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Abstract: Amyloid β-peptide (Aβ) misfolding aggregates with β-sheet structures and surplus reactive
oxygen species (ROS) are both considered to be the culprit of neuronal toxicity in Alzheimer’s disease
(AD). Therefore, modulating the misfolding mode of Aβ and inhibiting ROS simultaneous has become
an important method for anti-AD. Herein, a nanoscale manganese-substituted polyphosphomolybdate
(H2en)3[Mn(H2O)4][Mn(H2O)3]2[P2Mo5O23]2·14.5H2O (abbreviated as MnPM) (en = ethanediamine)
was designed and synthesized by single crystal to single crystal transformation method. MnPM can
modulate the β-sheet rich conformation of Aβ aggregates, and thus reduce the formation of toxic
species. Moreover, MnPM also possesses the ability to eliminate the free radicals produced by Cu2+-Aβ

aggregates. It can inhibit the cytotoxicity of β-sheet-rich species and protect synapses of PC12 cells.
MnPM combines the conformation modulating ability of Aβ and anti-oxidation ability, which makes a
promising multi-funcational molecular with a composite mechanism for the new conceptual designing
in treatment of such protein-misfolding diseases.

Keywords: polyphosphomolybdate; protein-misfolding disease; amyloid β-peptide (Aβ); conformation
modulation; anti-oxidation

1. Introduction

Protein misfolding diseases are a group of zoonotic diseases [1], in which Alzheimer’s
disease (AD) is one of the hot spot models in the research of biochemistry and pharmaceu-
tical chemistry [2]. The aggregation of senile plaques, made up of extracellular amyloid-β
peptides (Aβ), is the pathological feature of AD [3,4]. Aβ that maintained non-β-sheet
conformation is a normal membrane peptide metabolized in the human brain [5,6]. Un-
der pathological conditions, for example misfolded templates or abnormal cerebral metal
ions, Aβ can misfold to β-sheet-rich species, which is the key step to generate toxic Aβ
aggregates [7–10]. In addition, it is well known that the reactive oxygen species (ROS)
caused by metal ions-Aβ aggregates is also a causative factor of the neuronal dysfunc-
tion [2,10,11]. Hence, simultaneous inhibiting the formation of β-sheet-rich Aβ aggregates
and the generation of ROS are the effective method to anti-AD [1–3,9–11].

It is reported that the formation pathway of β-sheet-rich species can be modulated [12],
in which small molecules such as dopamine, calmidazolium chloride, and platinum com-
plexes can block amyloid fibrillogenesis [13–16]. Furthermore, polyoxometalates (POMs), a
class of metal-oxygen clusters, have also been recognized as modulators against protein
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misfolding. Dr. Qu et al. reported a series of POMs and nanoparticles as inhibitors of
Aβ aggregation [17–19]. Dr. Liu et al. interfered with the formation of misfolding-Aβ
aggregation by using nanoscale molybdenum containing POM [20]. Our work has focused
on the development of complexes with novel structures for anti-protein misfolding. In
2018, we designed a modified POM, {[CoL(H2O)]2[CoL]2[HAsVMoV

6MoVI
6O40]}·2.5H2O,

which can intervene with the β-sheet aggregates through modulating the conformation of
Aβ based on non-covalent strategy [21]. Next, two complexes, 2-{2-[(1H-benzoimidazol-2-
yl)methoxy]phenyl}benzothiazole and K10Na2[Ca6P6O12(H2O)6][PMo6O28]2·24H2O, with
β-sheet-rich conformation modulation activity based on π-π stacking and electrostatic
interaction, were synthesized successfully in 2020 and 2021, respectively [22,23]. However,
hitherto, all POMs designed above are single-functional modulators which do not have
a direct antioxidant effect. Since AD is a multi-pathogenic disease, it is difficult to cure
it by only inhibiting a single target [24]. Therefore, molecules that combine functions of
modulating Aβ conformation and antioxidants may be more effective in dealing with those
thorny problems.

Recently, more and more attention has been paid to POMs, especially nanoscale
POMs, since those compounds have advantages such as the ability to cross the blood–brain
barrier (BBB) and protein aggregation intervention [25]. Herein we report the structure
and multifunctional property of a newly designed manganese-substituted polyphospho-
molybdate, (H2en)3[Mn(H2O)4][Mn(H2O)3]2[P2Mo5O23]2·14.5H2O (abbreviated as MnPM,
en = ethanediamine). MnPM can not only inhibit the β-sheet transformation of Aβ pep-
tide, but can also act as a nanoenzyme to suppress ROS generation, which, as a result,
can reduce the toxicity of misfolding Aβ species to cells in vitro. To our knowledge,
MnPM represents the first pure inorganic 2-D manganese substituted Strandberg-type
polyphosphomolybdate, which possesses both misfolding conformation modulation and
antioxidant multi-function.

