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Abstract: Hepatocellular carcinoma (HCC) is the terminal phase of multiple chronic liver diseases,
and evidence supports chronic uncontrollable inflammation being one of the potential mechanisms
leading to HCC formation. The dysregulation of bile acid homeostasis in the enterohepatic circulation
has become a hot research issue concerning revealing the pathogenesis of the inflammatory-cancerous
transformation process. We reproduced the development of HCC through an N-nitrosodiethylamine
(DEN)-induced rat model in 20 weeks. We achieved the monitoring of the bile acid profile in
the plasma, liver, and intestine during the evolution of “hepatitis-cirrhosis-HCC” by using an
ultra-performance liquid chromatography-tandem mass spectrometer for absolute quantification
of bile acids. We observed differences in the level of primary and secondary bile acids both in
plasma, liver, and intestine when compared to controls, particularly a sustained reduction of intestine
taurine-conjugated bile acid level. Moreover, we identified chenodeoxycholic acid, lithocholic acid,
ursodeoxycholic acid, and glycolithocholic acid in plasma as biomarkers for early diagnosis of
HCC. We also identified bile acid-CoA:amino acid N-acyltransferase (BAAT) by gene set enrichment
analysis, which dominates the final step in the synthesis of conjugated bile acids associated with the
inflammatory-cancer transformation process. In conclusion, our study provided comprehensive bile
acid metabolic fingerprinting in the liver–gut axis during the inflammation-cancer transformation
process, laying the foundation for providing a new perspective for the diagnosis, prevention, and
treatment of HCC.

Keywords: hepatocellular carcinoma; inflammation-cancer transformation process; bile acids;
enterohepatic circulation; BAAT; liver–gut axis

1. Introduction

HCC is one of the most serious malignancy tumors threatening human health, the
third leading cause of cancer-related death in the world [1–3]. Persistent inflammation
leading to the formation of the tumor microenvironment is an important factor in the
formation of HCC, whose mechanism is very complicated. The morbidity trend of HCC
appears to be closely related to hepatitis B (HBV) infection, and it has been reported that
HCC patients caused by HBV still account for more than half of the global cases [4–6].
Although the inflammation-cancer transformation process of “hepatitis-cirrhosis-HCC” has
become a research highlight to reveal the pathogenesis of HCC, there is still no effective
clinical treatment strategy. Hence, it has become important to clarify the pathogenesis of
the process to achieve early diagnosis of HCC and identify new therapeutic targets.

Among the various endogenous metabolites originating from the co-metabolism of the
liver–gut axis, bile acids (BAs) have received increasing attention because of their neoplasm-
promoting properties [7–10]. BAs are synthesized in the liver, and the size and composition
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of the liver bile acid pool are closely regulated by translocation proteins [11]. When
liver organic solute transporter-alpha/beta (OSTα/OSTβ) expression is downregulated,
abnormal retention of BAs in hepatocytes within the organism occurs, leading to chronic
liver injury [12], while patients diagnosed with HCC between 13 and 52 months concerning
bile acid transporter deficiency resulted in a suppression of liver bile acid efflux [13]. In
addition to the effect of liver bile acid accumulation on hepatocarcinogenesis, disruption of
intestinal bile acid pool homeostasis can contribute to cancer development and a variety
of chronic disease phenotypes. Elevated levels of secondary BAs in feces are capable of
causing structural and functional abnormalities in the colonic epithelium through various
mechanisms, including oxidative damage to DNA, activation of nuclear factor kappa-B,
and enhanced cell proliferation [14]. However, depicting the spectrum of BAs and their
interactions in plasma, liver, and intestine, covering the entire enterohepatic circulation,
during the overall disease course of “health-hepatitis-cirrhosis-HCC” still requires research.

In this paper, based on an N,N-diethyl-1,4-butanediamine (DEABA) derivatization
method for absolute quantification of BAs, the systematic bile acid profiles in plasma, liver,
and intestine in the whole progression of HCC have been obtained. Combined with analysis
of independent sample t-tests, principal component analysis (PCA), orthogonal partial
least squares discrimination analysis (OPLS-DA), and bayesian linear discriminant analysis
(BLDA), key BAs biomarkers were screened out to distinguish different disease stages,
which was valuable for the early diagnosis of HCC. Next, gene set enrichment analysis
(GSEA) and the cancer genome atlas (TCGA) database were employed to explore the effect
of core genes on the distribution of bile acid pools, which was crucial for promoting the
development of HCC. Our study revealed the change of BAs in the liver–gut axis during
the inflammation-cancer transformation process and provided a novel perspective for
treating HCC.

