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Abstract: Histone deacetylases (HDACs) are core epigenetic factors, with pivotal roles in the reg-
ulation of various cellular procedures, and their deregulation is a major trait in the acquisition of
malignancy properties. In this study we attempt the first comprehensive evaluation of six class
I (HDAC1, HDAC2, HDAC3) and II HDACs (HDAC4, HDAC5, HDAC6) expression patterns in
thymic epithelial tumors (TETs), with the aim of identifying their possible association with a number
of clinicopathological parameters. Our study revealed higher positivity rates and expression levels of
class I enzymes compared to class II. Sub-cellular localization and level of staining varied among the
six isoforms. HDAC1 was almost exclusively restricted to the nucleus, while HDAC3 demonstrated
both nuclear and cytoplasmic reactivity in the majority of examined specimens. HDAC2 expression
was higher in more advanced Masaoka–Koga stages, and displayed a positive correlation with dismal
prognoses. The three class II HDACs (HDAC4, HDAC5, HDAC6) exhibited similar expression
patterns, with predominantly cytoplasmic staining, that was higher in epithelial rich TETs (B3, C) and
more advanced tumor stages, while it was also associated with disease recurrence. Our findings could
provide useful insights for the effective implementation of HDACs as biomarkers and therapeutic
targets for TETs, in the setting of precision medicine.

Keywords: thymic epithelial tumors; thymic carcinoma; histone deacetylases; epigenetics;
prognosis; biomarker

1. Introduction

Thymic epithelial tumors (TETs) originate from the epithelial cells of the thymus gland,
and are the most frequent neoplasms of mediastinum. They engulf a broad spectrum of
histologically divergent tumor subtypes, with completely different clinical outcomes [1].
The clinicopathological heterogeneity of thymic neoplasms reflects their distinctive molec-
ular profiles. Accumulated data of integrated genomic TETs analyses suggest that the
broad histological subtypes do not represent a molecular and phenotypic continuum, but
that they are distinct entities, characterized by different molecular aberrations and unique
pathogenetic routes [2,3]. However, further studies are urgently needed for a more in-depth
analysis of tumor molecular background and identification of signature alterations, that
could also serve as novel targets for therapeutic intervention.

In this direction, a large breadth of both in vitro experimental studies and human
specimens’ analyses have demonstrated the deregulation of epigenetic networks, including
non-coding RNAs, DNA methylation, and histone modifications as a key driver of thymic
tumorigenesis [4]. A multiplicity of noncoding RNA molecules, including micro-RNAs
and long noncoding RNAs, are either upregulated or downregulated in thymic neoplasms,
prompting corresponding changes to the expression profile of their target genes, which
include both oncogenes and tumor-suppressors [5–8]. Abnormal DNA methylation of
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CpG sites, located at regulatory regions, primarily in gene promoters, is also a hallmark
feature of TETs. Hypermethylated loci are predominantly tumor suppressor genes, espe-
cially cell cycle checkpoints and negative regulators of oncogenic pathways. Large-scale
DNA methylation analyses have revealed different methylation profiles among distinct
subtypes, with more aggressive TCs displaying a higher methylation index [9–11]. Histone
modifications refer to the dynamic control of the 3D chromatin structure via heterogenous
mechanisms, which can be segregated into two distinct categories: the reconstruction of nu-
cleosome organization; and the modification of histone tails, by enzyme-mediated addition
or removal of various chemical elements (methylation, phosphorylation, acetylation, and
ubiquitination). These chemical modifications adapt genomic regions, in order to maintain
silencing or activation of gene expression. Histone acetylation represents arguably the
best-studied covalent histone modification, and occurs at evolutionarily conserved lysine
residues of nucleosome complexes. The addition of acetyl groups loosens the chemical
interactions between histones and DNA nucleotides, and facilitates the decompensation
of tightly packed chromatin, rendering it more accessible to transcriptional machinery
components and establishing permissive chromatin states [12]. This dynamic process is
controlled by a fluctuating equilibrium between the reversible activity of two antagonizing
enzyme families: histone acetyltransferases (HATs), which install acetyl groups, enabling
activation of gene expression; and histone deacetylases (HDACs), that remove them, creat-
ing inhibitory histone “marks” [13,14]. HDACs are a chemically and functionally diverse
group of enzymes, categorized into four classes: class I, II (a, b), III, and IV. Class I in-
cludes HDAC1, -2, -3, and -8, which are ubiquitously expressed, while class II encompasses
HDAC4, -5, -6, -7, -9, and -10, which are characterized by a tissue-specific expression
pattern. Both class I and II enzymes are detected in the nucleus as well as in cytoplasm
and other cellular organelles. Besides their histone-mediating function, they also regulate
the levels and activity of multiple other proteins, by post-translational addition of acetyl
groups, that modulates their stability [14]. The remaining two HDAC classes are class III
HDACs, or sirtuins (SIRT), and class IV, which consists exclusively of HDAC11 [14]. Class
III and class IV isoforms are characterized by a foremost nuclear localization.