2. Results and Discussion
2.1. Characterization of Structure

The structure of MnPM was first characterized by single-crystal X-ray diffraction
analysis. The selected bond lengths are summarized in Table S1. Detailed information of
the single crystal data has been deposited at the Cambridge Crystallographic Data Centre
with a CCDC number of 960778. As shown in Figure 1A, X-ray structural analysis reveals
that the molecular structural unit of MnPM consists two [P2Mo5O23]6– clusters and seven
Mn-complexes [Mn(H2O)4]2+. As shown in Figure 1B, the structure of Strandberg-type
[P2Mo5O23]6– cluster can be viewed as a puckered ring of five nearly coplanar corner-
sharing/edge-sharing distorted MoO6 octahedra [Mo–O: 1.687(3)–2.371(3) Å] with two
capping PO4 tetrahedra [P–O: 1.501(3)–1.555(3) Å] on both poles of the {Mo5O21} ring
centers. Compared with the free classic Strandberg-type cluster H6P2Mo5O23 (more in-
formation on the type of POMs, please see Figure S1 and PM.cif in the Supplementary
Materials) without coordination with any metal ions, it can be found that the Strandberg-
type clusters in MnPM have distortion after coordination with manganese [26]. Those seven
manganese complexes can be divided into two categories: 1. one [Mn(H2O)4]2+ located
between two Strandberg-type clusters is unique to the unit; 2. The other six [Mn(H2O)4]2+

are divided into two adjacent structural units, each of which accounts for only 0.5 units.
Thus, the manganese ions in MnPM have two distinct coordination environments, which is
very rare in POM of pure inorganic structure. Finally, as shown in Figure 1C, the units of
MnPM interact with each other, resulting in the final 2D framework that is a solid structure.
The topological analysis was carried out, and the simplified overall structure of MnPM is a
4-connected uninodal net, as can be seen in Figure 1D with the point symbol of {44·62}.
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The bond valence sums (Σs) of oxygen atoms in MnPM were calculated to further
study the surface structure characteristics of MnPM [27]. The oxidation states of the oxygen
atoms in MnPM were calculated on the following formula:

Vi = ∑
j

sij = ∑
j

exp

(
r′0 − rij

B

)

in which rij represents the observed values of bond distances listed in Table S1, and r0
′

represents the theoretical value of bond distance between two atoms; The value of B was
set to 0.37 Å [28]. The theoretical values of Mo–O come from literatures, in which the
r0
′(Mo6+–O) is 1.900 Å, r0

′(P5+–O) is 1.615 Å, and r0
′(Mn2+–O) is 1.765 Å [28,29]. As shown

in Table 1, the average valence state sum (Σs) of Mo, Mn, and P in MnPM are 6.001, 1.968,
and 5.025, respectively.

The valence of Mo, Mn, and P in MnPM has been further investigated by using X-ray
photoelectron spectrum (XPS). As shown in Figure 2B, there are two broad peaks located at
235.02 and 231.87 eV, which can be assigned to Mo 3d3/2 and Mo 3d5/2, respectively [30],
which may indicate that Mo with +6 exist in MnPM. As can be seen in Figure 2C, the XPS
spectrum includes two wide peaks at 640.50 and 652.66 eV that can be assigned to Mn
2p3/2 and Mn 2p1/2, respectively [31]. These results suggest that the +2 valence Mn ions are
present in MnPM. As shown in Figure 2D, there is one peak located at 132.50 eV assigned
to P2P, which may imply that the valence of P is +5 [32]. Those XPS results are consistent
with the results of BVS calculation.

Since the polyanions of POMs have high negative charges and rich basic surface
oxygen atoms, they can easily be protonated [33]. The 80 oxygen atoms in MnPM can
be classified into four groups: terminal Ot, bridging Oµ2, Oµ3, and Oµ4. As shown
in Figure 2A, the O atoms with Σs of 0~1.60 could act as H-donors owing to the de-
localized protons on them, whereas the O atoms with Σs of 1.90~2.00 possess dense
electron cloud. As for the remaining O atoms, the electron cloud varies greatly with
Σs of 1.60–1.90, which may indicate that they act either as H-donors or H-acceptors.
Hence, the O atoms on the surface of MnPM could potentially form H-bonds interact-
ing with peptides. In POM chemistry, the H atoms are usually assigned to be delo-
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calized on the whole fragment, which has been reported in the literature, for example,
[Ni(enMe)2]3[H6Ni20P4W34(OH)4O136(enMe)8(H2O)6]·12H2O [27], [H3W12O40]5– [33] and
[Cu(en)2][Cu(en)2H2O]2{[Cu(en)2][Cu6(en)2(H2O)2(SiW9O34)2]}·8H2O [34].

Table 1. Bond valence and Σs of Mo, Mn, and P in MnPM.