2. Results
2.1. Histology Assessment and Total Bile Acid Features in the Inflammation-Cancer
Transformation Process

Changes in total bile acid (TBA) levels can reflect the physiological status and injury
degree of the organism. Studies have confirmed that the TBA profiles of patients with
HCC have unique metabolic characteristics, and the homeostasis of TBA is dependent on
liver synthesis and intestinal absorption [15,16]. To elucidate the etiopathogenesis of HCC
underlying TBA metabolism disorders, the present study evaluated the various canceration
stages of DEN-induced rats based on the results of hematoxylin-eosin (H & E) stained liver
tissue sections and quantified the TBA level in rats plasma, liver, and intestine at different
stages of HCC progression.

H & E staining showed that hepatocytes began to exhibit severe impairment in the 8th
week compared to healthy controls (Figure 1A), termed the hepatitis stage (Figure 1B). The
liver tissue was infiltrated with lymphocyte-dominated inflammatory cells, with a small
amount of bile duct hyperplasia and localized vascular stasis. The cirrhosis stage occurred
in the 12th week (Figure 1C), with an obvious structural disorder of liver lobules, the
proliferation of perivenous connective tissue, formation of pseudo lobules with hepatocyte
regeneration nodules, and bile duct hyperplasia. The 16th week was the initial stage of HCC
(Figure 1D). Microscopically, hepatocyte empty valve degeneration and a small number
of adenoid structures were observed, and a large amount of bile duct hyperplasia was
visible. At the same time, massive vascular stasis and brownish-yellow pigmentation were
observed. The 20th week was described as an advanced HCC stage (Figure 1E). The hepatic
tissue showed obvious adenoid structures, all cells had enlarged deep-stained nuclei, and
different degrees of vacuolar degeneration were observed.

Based on the histological results, we found that TBA levels significantly increased
in all disease groups (Figure 2A). The TBA level of intestinal contents samples gradually
decreased with disease progression, which showed an opposite trend to plasma and liver
samples (Hepatitis & Cirrhosis vs. Control ** p < 0.01; HCC & Advanced HCC vs. Control
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* p < 0.05), while the TBA levels in plasma and liver gradually increased in all stages
(* p < 0.05, ** p < 0.01). Therefore, we speculate that there is a close relationship between
the inflammation-cancer transformation process and enterohepatic circulation.
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Figure 1. Histological examination of the liver in DEN-induced HCC rats during the inflammation-
cancer transformation process. (A) The healthy control group showed a normal arrangement of liver
cells and a regular structure of liver lobules. (B–E) Representative micrographs of liver tissue sections
at various carcinogenic stages (H & E stain, ×200).
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Figure 2. The variations of TBA, total primary BAs, and total secondary BAs in different specimens
of DEN-induced HCC rats at healthy, hepatitis, cirrhosis, HCC, and advanced cancer stages. (A) TBA
concentrations were significantly higher than blank controls in plasma, liver, and intestinal contents
samples, and positively correlated with disease progression in plasma and liver. (B) The level change
of total primary BAs was basically identical between plasma, liver, and intestinal contents, which
were significantly elevated at all stages. (C) Total secondary BA levels were elevated in plasma and
intestinal contents samples while significantly decreased in liver samples over the full course of
the disease. The figure indicates statistical significance compared with healthy controls by t-tests.
* p < 0.05, ** p < 0.01.

To further analyze the specific reasons for the gradual decrease of TBA levels in the
intestine, we subsequently analyzed total primary and secondary BAs in plasma, liver,
and intestinal contents. We found that total primary and secondary BAs were markedly
elevated in plasma and intestinal contents. However, we observed a specific phenomenon
of elevated total primary BAs but decreased secondary BAs in liver samples only (* p < 0.05,
** p < 0.01). With the development of HCC, total primary BAs in the intestine decline in the
advanced HCC stages, in contrast to the continuous increment of total primary BAs in the
plasma and liver (Figure 2B). In addition, it is noteworthy that the total secondary BA level
in plasma and liver showed an abnormal rebound at the advanced HCC stage, which was
not seen in intestinal contents (Figure 2C).