As expected, by their critical role as epigenetic regulators, HDACs control expression
of multiple genes that mediate different cellular processes, such as proliferation, apoptosis,
metabolism, and immunogenicity, and their deregulation is a major trait in the acquirement
of malignancy properties [15]. A large breadth of studies has evaluated the expression
levels of class I and II HDACs in a wide range of tumors, attempting correlations with
patients’ survival and other clinicopathological parameters. Increased levels of class I and
class II isoforms have been detected via immunohistochemistry or molecular techniques in
heterologous and histologically divergent epithelial, mesenchymal, and central nervous
system neoplasms, as well as in melanoma [16–32]. The aberrant expression of HDACs in
cancer, and their critical role in regulating different aspects of tumor cells’ biology, suggests
that they could serve as ideal therapeutic targets. Indeed, a broad spectrum of HDAC
inhibitors (HDACi) have already been developed and entered clinical trials for a wide
range of tumors [33–35].

Considering the lack of systematic analyses of the HDAC expression profile in TETs,
along with the fact that HDACs could represent novel therapeutic targets, following the
trend set by other malignancies, in the present study we aim to evaluate the immunohis-
tochemical expression of six HDAC isoforms, belonging to classes I and II, in a cohort of
TETs, covering the entire spectrum of major histological subtypes. Moreover, we attempt to
correlate HDACs’ expression patterns with patients’ survival and other clinicopathological
parameters (Table 1).
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Table 1. Clinicopathological characteristics of 91 patients with TETs.

Parameter Median Range

Age 62 27–88 years
Number %

Gender
Male 39/91 43%

Female 52/91 57%

WHO subtypes
Type A 12/91 13.6%

Type AB 19/91 20.8%
Type B1 14/91 15.4%
Type B2 19/91 20.8%
Type B3 14/91 15.4%

Micronodular with lymphoid stroma 2/91 2.2%
Thymic carcinoma 11/91 12.1%

Masaoka–Koga stage
I 13/81 16%

IIa 32/81 39.5%
IIb 14/81 17.3%
III 64/81 19.7%
IVa 3/81 3.7%
IVb 3/81 3.7%

Presence of myasthenia gravis 35/59 59.3%
Presence of chemotherapy 11/39 28%
Presence of radiotherapy 19/38 50%

Event
Alive 29/40. follow-up 5–134 months 72.5%

Dead of disease 11/40. within 7–65 months 27.5%
Presence of relapse 4/35. within 58–65 months 11%

2. Results
2.1. Expression of HDAC1 in TETs and Associations with Clinicopathological Characteristics

HDAC1 expression was observed in 96.5% of the examined cases, which primarily
showed nuclear staining, and had a median H-score of 200 (range 0–300, Table 2). Cyto-
plasmic immunoreactivity was detected in only three specimens (3.5%) (Figure 1). There
was not any significant association between WHO histological type, Masaoka–Koga stage,
presence of relapse, or patients’ overall survival (OS) (p > 0.10, Figure 2). A positive reaction
within the lymphocytic component was observed in 50 cases, all of them showing nuclear
staining and only 2 displaying a cytoplasmic staining. There was not any significant cor-
relation with the remaining parameters presented in. The expression of HDAC1 in the
lymphocytic component was not correlated with any of the clinicopathological parameters.