Bond Valence Bond Valence Bond Valence Atom Σs

Mo(1)–O(1) 2.022 Mo(1)–O(6) 1.700 Mo(1)–O(15) 0.966
Mo(1)–O(11) 0.841 Mo(1)–O(20) 0.222 Mo(1)–O(16) 1.800 Mo(1) 5.931
Mo(2)–O(2) 1.740 Mo(2)–O(7) 1.722 Mo(2)–O(11) 0.927
Mo(2)–O(12) 0.905 Mo(2)–O(17) 0.460 Mo(2)–O(20) 0.280 Mo(2) 6.034
Mo(3)–O(3) 1.774 Mo(3)–O(8) 1.653 Mo(3)–O(13) 0.947
Mo(3)–O(12) 0.885 Mo(3)–O(21) 0.470 Mo(3)–O(17) 0.318 Mo(3) 6.048
Mo(4)–O(4) 1.726 Mo(4)–O(9) 1.631 Mo(4)–O(13) 1.014
Mo(4)–O(14) 0.987 Mo(4)–O(18) 0.348 Mo(4)–O(22) 0.318 Mo(4) 6.023
Mo(5)–O(5) 1.754 Mo(5)–O(10) 1.698 Mo(5)–O(14) 0.984
Mo(5)–O(15) 0.902 Mo(5)–O(22) 0.459 Mo(5)–O(16) 0.298 Mo(5) 6.096
Mn(1)–O(19) 0.312 Mn(1)–O(6) 0.273 Mn(1)–O(1W) 0.262
Mn(1)–O(9) 0.434 Mn(1)–O(2W) 0.164 Mn(1)–O(3W) 0.110 Mn(1) 1.984
Mn(2)–O(23) 0.366 Mn(2)–O(23#) 0.366 Mn(2)–O(4W) 0.320
Mn(2)–O(4W) 0.320 Mn(2)–O(5W) 0.291 Mn(2)–O(5W) 0.291 Mn(2) 1.953
P(1)–O(19) 1.321 P(1)–O(18) 1.282 P(1)–O(16) 1.225
P(1)–O(17) 1.202 P(1) 5.030
P(2)–O(23) 1.361 P(2)–O(21) 1.282 P(2)–O(20) 1.202
P(2)–O(22) 1.176 P(2) 5.021
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Figure 2. (A) Σs of O atoms in the MnPM unit (The extent of Σs for each O atom is indicated by
different colors). X-ray photoelectron spectrum (XPS) and the fitted curves of Mo (B), Mn (C), and P
(D) in MnPM.

The IR spectrum of MnPM has also been studied, which has a characteristic asymmetric
vibrations to those Strandberg-type cluster containing compounds at low wave-number
regions [35]. As shown in Figure 3A, the characteristic bands between 1089–1035 cm–1

are attributed to the v(P–O) bond. The peaks between 905 and 878 cm–1 are assigned to
v(Mo=O) bonds. The prominent bands around 688–550 cm–1 are attributed to v(Mo–O–Mo)
bond. The occurrence of similar vibrations at about 3181 cm–1 may be attributed to the
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v(N–H) bond, confirming the presence of ligands [36]. A broad feature peak at about 3440
cm–1 can be attributed to absorptions of coordinated and lattice water molecules [37].
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(B) The UV-vis spectrum of MnPM in ultrapure water. Additionally shown: the variation of the peak
intensities with pH of the solution (inset figure). (C) The thermogravimetric analysis (TGA) curve of
MnPM from 25 to 1000 ◦C.

The stability of MnPM in aqueous solution has further been explored by using UV-
vis spectroscopy. As shown in Figure 3B, there are two absorption peaks in the UV-vis
spectral data of the aqueous solution, one at 205.8 nm and the other, a shoulder peak,
centering on 229.6 nm in the range of 190–500 nm. These two peaks can be assigned to
Ot →Mo and Oµ →Mo charge transfer transitions, respectively [38]. As can be seen from
Figure 3B, MnPM may maintain stability for more than five days in a neutral aqueous
solution. As shown in insets of Figure 3B, insignificant variations are noted in the intensity
of MnPM UV-vis absorption within a range of pH from 5.10 to 8.20. Out of the range, the
absorption peak intensities at 205.8 and 229.6 nm change progressively, which may suggest
the commencement of skeletal collapse. The pH range for MnPM stability can therefore be
assumed to be from 5.10 to 8.20.

As shown in Figure 3C, the thermogravimetric analysis (TGA) curve of MnPM shows a
three-step weight loss. The first step weight loss is 8.40% (cal. 8.29%) in the range 25–85 ◦C,
corresponding to the release of lattice water molecules. The weight loss of the second step
is 17.95% (cal. 17.86%) in the range 86–500 ◦C, corresponding to the release of coordination
water and phosphorus pentoxide molecules, which indicates that the framework of MnPM
is beginning to collapse [39].

2.2. Catalytic Property

ROS are another key species that take responsibility for the neurotoxicity in AD [2,10].
It is reported that Cu2+-Aβ can be extremely effective at catalysing ROS, causing damage
to neurons [40]. Therefore, a series of antioxidant drugs, such as vitamins, polyphenols,
and their derivatives, have been used in research for the treatment of AD [41]. In the last
decade, a new type of nanomaterial with enzyme-like characteristics has been developed
and known as nanozymes, which has been reviewed in detail by Dr. Wei et al. [42]. In this
review, several molybdenum-manganese based nanozymes with special structure have
excellent superoxide dismutase (SOD)-like activity [42]. Hence, the effect of MnPM on ROS
was investigated by the DCF fluorescence assay.