2.2. Observing Liver–Gut Axis BAs Environment and Screening HCC Biomarkers for Early
Diagnosis

To figure out the key driving BAs for the evolving of HCC, we quantified the changes in
the levels of 5 free BAs (cholalic acid, CA; chenodeoxycholic acid, CDCA; ursodeoxycholic
acid, UDCA; lithocholic acid, LCA; deoxycholic acid, DCA; Figure 3), and their associated
10 conjugated BAs in plasma, liver, and intestine (Figure 4). The quantitative results of
15 BAs in plasma, liver, and intestinal contents samples from different disease stages
of HCC and healthy controls are included in Table S3, and the results are expressed as
mean ± SD.

For free BAs, we found the same trend in three samples, with a significant increase in
CA, CDCA, and DCA and a marked decline in LCA (* p < 0.05, ** p < 0.01). In addition,
the different phenomena in UDCA are noteworthy, which were reduced in the liver and
intestinal contents but elevated in plasma.

In rodents, free BAs are more likely to be coupled to taurine, the glycine-conjugated
BAs accounting for a small proportion of conjugated BAs [17]. The report supports that
glycine-conjugated BAs are present at low levels in rats [18]. Due to the low levels and
some errors in the quantitative analysis, individual disease groups did not show significant
differences compared to the control group. However, from an overall perspective, glyco-
cholic acid (GCA), glycochenodeoxycholic acid (GCDCA), glycodeoxycholic acid (GDCA),
glycolithocholic acid (GLCA), and glycoursodeoxycholic acid (GUDCA) all showed similar
trends to their prototypes in three samples (Figure 4A–E). Taurocholic acid (TCA), tau-
rochenodeoxycholic acid (TCDCA), tauroursodeoxycholic acid (TDCA), taurolithocholic
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acid (TLCA), and tauroursodeoxycholic acid (TUDCA) showed consistent trends concern-
ing prototypic BAs only in plasma and liver. Surprisingly, all five taurine-conjugated BAs
were reduced in the intestine and found a progressive decrease in TCA, TUDCA, and
TDCA with disease progression (* p < 0.05, ** p < 0.01, Figure 4F–J).
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Figure 3. Significant changes in the composition of the free bile acid pool in DEN-induced HCC
model rats. Hydrophobic BAs were elevated, and hydrophilic BAs were downregulated in the liver
(B) and intestinal contents (C). In addition, plasma (A) was elevated except for LCA. The figure
indicates statistical significance compared with healthy controls by t-tests, * p < 0.05, ** p < 0.01.
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Figure 4. The changes of conjugated BAs in the plasma and liver of DEN-induced model rats were
approximately the same as those of prototype BAs. However, the trend in intestinal contents was the
opposite, where all taurine-conjugated BAs were significantly reduced. (A–E): Distribution of glycio-
conjugated BAs in three samples. (F–J): Distribution of taurine-conjugated BAs in three samples. The
figure indicates statistical significance compared with healthy controls by t-tests, * p < 0.05, ** p < 0.01.

Next, the association between discrepancies in bile acid levels and inflammatory-
cancer transformation was established by two multivariate modeling approaches, PCA and
OPLS-DA. The results showed that they were distinguished by respective disease stages.
As the HCC progresses, the PCA score plot demonstrated a definite trend, confirming the
potential of BAs to predict disease staging (Figure 5A–C). Next, combining the contribution
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degree of OPLS-DA (VIP > 1) and the significance of independent t-test (p < 0.05), CDCA,
LCA, UDCA, and GLCA in plasma, and CDCA in liver and intestine were seen as biomark-
ers that have a positive role in the early diagnosis of HCC (Figure 5D–F). To date, liver
biopsy is currently the gold standard for early diagnosis of HCC, but patient acceptance
of this standard invasive technique is poor. A BLDA diagnostic model was constructed
by CDCA, LCA, UDCA, and GLCA in plasma to achieve non-invasive detection. The
coefficients of the four biomarkers and constants in the BLDA diagnostic model are listed
in Table 1. By substituting the bile acid concentrations into the respective equations, the
probability of being classified in the corresponding disease group was calculated. The
result indicated a reliable model; 86.7% of the samples could be correctly distinguished
(Table S4).
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Figure 5. (A–C): PCA score plots and (D–F): OPLS-DA score plots of plasma, liver, and intestinal
contents samples. In the PCA score plot, the distance between points indicates the difference between
samples. The fact that the disease groups are clustered together and separated from the healthy
groups indicates that the different groups in the experiment can be well distinguished from each other.
R2X and R2Y in the OPLS-DA score plot indicate the explanation rate of the proposed model for the
X and Y matrices, respectively, and Q2 marks the predictive power of the model. Usually, the values
of R2X, R2Y, and Q2 are higher than 0.5 can indicate that the model fits with acceptable accuracy.
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Table 1. The classification function coefficient by BLDA. The larger the constant of BAs, the more
significant the effect of abnormal metabolism of this substance on tumorigenesis.