Table 2. Expression of HDAC1, -2, -3, -4, -5, and -6 in the epithelial component of TETs.

Positivity Rate H-Score, Median H-Score, Range

HDAC1 nuclear expression 96.5% 200 0–300
HDAC1 cytoplasmic expression 3.5% 0 0–40

HDAC2 nuclear/cytoplasmic expression 97% 85 0–300
HDAC3 nuclear expression 94% 140 0–300

HDAC3 cytoplasmic expression 77% 100 0–200
HDAC4 cytoplasmic expression 70% 45 0–210

HDAC5 nuclear expression 13% 0 0–20
HDAC5 cytoplasmic expression 62% 45 0–300
HDAC6 cytoplasmic expression 29.6% 0 0–100
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Figure 1. (a) Immunohistochemical expression of HDACs in the epithelial component of TETs. 
HDAC1 in an A type thymoma (nuclear) (A), and in a thymic carcinoma (nuclear) (B). HDAC2 in a 
thymic carcinoma (nuclear and cytoplasmic) (C), and in a B3 type thymoma (nuclear and cytoplas-
mic) (D). HDAC3 in a thymic carcinoma (nuclear and cytoplasmic) (E), and in a thymic carcinoma 
(nuclear and cytoplasmic) (F). HDAC4 in a type A thymoma (cytoplasmic). (G) HDAC5 in a type A 
thymoma (cytoplasmic) (H), and HDAC6 in a thymic carcinoma (I). All pictures are at ×400 magni-
fication. (b) Immunohistochemical expression of HDACs in the lymphocytic component of TETs. 
HDAC1 in a B1 type thymoma (nuclear) (A). HDAC2 expression in an A type thymoma (nuclear) 
(B), and HDAC3 expression in a B2 type thymoma (nuclear) (C). All pictures are at ×400 magnifica-
tion. 

Figure 1. (a) Immunohistochemical expression of HDACs in the epithelial component of TETs.
HDAC1 in an A type thymoma (nuclear) (A), and in a thymic carcinoma (nuclear) (B). HDAC2 in a
thymic carcinoma (nuclear and cytoplasmic) (C), and in a B3 type thymoma (nuclear and cytoplasmic)
(D). HDAC3 in a thymic carcinoma (nuclear and cytoplasmic) (E), and in a thymic carcinoma (nuclear
and cytoplasmic) (F). HDAC4 in a type A thymoma (cytoplasmic). (G) HDAC5 in a type A thymoma
(cytoplasmic) (H), and HDAC6 in a thymic carcinoma (I). All pictures are at ×400 magnification.
(b) Immunohistochemical expression of HDACs in the lymphocytic component of TETs. HDAC1
in a B1 type thymoma (nuclear) (A). HDAC2 expression in an A type thymoma (nuclear) (B), and
HDAC3 expression in a B2 type thymoma (nuclear) (C). All pictures are at ×400 magnification.
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Figure 2. Schematic representation of the associations between nuclear HDAC1 H-score and (A) 
WHO histological type, (B) Masaoka–Koga stage, and (C) patients’ overall survival. 
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there was no significant correlation of H-score with WHO histological types, or the pres-
ence of relapse (p > 0.10), TETs with an advanced Masaoka–Koga stage (II or higher) dis-
played a higher HDAC2 H-score compared to stage I ones (Mann–Whitney, p = 0.045, 
median value 100 vs. 80, Figure 3). Moreover, an increased HDAC2 H-score was corre-
lated with a worse OS (log-rank test, p = 0.008, Figure 3C). The associations with the re-
maining clinicopathological features, such as patients’ age and gender, as well as presence 
of relapse, were not significant. Lymphocytic immunoreactivity was observed in 49 cases 
and showed a positive correlation with the expression of HDAC2 in the epithelial compo-
nent of TETs (Spearman correlation coefficient, R = 0.5958, p < 0.0001). However, lympho-
cytic HDAC2 levels were not correlated with any of the clinicopathological parameters.  