DCF is a probe derived from non-fluorescent 2′,7′-dichlorofluorecin (DCFH) by the
reaction with ROS in the presence of horseradish peroxidase, which can reveal the genera-
tion of ROS from the system by special fluorescent emission at 650 nm [43]. As shown in
the inset of Figure 4, the DCF fluorescence intensity of MnPM is lower than that incubated
with the blank group (Ctrl) from beginning to end, which may imply that the total ROS in
the system with MnPM is far less than that without MnPM. Those results may suggest that
MnPM possesses SOD-like activities in terms of scavenging free radicals.
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Figure 4. Fluorescence intensity of DCF (λex = 485 nm, λem = 650 nm) by
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water (inset, the expanded graph of the fluorescence intensity in the range of 0 to 200) from 0 to
2400 min.

Although the experimental group with MnPM alone produced significantly less ROS,
the Cu substituted POM (H2en)6[Cu(en)(H2O)][Cu(en)(H2O)3][P2Mo5O23] (CuPM, see
Supplementary Materials CuPM.cif), an isomorphism with MnPM, produces extremely
strong ROS, which may indicate that the structure of MnPM did not affect the activity
of HRP in the experimental group. Interestingly, as shown in Figure 4, the manganese
molybdate (MM, see Supplementary Materials MM.cif) that has the same component as
MnPM does not possess those SOD-like capacity, which may indicate that the unique
structure of MnPM makes it have antioxidant ability.

2.3. Aβ-Peptide Conformational Modulation

The morphology of Zn2+- or Cu2+-incubated with Aβ40 in the presence of MnPM or not
were first observed by transmission electron microscopy (TEM). As shown in Figure 5A–C,
under Zn2+/Cu2+ or self-induction conditions, a lot of fibrils can be seen in the groups of
Aβ40 + Zn2+, Aβ40 + Cu2+, and Aβ40, which is the typical characteristic of β-sheet-rich
protein conformation [44]. The results indicate that abundant soluble β-sheet-rich Aβ are
in those incubation fluids. However, as can be seen in Figure 5D–F, in the presence of
MnPM, the fibrils that symbolize the misfolding peptides all collapsed and formed into
amorphous species. The results may imply that the β-sheet-rich conformation of Aβ has
been destroyed.

Circular dichroism (CD) method was further used to verify the effect of MnPM on block
the formation of β-sheet-related Aβ40 aggregates incubated with Zn2+/Cu2+. As shown
in Figure 6A, a negative band is shown at about 215 nm, which may suggest that the β-
sheet-rich conformation peptides exist in the Cu2+-incubated Aβ40 system [45]. After being
incubated with Zn2+, the spectrum of Aβ40 + Zn2+ group became more negative than that
of Aβ40 + Cu2+, which suggested that Zn2+ can aggravate the β-sheet-relate conformational
transformation of Aβ peptide [20]. On the contrary, the CD spectra exhibited an obvious
recession in negative band after being incubated with MnPM, which may imply that
MnPM can suppress the metal-induced β-sheet-relate conformational transformation of
Aβ. Moreover, the negative band of Aβ40 incubated with MnPM alone is also weaker
than that of self-misfolding Aβ40, which may suggest that MnPM can not only suppress
the misfolding process by inducing metal ions but also inhibit the self-misfolding of Aβ.
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Currently, most of the reported mono-functional chelators can only inhibit the conformation
misfolding induced by metal ions but do not interact with Aβ per se, which have no effects
on self-misfolding Aβ [46]. These results may indicate that MnPM can act as an interfering
agent on the formation of β-sheets other than chelation mechanism.
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tion at 37 ◦C and pH 7.4 for 24 h. (A) Aβ40 + Zn2+; (B) Aβ40 + Cu2+; (C) Aβ40; (D) Aβ40 + Zn2+ + MnPM;
(E) Aβ40 + Cu2+ + MnPM; (F) Aβ40 + MnPM ([Aβ40]:[metal ion]:[MnPM] = 1:2:1) (All the samples with
final DMSO content: volume ratio 0.5%).
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Figure 6. (A) CD spectra of Aβ40 (20 µM) and Aβ40 in the presence of Cu2+ or Zn2+ (40 µM) with or
without MnPM (20 µM) after incubation at 37 ◦C for 24 h (All the samples with final DMSO content:
volume ratio 0.5%); (B) ThT fluorescence intensity (λex = 415 nm) of Aβ40 (20 µM) solutions in the
absence and presence of Zn2+ or Cu2+ after incubation with or without MnPM at 37 ◦C and pH 7.4
for 0–1440 min ([Aβ40]: [metal ion]: [MnPM] = 1:2:1) (inset: ThT fluorescence spectra (λex = 415 nm)
of those Aβ40 fibrils (20 µM) with or without MnPM (20 µM) at 37 ◦C and pH 7.4 for 24 h).

