB-, and myelocytomatosis (MYC)-related TFs,
are known to act as downstream targets of MAPKs [135,136]. In addition, Opdenakker
et al. (2012) [137] reported that downstream signal transduction targets of MAPK during
Cd or Cu stress included WRKY22, WRKY25, and WRKY29. MAPK cascades regulate gene
transcription by activating or inhibiting TFs such as WRKY and TGA (a subfamily of bZIP
TFs), thus regulating a variety of cellular responses [138,139].
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6. Future Perspective

Cd accumulation and exposure in crops poses a serious threat to organisms and hu-
man health. Breeding of new cultivars with low Cd levels is the most cost-effective and
eco-friendly strategy to reduce the risk of Cd contamination in plants. To achieve this
goal, we need a comprehensive understanding of not only the mechanisms but also the
regulation of Cd uptake, translocation, sequestration, and other processes important for
plant Cd stress responses. Over the past decades, different families of Cd transporters
have been identified in plants, and their functional analysis through molecular and genetic
approaches has provided critical insights into Cd uptake and translocation mechanisms
(Figure 1). More recently, a large number of regulatory proteins including those involved in
protein phosphorylation have been identified. Regulatory RNAs and DNA modifications
have also been identified with roles in plant Cd accumulation and tolerance likely by
affecting their expression, synthesis, activities, stability, and other properties (Figure 2). TFs
are the core regulators of transcription under Cd stress. Several TFs in the transcriptional
network and their functions during Cd stress have been analyzed. In addition, there is
emerging evidence that epigenetic regulation through DNA methylation, lncRNAs, miR-
NAs, and kinases are involved in Cd-induced transcriptional responses. These signaling
and responding mechanisms at transcriptional and post-transcriptional levels will facilitate
our understanding of regulatory pathways and serve as a basis for developing efficient
strategies to reduce Cd in plants.

Despite the important progress, our understanding of the signaling and complex
transcriptional regulatory networks in Cd stress response remains to be very limited. First,
it is unclear how plants sense Cd. Do plant cells sense Cd through specific recognition of Cd
itself or through indirect recognition of certain Cd-associated molecules or induced effects?
Given that all identified Cd transporters also transport other metal ions, it is possible
that plants sense Cd simply as a heavy metal and there are overlapping mechanisms
in signaling upon exposure to different types of heavy metals. Second, upon Cd stress
perception, what are the earliest signaling events? Even though MAPK cascades are
implicated in plant Cd signaling and responses, there are usually other regulatory proteins
that act upstream of MAPK cascades. For example, in plant immune responses, plasma
membrane-localized pattern-recognition receptors can recognize specific pathogen elicitors
to trigger plant immune response through activation of the MAPK cascade. Given that Cd is
transported into plant cells through plasma membrane-localized transporters, it is possible
that the early signaling in Cd response starts at the plasma membrane as well and could
directly involve Cd transporters through coordination with other proteins such as plasma
membrane-localized receptor-like proteins. Third, even though a substantial number of TFs
have been identified with a role in Cd accumulation and tolerance, many lack information
about their regulation and action mechanisms. For example, it is unclear how some of the
identified TFs are activated or induced in response to Cd exposure. For many TFs, this
remains unclear regarding direct target genes under their regulation. More importantly,
there is little knowledge about the cooperation and coordination among different TFs for
the effective and tight control of the transcription programs of plant Cd responses. Fourth,
more recent discoveries about the role of DNA methylation and regulatory RNAs in Cd
responses will expand the complex transcriptional landscape of plant Cd stress responses.
It will be critical to identify the target genes that are subjected to regulation by epigenetic
mechanisms and regulatory RNAs and establish the processes and pathways by which these
target genes influence plant Cd accumulation and responses. Finally, most of the research
on plant Cd accumulation and responses has been carried out in rice and Arabidopsis. It is
very likely that there are many unknown components and mechanisms that are present in
different plants with important roles in plant Cd accumulation and tolerance. There are, for
example, plants that hyperaccumulate Cd and can be highly valuable research materials
for discovery of novel mechanisms by which plants accumulate, sequester, and detoxify
high levels of Cd from heavily contaminated soils. In the hyperaccumulator S. alfredii,
some genes related to Cd uptake and hyperaccumulation have been characterized, such
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as SpHMA3, SaNramp6, and SaHsfA4c [97,140,141]. Isolation of new genes including those
TFs and interacting factors with regulatory roles in plant Cd accumulation and tolerance
will help elucidate regulatory mechanisms in response to heavy metal stress. They can also
be exploited as potential targets for genetic engineering through molecular breeding and
clustered regularly inter-spaced short palindromic repeat (CRISPR)-Cas9 technology to
reduce grain Cd accumulation and increase Cd tolerance in crop plants.
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