Figure 2. Schematic representation of the associations between nuclear HDAC1 H-score and (A) WHO
histological type, (B) Masaoka–Koga stage, and (C) patients’ overall survival.

2.2. Expression of HDAC2 in TETs and Associations with Clinicopathological Characteristics

HDAC2 expression was encountered in 97% of our cases, with both nuclear and
cytoplasmic localization and a median H-score of 85 (range 0–300) (Table 2, Figure 1).
While there was no significant correlation of H-score with WHO histological types, or the
presence of relapse (p > 0.10), TETs with an advanced Masaoka–Koga stage (II or higher)
displayed a higher HDAC2 H-score compared to stage I ones (Mann–Whitney, p = 0.045,
median value 100 vs. 80, Figure 3). Moreover, an increased HDAC2 H-score was correlated
with a worse OS (log-rank test, p = 0.008, Figure 3C). The associations with the remaining
clinicopathological features, such as patients’ age and gender, as well as presence of relapse,
were not significant. Lymphocytic immunoreactivity was observed in 49 cases and showed
a positive correlation with the expression of HDAC2 in the epithelial component of TETs
(Spearman correlation coefficient, R = 0.5958, p < 0.0001). However, lymphocytic HDAC2
levels were not correlated with any of the clinicopathological parameters.

2.3. Expression of HDAC3 in TETs and Associations with Clinicopathological Characteristics

HDAC3 positive expression was observed in 94% of cases, with both nuclear and
cytoplasmic localization (Table 2, Figure 1). Fifty-eight cases displayed simultaneous cyto-
plasmic and nuclear immunoreactivity, while three cases showed exclusively cytoplasmic
and 13 displayed only nuclear positivity. In the remaining five specimens, no staining was
detected. Interestingly, there was a positive correlation between nuclear and cytoplasmic
H-score (Spearman correlation coefficient, R = 0.4182, p < 0.001). Among different WHO his-
tological subtypes, less frequent nuclear positivity was encountered in thymic carcinomas
(66.7%), compared to the rest of the TETs (92.8%) (Fisher’s exact test, p = 0.044, Figure 4A).
No significant correlation of HDAC3 expression with Masaoka–Koga stage, the presence
of relapse, or patients’ overall survival (p > 0.10, Figure 4B–D) was observed. There were
not any significant correlations with the remaining clinicopathological parameters presented in
Table 1. Regarding lymphocytic component, thirty-one cases demonstrated a nuclear positivity
for HDAC3, and four showed cytoplasmic staining (two of them being only positive in the
cytoplasm), without significant correlation with any of the clinicopathological parameters.
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Figure 4. Schematic representation of the associations between (A) nuclear HDAC3 positivity and
WHO histological type, (B) nuclear or cytoplasmic HDAC3 H-score and Masaoka–Koga stage,
(C) cytoplasmic HDAC3 H-score and patients’ overall survival, and (D) nuclear HDAC3 H-score and
patients’ overall survival.

2.4. Expression of HDAC4 in TETs and Associations with Clinicopathological Characteristics

HDAC4 staining, with an exclusively cytoplasmic pattern, was observed in 70% of
the examined cases, with a median H-score of 45, and a range of 0–210 (Table 2, Figure 1).
B2- and B3-type TETs and thymic carcinomas were more frequently positive for HDAC4
compared to the other WHO types (Fisher’s exact test, p = 0.03, 63% vs. 37%). Moreover,
epithelial rich (namely B3 and thymic carcinoma) TETs tended to show a higher HDAC4
H-score compared to the rest of the types (Mann–Whitney, p = 0.061, median value 60 vs. 25,
Figure 5A), but this relationship was of marginal significance. A higher HDAC4 H-score
was detected in TETs with an advanced Masaoka–Koga stage (II or higher), compared to
stage I cases (Mann–Whitney, p = 0.003, median value 50 vs. 0, Figure 5B–D). There was
not any significant correlation of HDAC4 expression with the presence of relapse, or with
patients’ OS or the remaining clinicopathological parameters presented in Table 1. No
staining was observed in the lymphocytic component.
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2.5. Expression of HDAC5 in TETs and Associations with Clinicopathological Characteristics