The inhibition effect of MnPM on those β-sheet-rich fibrils was tested by the ThT
assay next. ThT can give rise to a significant enhancement in fluorescence according to
the amount of amyloid by specifically binding to the β-sheet fibrils [47]. Hence, ThT assay
has been widely used to detect the β-sheet content in peptide aggregates [21]. As shown
in Figure 6B, the fluorescence intensity of Aβ alone group was maintained at a low level
before 20 h and began to climb gradually after 20 h, which indicated that Aβ underwent
nucleation and rapid transformed into β-sheet within 24 h. In the presence of MnPM,
the fluorescence intensity of Aβ + MnPM is very weak during the first 16 h. After 16 h,
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the fluorescence intensity seems to ascend, which implies that increasing amounts of Aβ
were transformed into the β-sheet. However, the fluorescence intensity of Aβ + MnPM
remains weak, indicating that the conformational transformation is largely suppressed.
The fluorescence increased obviously when Aβ was incubated with Zn2+/Cu2+, especially
with Zn2+, which indicates that Zn2+ and Cu2+ can promote the formation of β-sheet-rich
aggregates and that the promotive effect of Zn2+ is stronger than that of Cu2+. By contrast,
in the presence of MnPM, the increasing slope of the fluorescence intensity of Zn2+- or
Cu2+-Aβ solution maintains at a low level, for which the quenching of the fluorescence
indicates that MnPM may inhibit the prefibrillar oligomers of Aβ induced by both β-sheet
misfolding in the presence of metal ions and the self-β-sheet-transformation of Aβ. These
results are consistent with the conclusion of CD spectrum experiments.

Since Zn ions can effectively promote misfolding aggregation process [44], the reverse
ability of MnPM on the β-sheet of Zn2+-Aβ was investigated by the turbidimetry and
ThT assay. Turbidity of the solution shows the level of all types of insoluble proteins
aggregates [16]. Firstly, Aβ40 was incubated with Zn2+ for 24 h to obtain a suspension.
Then, different concentrations of MnPM were added to the suspension and incubated for
another 24 h to test its effect on those formed β-sheet-rich conformation. As shown in
Figure 7, on the one hand, the ThT fluorescence intensity had precipitous decline with the
addition of MnPM, which may suggest that MnPM can disaggregate the β-sheet-rich fibrils
of Aβ40. It can be concluded that MnPM not only inhibits the formation of β-sheet-rich
aggregates, but also has an ability to reverse the formed misfolding β-sheet conformation.
On the other hand, the turbidity of those solution increases with the addition of MnPM
slightly. The result may indicate that MnPM cannot completely reverse the misfolding
β-sheet-rich Aβ aggregates to its initial state, but aggravates some kind of aggregation
probably due to the nucleating effect [48]. It is reported that the content of senile plaques
cannot correlate well with the impairment of cognitive function, since a lot of humans who
were found to have abundant senile plaques at death did not suffer dementia [49]. Therefore,
the aggregates are not only composed of the misfolded β-sheet of Aβ, but also contain
some other amorphous Aβ aggregates called off-pathway product [14]. The selective
induction of Aβ into off-pathway aggregation process is an effective method to suppress
the neurotoxicity of β-sheet-rich oligomers [45]. Herein, the results demonstrate that some
Aβ deposits treated by MnPM are actually not composed of the β-sheet aggregates. Hence,
the dissociation of the β-sheet-related aggregates may suggest that MnPM can eliminate
the major neurotoxicity species and may leave the less toxic ones intact in the aggregates.

Histidine (His−) residues in Aβ40 are the potential metal ion binding sites due to
accessible nitrogen donor atoms [16]. Thus, the interactions between MnPM and Aβ40
were further investigated by 1H-NMR. As shown in Figure 8A, three signals located at 6.8,
7.5, and 8.0 ppm, respectively, which can be assigned to the imidazole of His-residues, were
observed [16]. However, after treated with MnPM, as shown in Figure 8B, the 1H-NMR
signals of those imidazole changed greatly, in which the H signal located at position 3 is
severely attenuated, which may indicate that the His-residues group has coordination with
metal ions [47].