HDAC5 positivity was observed in 67% of the examined specimens (Table 2), with
a primarily cytoplasmic pattern (62%) (Figure 1). Nuclear staining was observed in only
11 cases (13%), with four of them showing an exclusively nuclear immunoreactivity. Ep-
ithelial rich TETs (namely B3-type and thymic carcinomas) displayed positive cytoplasmic
HDAC5 staining more often (Fisher’s exact test, p = 0.022, 37% vs. 13%), and a higher
cytoplasmic HDAC5 H-score, compared to the rest of the WHO types (Mann–Whitney,
p = 0.002, median value 160 vs. 20, Figure 6A). TETs with an advanced Masaoka–Koga
stage (namely III/IV) showed a higher cytoplasmic HDAC5 H-score compared to the rest
of the types (Mann–Whitney, p = 0.048, median value 120 vs. 40, Figure 6B). Furthermore,
an increased HDAC5 cytoplasmic H-score was correlated with the presence of relapse
(Mann–Whitney, p = 0.026, median value 120 vs. 10). There was not any correlation of
HDAC5 expression with patients’ OS or with the remaining clinicopathological parameters.
Only in two cases was there a positive cytoplasmic immunoreaction in the lymphocytic
component of the tumor.
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2.6. Expression of HDAC6 in TETs and Associations with Clinicopathological Characteristics

HDAC6 immunoreactivity was observed in 29.6% of the examined cases, and was
predominantly cytoplasmic (Table 2, Figure 1). Epithelial rich TETs (namely B3-type and
thymic carcinomas) displayed more frequent positivity (Fisher’s exact test, p = 0.017, 48%
vs. 18%, Figure 7A) and higher H-scores compared to the rest of the histological types
(Mann–Whitney, p = 0.008, median value 30 vs. 0). Moreover, a higher cytoplasmic
HDAC6 H-score was encountered in tumors with an advanced Masaoka–Koga stage (IVa
or IVb) (Mann–Whitney, p = 0.008, median value 70 vs. 0, Figure 7B). There was not
any significant correlation with the presence of relapse or patients’ OS or with any of the
remaining clinicopathological parameters. No expression was observed in the lymphocytic
component.
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3. Discussion

HDACs are major epigenetic factors, with crucial roles in the regulation of various
cellular processes, such as cell cycle control, apoptosis, metabolism, autophagy, metastasis,
and angiogenesis. The multidimensional role that their abnormal expression exerts in
carcinogenesis has been thoroughly investigated in a wide range of solid and hematologic
malignancies. However, only scant data exist concerning the potential role of HDACs in
thymic tumorigenesis.

Our study revealed higher positivity rates and expression levels of class I enzymes
(HDAC1, HDAC2, HDAC3). Positive staining of HDAC1, HDAC2, and HDAC3 was
observed in almost all examined cases, with positivity rates of 96.5%, 97%, and 94%, respec-
tively. Concerning the expression levels of the three class I enzymes, they were highest in
the case of HDAC1, which showed a median H-score of 200 (range: 0–300), with diffuse
staining of moderate-to-high intensity across different WHO subtypes and tumor stages.
HDAC2 expression was higher in more advanced Masaoka–Koga stages (p = 0.045), and
positively correlated with dismal prognoses (p = 0.0078). A limitation of our study in this
context is that survival data were available only in a small subgroup of our cohort, in which
we were able to perform survival analysis, and therefore we were not able to perform
multivariate survival analysis in order to provide a possible prognostic nomogram includ-
ing HDAC immunoexpression. However, the positive correlation of HDAC2 levels with
reduced patients’ survival, which emerged in our study, harmonizes with findings from sim-
ilar studies, which have identified HDAC2 as a negative prognostic factor, associated with
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diminished disease-free survival (DFS) or OS in a wide range of malignancies, including
oral squamous cell carcinoma [36], hepatocellular carcinoma [21], cholangiocarcinoma [37],
gastric [38] and colorectal adenocarcinoma [39], and endometrioid cancer [40]. Increased
HDAC2 has been also associated with advanced stage and poor tumor differentiation in
gastrointestinal [39] and breast carcinomas [31]. Variations were also observed in HDAC3
staining among different WHO subtypes, as nuclear immunoreactivity was less frequent in
the more aggressive thymic carcinomas, compared to the rest of the TETs categories (Fisher
exact test, p = 0.044). Such an association of HDAC3 levels with higher tumor grade has
also been observed in colorectal and mammary adenocarcinomas [39–41]. However, in
our cohort HDAC1 did not show any significant correlation with the clinicopathological
parameters, although it has been previously reported to play a significant role in several
types of cancer, such as gastric and lung cancers [42].

The three investigated class II HDACs (namely HDAC4, HDAC5, HDAC6) exhibited a
predominantly cytoplasmic staining, with HDAC4 and HDAC5 showing a higher median
H-score compared to HDAC6 (HDAC4 and HDAC5 median H-score 45 in both cases,
ranges: 0–210 and 0–300, respectively, vs. HDAC6 median H-score 0, range: 0–100).
Moreover, the cytoplasmic H-score of all three class II HDACs was higher in epithelial rich
TETs (B3, C) and increased in more advanced tumor stages, while in the case of HDAC5 it
was also associated with disease recurrence. HDAC4 has previously been associated with
advanced tumor stage in esophageal and nasopharyngeal carcinoma [43,44]. Accordingly,
HDAC5 expression has been related with worse prognosis and the presence of metastasis in
breast cancer [45]. HDAC6, which represents the most thoroughly studied class II isoform,
has been correlated with a higher tumor grade in salivary gland neoplasms [46], and
advanced pathological stages in oral squamous cell and thyroid carcinomas [47,48].

The subcellular distribution of class I HDACs in our cohort is in agreement with
previous experimental studies, which have demonstrated an almost exclusively nuclear
localization of HDAC1 and HDAC2, while HDAC3 has been detected in both the nuclear
and cytoplasmic compartments. What distinguishes HDAC3 from the other two class I iso-
forms is the presence of a nuclear export signal, that mediates its cytoplasmic translocation,
via interaction with CRM-1, a cellular nuclear-export factor [49]. Sequestering of HDAC3
in the cytoplasm is also mediated by IκBa, a cytoplasmic component of the NF-κB cascade,
that is capable of binding HDAC3 via ankyrin repeats and preventing its nuclear transloca-
tion [50]. In the cytoplasm, HDAC3 modulates a number of signal transduction pathways
and cell cycle regulators, via controlling their acetylation levels. Deacetylation of STAT1
and STAT3 inhibits their phosphorylation, which is required for their nuclear translocation
and dimerization, respectively [51,52]. Moreover, by deacetylating different lysine residues
of p65, HDAC3 differentially regulates the activity of NF-κB [53,54]. Cyclin A levels are
also controlled by post-translational acetylation events, and the reduced acetylation status
induced by HDAC3 has been shown to induce its proteasomal degradation [55].

Class II HDACs predominantly cytoplasmic staining reconciles with their well-established
role in controlling nonhistone proteins. HDAC4 and HDAC5 shuttle between the cyto-
plasm and nucleus, in a bidirectional translocation between the two cellular compartments,
controlled primarily by phosphorylation events. The proteins 14-3-3 have been shown
to bind to phosphorylated threonine residues of the two HDAC isoforms, sequestering
them in the cytoplasm [56]. HDAC4’s most thoroughly studied non-histone targets include
pro-apoptotic factor p53 and hypoxia-response molecule HIF-1a, two proteins activated by
DNA damage or reduced oxygen availability, respectively. Such conditions of cellular stress
stimulate their translocation to the nucleus, where they serve as orchestrators of a stress-
induced transcriptional response, that allows cells to adapt in detrimental circumstances.
Their levels and function are tightly regulated post-translationally by multiple covalent
modifications, including acetylation, which can either increase their stability and functional
integrity or direct them for proteasomal degradation. In the case of p53, an increased
acetylation index prompts its nuclear import, enabling it to carry-out its tumor-suppressive
role, while HDAC4-mediated deacetylation prevents its translocation and leads to destabi-
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lization and proteasomal degradation [57]. On the other hand, HIF1α is destabilized by
acetylation, and its deacetylation by HDAC4 maintains higher protein levels and allows it
to execute its tumor-promoting functions [58]. HDAC6 is characterized by predominantly
cytoplasmic localization, with its main tasks being the regulation of β-catenin. Acetylation
of lysine 49 of β-catenin, promotes its degradation. Therefore, HDAC6 inactivation inhibits
nuclear translocation of β-catenin, resulting in the inhibition of cellular growth [59].