2.4. Inhibition of Toxicity

The toxicity of Aβ40 and metal-induced Aβ40 aggregates with or without MnPM
toward neuronal pheochromocytoma (PC12) cells was tested by the MTT assay [50]. As
shown in Figure 9, the viability of PC12 cells incubated with Zn2+ or Cu2+-treated Aβ40
are quite low (<45%), especially Aβ40 + Cu2+ group (<30%), which is consistent with
the literature report and implies that the metal ions-treated Aβ40 species are highly toxic
to PC12 cells [51]. However, in the presence of MnPM, the corresponding cell viability
improved significantly, which rose about 35%. Moreover, compared with the group of
Aβ40 alone without MnPM, the cell viability of that group with MnPM also increased
25%. In previous literature reports, most of the mono-functional chelators only prevent
the formation of β-sheet-rich metal-Aβ species from chelating metal ions, but do not
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possess antioxidant activity [52]. Therefore, MnPM with versatility in antioxidant and
modulating conformation of Aβ possesses advantages in inhibiting the toxicity caused by
those misfolding aggregates.
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and MnPM determined by MTT assay at 24 h. (Aβ40 = 20 µM, MnPM = 20 µM, [Cu2+] = [Zn2+] = 40 µM)
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independent experiments and presented as the mean± standard deviation of the independent experiments.
The results were compared using a two-way ANOVA. *** stands for p≤ 0.001.

The effects of MnPM on misfolding Aβ40 aggregates were further investigated by
analysis of the morphological changes of PC12 cells under the above conditions. As shown
in Figure 10, PC12 cells (control) present polygonal shapes with neurites which have thick,
long synapses connected to each other cells, forming a network. However, after incubation
with Zn2+- or Cu2+- or self-misfolding treated Aβ40 aggregates for 1 day, the cells show
spherical shapes and the neurites shrank, in which the dendritic networks of neurons were
disrupted (as shown in Figure 10A,C,E). Particularly, as shown in the partial enlarged
details of Figure 10C, most of the synapses on the cells that were incubated with Cu2+-
induced Aβ40 aggregates are broken, and the cell body begins to swell. On the contrary, as
shown in Figure 10B,D,F, in the presence of MnPM, although there were still deposits in
Zn2+- or Cu2+-Aβ40 group causing the adhesion of the cells, the morphology of cells was
maintained as much as possible. These results indicated that enlargement tendency of cell
is inhibited. The cell body exhibits spindle shaped mostly, and the synapse is visible clearly.
Moreover, the synaptic network of cells is also preserved. It was reported recently that the
misfolding Aβ aggregates can cause synaptic toxicity, inducing the injury and dysfunction
of neuronal synapses [53]. Therefore, the protection of synapses is also very important and
necessary [54]. Those results may imply that MnPM can protect the neurons from synaptic
toxicity caused by both metal ions-inducing and self-misfolding Aβ aggregates.
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3. Materials and Methods
3.1. Materials

In this study, reagents used are all of analytical grade, purchased from commer-
cial suppliers, and used as received. Human Aβ40 was purchased from Macklin Agent
Ltd. (Shanghai, China), which was verified by HPLC and electrospray ionization mass
spectrometry (Supplementary Materials—MS). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-
2-H-tetrazolium bromide (MTT), Thioflavine T (ThT), 2′,7′-dichlorofluorescin diacetate
(DCFH-DA), tris(hydromethyl)aminomethane (Tris) and nerve growth factor 7S (NGF-7S)
were purchased from Sigma-Aldrich Inc. (Shanghai, China). Sodium hydroxide (NaOH),
hydrochloric acid (HCl), zinc acetate (Zn(OAC)2), copper(II) chloride (CuCl2), manganese
chloride (MnCl2), sodium phosphate dibasic dodecahydrate (Na2HPO4·12H2O), ethane-
diamine (C2H8N2), and sodium molybdenum oxide (Na2MoO4·2H2O) were purchased
from J & K Scientific Inc. (Beijing, China). Stock solutions of Aβ40, Zn(OAC)2, and CuCl2
were prepared according to the reported procedures [16]. The stock suspension of MnPM
was prepared by dissolving the compound in DMSO to give a final concentration of 5 mM
under ultrasonic concussion before using. All the solutions were prepared with ultrapure
water through Milli-Q academic water system and filtered through a 0.22 µm filter (Milli-
pore, Burlington, MA, USA). Pheochromocytoma cells (PC12 cells) were purchased from
American Type Culture Collection (ATCC).

3.2. Synthesis

Two solutions, A and B, were prepared separately. Solution A: Na2MoO4·2H2O
(2.416 g, 10.00 mmol) and Na2HPO4·12H2O (2.399 g, 6.70 mmol) were dissolved in water
(30 mL) under stirring. Solution B: MnCl2 (1.26 g, 10.00 mmol) and en (0.10 mL, 1.49 mmol)
were added to water (30 mL) under stirring. After 10 min, the resulting mixture of B was
added to solution A. The mixture was stirred for a further 10 min at room temperature and
then the pH value was adjusted to 5.0 by adding 6 mol·L–1 HCl dropwise. The solution was
kept at 95 ◦C for 1 h and filtered when it was still hot. The filtrate was allowed to evaporate
in an open beaker at room temperature. The colorless transparent crystals had dissolved
out of the solution in about 1 week, which can be characterized as Strandberg-type structure
compound H6P2Mo5O23 [24]. We then sealed the beaker to prevent further volatilization
of the solution. After about 3 weeks, the colorless transparent crystals were transformed
to yellow crystals (H2en)3[Mn(H2O)4][Mn(H2O)3]2[P2Mo5O23]2·14.5H2O (Yield: ca 29%
based on Na2MoO4·2H2O).