The multipronged role of HDACs in tumorigenesis suggests that they can serve as
novel targets of therapeutic interventions. A number of both in vitro and in vivo studies
have demonstrated the effects of HDAC inhibition in tumor cells [60]. Either as monother-
apy, or in combination schemes with traditional chemotherapeutic agents, they have
demonstrated the capacity to block cell proliferation, induce programmed cell death, and
target the metabolic dependencies of cancer cells, that derive from the broad reprogram-
ming of metabolic pathways. Moreover, HDAC inhibition has the potential to suppress
tumor cells’ capacity to fluctuate between different phenotypes, especially the reversible
transdifferentiation from an epithelial to a more mesenchymal state, achieved via activation
of epithelial-to-mesenchymal transition, which enhances their invasive and metastatic
capacity [60].

In vitro studies of HDAC inhibition provide evidence about the therapeutic capability
of such HDACi, while clarifying their effect on molecular alterations and deregulation
of intracellular signaling pathways, that takes place as a result of the broad epigenetic
rewiring induced by HDAC [60]. In thymic neoplasms, only scarce data are available
regarding the potential use of HDACi as a therapeutic strategy. Administration of the
class I and IIa HDACi, valproic acid, in TC cell line TC1889, induced a G1-phase growth
arrest of tumor cells, accompanied by induction of the cell-cycle negative regulator p21 [61].
Evaluation of two other HDACi, belinostat and panobinostat, on a primary cell line derived
from a patient metastatic lesion, demonstrated some promising results in reducing tumor
cells’ growth and proliferation [62]. Two phase II clinical trials, testing the clinical efficacy
of the HDACi belinostat in two relatively large patient cohorts (41 and 26 patients, respec-
tively), demonstrated benefits in a substantial proportion of cases. The first study included
25 patients with B-type thymoma (B1, B2, B3) and 16 with TC. All of them had received a
median of 2 (range: 1–10) previous chemotherapy schemes [63]. Among them, only two
patients with thymoma experienced partial response, while 25 patients achieved disease
stabilization. In the second one, total enrollment consisted of 12 patients with thymoma and
14 with TC, and treatment outcomes were much more promising, with 61% response rates
in thymoma patients and 21% in TC cases. In all responders, response was partial, and it
was associated with a reprogramming of the immunosuppressive tumor microenvironment
via a decrease in T-regulatory cells and exhausted CD8 T-cells [64]. Thus, the results of
the limited number of clinical studies testing HDACi in TETs, are in complete harmony
with our findings, as more aggressive TETs types, which in general show higher levels of
specific HDAC isoforms, seem to be more responsive to their inhibition. Further clinical
trials however are required, so that more reliable conclusions can be extracted regarding
the potential of such a therapeutic strategy in this rare tumor family.

4. Materials and Methods
4.1. Patients’ Characteristics

This is a study of archival formalin-fixed paraffin-embedded (FFPE) tissue from 91 pa-
tients with TETs, resected between 2009 and 2019, retrieved from the pathology laboratory
archives of the Evangelismos General Hospital, Athens, Greece, for whom medical records
were available. Patient characteristics are shown in Table 1. Thirty-nine of the patients
were men (43%) and 52 women (57%), with a median age at diagnosis of 62 years (range
27–88 years). Tumors had been classified, according to the WHO classification scheme,
to one of the following seven subtypes: A, AB, B1, B2, B3, micronodular thymoma with
lymphoid stroma (MNT), and thymic carcinoma [65]. Their pathological staging was based
on the Masaoka–Koga system, which classifies tumors into four stages, according to the in-
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vasion of thymic capsule or adjacent organs, the presence of pleural or pericardial implants,
and the hematogenous/lymphogenous metastasis to extrathoracic sites [66]. The frequency
of WHO subtypes was as follows: type-A 13.2%; type-AB 20.8%; type-B1 15.4%; type-B2
20.8%; type-B3 15.4%; MNT 2.2%; thymic carcinoma 12.1%. Moreover, the Masaoka–Koga
stages of the patients were: I 16%; IIa 39.5%; IIb 17.3%; III 19.7%; IVa 3.5%; IVb 3.7%.
The TNM staging system was not available until late in our cohort, and therefore is not
included in our study. Co-existing myasthenia gravis was diagnosed in 59.3% of patients,
two of whom also suffered from pemphigus vulgaris and autoimmune thyroidopathy.
Chemotherapy was given to 28%, and radiotherapy to 50%, of patients for whom respective
information was available; six of these patients received both chemo- and radiotherapy.
Follow-up information was available for 40 patients, ranging from 5 to 134 months (median:
32 months).

4.2. Immunohistochemistry

Immunohistochemistry was carried out using standard procedures in the eight TMAs.
Immunostainings for HDAC1, -2, -3, -4, -5, and -6 were performed on individual formalin-
fixed, paraffin-embedded tissue sections, using rabbit polyclonal anti-HDAC1 (H-51,
sc-7872, Santa Cruz Biotechnology, Santa Cruz, CA, USA) and anti-HDAC2 (H-54, sc-
7899, Santa Cruz Biotechnology) IgG antibodies, and mouse monoclonal anti-HDAC4
(A-4, sc-46672, Santa Cruz Biotechnology) IgG2b and anti-HDAC6 (D11, sc-28386, Santa
Cruz Biotechnology) IgG2a antibodies. Antigen retrieval was performed at pH 6. The
Envision (Dako, Agilent, Santa Clara, CA, USA) visualization system was used. DAB
(3,3-diaminobenzidine) was used as a chromogen, and hematoxylin as a counterstain. Ap-
propriate positive controls, according to the manufacturer, were used. As a negative control,
the omitted primary antibody and substitution with an irrelevant antiserum was used.

For the purposes of the immunohistochemical evaluation, we calculated the H-score,
which serves as a semiquantitative measure of the immunohistochemical protein expression
levels. To calculate the H-score, the semiquantitative staining intensity score (score 1 to 3)
is multiplied by the percentage of positive cells. Therefore, H-score values range between 0
and 300. The epithelial and lymphocytic components, as well as the nuclear and cytoplasmic
positivity, were separately evaluated.

4.3. Statistical Analysis

Statistical analysis was performed by an MSc biostatistician (GL). The association
between the IHC expression of HDAC1, -2, -3, -4, -5, and -6 with clinicopathological charac-
teristics was examined using nonparametric tests, with correction for multiple comparisons,
as appropriate. Survival analysis was performed using Kaplan–Meier survival curves, and
the differences between the curves were compared with the log-rank test. Numerical vari-
ables were categorized according to the median value. A p-value of <0.05 was considered
statistically significant. The analysis was performed with the statistical package STATA
11.0/SE (College Station, TX, USA) for Windows.

5. Conclusions

In this study, we provide the first comprehensive evaluation of class I and class II
HDAC isoforms expression profiles in a large cohort of TETs. Interesting results were
extracted regarding the levels and the subcellular localization of different HDACs among,
WHO histological types, Masaoka–Koga pathological stages, as well as their association
with patients’ prognoses. Thus, the precise identification of their expression patterns could
help in the more effective deployment of HDACs as determinants of patients’ survival, and
predictors of their response to HDAC-targeting agents, in the context of precision medicine.
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