3.3. X-ray Data Collection and Structure Refinement

X-Ray data collection and structure refinement: Intensity data of single crystal were
collected on a Bruker Apex-2 diffractometer with a CCD detector using graphite monochro-
matized Mo Kα radiation (λ = 0.71073 Å) at 296 K. Date integration was performed using
SAINT [55]. Routine Lorentz and polarization corrections were applied. Multiscan absorp-
tion corrections were performed using SADABS [56]. The structure was solved by direct
methods and refined using full-matrix least squares on F2. The remaining atoms were
found from successive full-matrix least-squares refinements on F2 and Fourier syntheses.
All calculations were performed using the SHELXL-97 program package [57]. No hydrogen
atoms associated with the water molecules were located from the different Fourier map.
The positions of the hydrogen atoms attached to the carbon and nitrogen atoms were
geometrically placed. All hydrogen atoms were refined isotropically as a riding mode using
the default SHELXTL parameters. A summary of crystal data and structure refinements for
MnPM is listed in Table 2.

3.4. XPS, IR, UV, and TGA

XPS spectra were conducted on a PHI5000 VersaProbe X-ray photoelectron spectrom-
eter. Elemental analysis was performed on a PQEXCe II ICP-MS. IR/UV spectra were
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recorded on a NICOLET iS10 and UV-3600 spectrometer, respectively. The TG was tested
on a STA449F3 TG-DSC from 25 to 1000 ◦C.

Table 2. Crystallographic data and structural refinements for MnPM.

Empirical formula C12H146Mn6Mo20N12O141P8
Formula weight 5211.61
Crystal system Monoclinic

Space group C2/c
a (Å) 32.097(9)
b (Å) 10.597(3)
c (Å) 20.531(6)
α (◦) 90
β (◦) 102.695(4)
γ (◦) 90

V (Å3) 6813(3)
Z 2

ρcalcd (g·cm−3) 2.541
µ (mm−1) 2.538

F(000) 5080
Crystal size/mm3 0.33 × 0.29 × 0.26

2Θ range for data collection/◦ 2.03 to 25.00

Index ranges
–38 ≤ h ≤ 22,
–12 ≤ k ≤ 12,
–24 ≤ l ≤ 24

Rint 0.0202
Data collected 16,875

Independent data 5596
Goodness-of-fit 1.062

Final R indexes [I ≥ 2σ (I)] R1 = 0.0260, wR2 = 0.0718
Final R indexes [all data] R1 = 0.0281, wR2 = 0.0731

3.5. Catalytic Property

DCF stock solution (1 mM) and horseradish peroxidase (HRP) stock solution (4 µM)
were prepared with a Tris buffer (20 mM Tris-HCl/150 mM NaCl, pH 7.4), as described in
the reported procedures [58]. The same buffer was used to prepare a 4 µM HRP (horseradish
peroxidase) stock solution. All samples were incubated at ambient temperature after adding
10 µM ascorbate that either did or did not contain MnPM (0.025 mM), and then 200 µL
of each solution was pipetted into one well of a black 96-well flat-bottomed microplate.
DCFH-DA (100 µM) and HRP (0.04 µM) were supplemented, and then the samples were
left in the dark at ambient temperature. Fluorescent intensity (λex = 485 nm, λem = 650 nm)
were captured every 10 min from 0 to 2400 min with Thermo Scientific Varioskan Flash
microplate reader (Varioskan Flash, Thermo Scientific, Waltham, MA, USA). Spectra of
(H2en)6[Cu(en)(H2O)][Cu(en)(H2O)3][P2Mo5O23] (CuPM), manganese molybdate (MM),
MnCl2 (Mn2+), blank group (Ctrl), (H2en)3[Mn(H2O)4][Mn(H2O)3]2[P2Mo5O23]2 (MnPM),
and purified water were also captured for comparison under the same conditions, as
presented above.

3.6. Aβ-Peptide Conformational Modulation
3.6.1. ThT Fluorescence Assay

Aβ40 (20 µM) in Tris buffer solution (20 mM Tris-HCl/150 mM NaCl, 990 µL) was
incubated with Zn(OAc)2 (4 µL, 10 mM) at 37 ◦C. Following that, MnPM (with the final
concentration of 20 µM) or DMSO (final content: 1.5 µL) were added to each sample,
respectively, and incubated at 37 ◦C. Each sample (300 µL) was injected into a well of a
flat-bottomed 96-well black plate (Corning Costar Corp). ThT solution (2 µL, 5 mM) was
added to each well simultaneously in the dark and incubated at 37 ◦C. The fluorescence
intensity (λex = 415 nm, λem = 485 nm) was measured by a Varioskan Flash microplate
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reader (Thermo Scientific) every 10 min from 0 to 1440 min. The fluorescence spectra
(λex = 415 nm) incubated after 24 h was recorded from 450 to 650 nm.

Aβ40 (20 µM) in buffer solution (20 mM Tris-HCl/150 mM NaCl, 992 µL) was in-
cubated with Zn(OAc)2 (4 µL, 10 mM) at 37 ◦C for 24 h. MnPM solutions with the final
concentration of 0–25 µM were added to each sample respectively and incubated at 37 ◦C
for another 24 h. All the control groups were treated with DMSO of the same concentration,
and the final concentration is 0.5%. The solutions were divided into two parts, one for the
ThT assay and the other for the turbidity test. Data were expressed as mean ± standard
deviations of at least three independent experiments.

3.6.2. Turbidity Assay

Samples were prepared as described above. Each sample was infused into a well of
a flat-bottomed 96-well transparent plate. Turbidity of the solutions were recorded using
the absorbance at 405 nm. Data were expressed as mean ± standard deviations of three
independent experiments.

3.6.3. Morphological Analysis

Samples were prepared in the same way as ThT fluorescence assay. A drop of solution
(10 µL) was spotted on the 300-mesh carbon-coated copper grids at room temperature.
After 2 min, the excess solution was removed. The grids were stained with uranyl acetate
(10 µL, 1%, w/v) for 2 min, then they were washed with Milli-Q water (10 µL). The samples
were examined on a JEOL JEM-2100 LaB6 (HR) transmission electron microscope.

3.6.4. CD Assay

Aβ40 (20 µM) was dissolved in the Tris buffer solution (20 mM Tris-HCl/150 mM
NaCl) and incubated without or with Zn(OAc)2 or CuCl2 (40 µM) at 37 ◦C, respectively.
MnPM (20 µM) was then dropped to each solution and incubated at 37 ◦C for 24 h. The
CD spectrum of the sample solution was measured on a JASCO J-810 automatic recording
spectropolarimeter (Tokyo, Japan) in the range of 190–260 nm. The data acquired in the
absence of protein were subtracted from the spectrum. In the control tests, DMSO (final
content: 1.5 µL) gave negative results.

3.7. 1H-NMR

The samples of 1H-NMR spectra were prepared by dissolving MnPM (200 µM) in a
mixture containing Aβ40 (200 µM), 10% D2O, 85% H2O, and 5% DMSO-d6, incubated at
37 ◦C for 24 h, and then centrifuged to get the soluble samples. The 1H-NMR spectra were
recorded on a Bruker DRX-600 spectrometer.

3.8. Inhibition of Toxicity
3.8.1. Inhibition of Toxicity

The PC12 cells used for neurotoxicity, and synaptic dysfunction analysis were pre-
pared as described in the previous literature [59]. The effects of MnPM on the inhibition
neurotoxicity were evaluated by using the MTT assay. PC12 cells were incubated with
Aβ40 (20 µM) alone or with Zn2+- or Cu2+(40 µM)-induced Aβ40 complexes in absence or
presence of MnPM (20 µM, with final DMSO content: 1.5 µL) for 24 h. Data were expressed
as mean ± standard deviations of at least three independent experiments.

3.8.2. Cell Morphological Analysis

The PC12 cells used for this morphological analysis were prepared as above. After
incubation for 24 h, the morphological pictures of those cells were captured by a microscope.

Statistical analysis: The results are obtained from three independent experiments and
presented as the mean ± standard deviation of the independent experiments. The results
were compared using a two-way ANOVA (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).
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4. Conclusions

It is well-known that the aggregation of misfolded proteins plays a key role in the patho-
logic pathway of Alzheimer’s disease (AD). Amyloid β-peptide (Aβ) in β-sheet conformation
originated from misfolding aggregation process is the core structure of the toxic species. Further-
more, reactive oxygen species (ROS) derived from those harmful metal-Aβ species is another
important neurodegenerative factor. Herein, we described a nanoscale manganese-substituted
polyphosphomolybdate (H2en)3[Mn(H2O)4][Mn(H2O)3]2[P2Mo5O23]2·14.5H2O (abbreviated
as MnPM) (en = ethanediamine), which possesses both conformational modulation and an-
tioxidant functions. As a conformational modulator, MnPM can prevent the β-sheet-rich Aβ
aggregation. As a nanoenzyme, MnPM can effectively inhibit and eliminate ROS produced
by Cu2+-Aβ speices. Thus, MnPM can protect PC12 cells from misfolding Aβ aggregates and
ROS-associated toxicity in vitro.

Many other diseases known as prion-like diseases, such as Parkinson’s disease, Hunt-
ington’s disease, type-II diabetes, Creutzfeldt–Jacob disease, and new-variant Creutzfeldt–
Jakob disease, possess a similar pathogenic processes, which converts the conformation of
proteins to β-sheet, resulting in large quantities of misfolded proteins and ROS to destroy
the brain cells and tissues [60,61]. Since most of them are multifactorial diseases [61], which
involve protein misfolding and ROS, the design mechanism of MnPM might be promising
and applicative to those protein-misfolding diseases [49,60,61].
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