Health
Control Hepatitis Cirrhosis Hepatocellular

Carcinoma
Advanced

HCC

CDCA 0.006 0.041 0.126 0.169 0.489
LCA 28.368 8.839 16.390 6.180 9.522

UDCA −0.026 0.058 0.018 0.038 0.097
GLCA 37.047 3.851 −4.336 −5.770 −32.010

Constant −17.575 −6.589 −20.411 −34.025 −264.774

2.3. BAAT was Associated with Altered Composition of the Intestinal BA Pool and Disruption of
Enterohepatic Circulation

To explore the potential mechanisms of bile acid metabolism changes in HCC patients
and to screen out valuable key target genes, 373 HCC samples and 50 healthy samples
from the TCGA database were involved in the present analysis. GSEA enrichment analysis
was used to screen out 15 gene sets related to the biological functions of bile acid (Table S5,
Figure S1). We obtained 125 genes from 15 gene sets to import into the STRING database to
complete the visualization of Protein-Protein Interaction (PPI) Networks with a confidence
level > 0.4 (Figure 6). Finally, Cytoscape software was applied to calculate the key node
genes based on the cyto Hubba plug-in and maximal clique centrality (MCC) algorithm,
the most core gene BAAT was obtained, ranking first.
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BAAT is the final modification before catalyzing the generation of conjugated BAs from
free BAs into the enterohepatic circulation [19]. Evidence indicates that BAAT promotes
glycine-conjugating BAs with extremely low efficiency but efficient conjugating with taurine
in rats [20,21]. The TCGA database supports that BAAT is significantly under-expressed in
HCC cases (** p < 0.01, Figure S2), suggesting that BAAT deficiency is partly responsible for
the decrease in taurine-conjugated BAs in the intestine, which would alter the composition
of the intestinal bile acid pool and increase its toxicity, thereby promoting the progression
of inflammation to HCC.

3. Discussion

In recent years, HBV infection has progressively developed into a major cause of HCC.
At the same time, 80–90% of new cases occur in the context of cirrhosis, suggesting that
hepatitis and cirrhosis play important roles in the precancerous liver environment [22,23]. It
is confirmed through research that early diagnosis of HCC by monitoring BAs may improve
prognosis and the feasibility of curative treatment [24]. Meanwhile, the bidirectional
communication of the liver–gut axis is an essential part of coordinating the dynamic balance
of the bile acid pool in the body [25]. However, there are few existing articles describing
whole bile acid profiling in enterohepatic circulation during the process of “hepatitis-
cirrhosis-HCC”. The pathogenesis of HCC has not been clear till now. We clarified the
four disease stages of HCC development based on the previous literature [26,27] and
histopathological analysis, first achieving the dual coverage monitoring of the dynamic
changes of bile acid levels and distribution during the enterohepatic circulation and the
evolution of “hepatitis-cirrhosis-HCC”, and found that the imbalance of the enterohepatic
circulation system was the key driver of the inflammation-cancer transformation process,
which contributes to cognitive the pathogenesis of HCC.

This study indicated a significant sludge of BAs in the liver–gut axis, while TBA levels
in plasma and liver are positively correlated with HCC progression. High levels of bile acid
environment have been known to induce reactive oxygen species production and apoptosis
in hepatocytes, further leading to impaired liver function [28]. It was accepted that the
gradual accumulation of TBA is a major risk factor for the development of HCC, while it is
well established that TBA levels and enterohepatic circulation profoundly influence each
other [29]. Enterohepatic circulation is the process by which BAs pass from the liver to the
intestine and then return to the liver through reabsorption from the portal vein [25,30]. The
above process is intricately linked to processes that mainly undergo extensive feedback
and feed-forward regulation by specialized absorption and excretion transport systems
in the liver and intestine [31]. Furthermore, defective expression and function of bile acid
export, as well as reabsorption, have been recognized as important causes of progressive
cholestasis in the liver and plasma [32,33]. BAs in the above process are circulated through
specialized absorption and excretion transport systems in the liver and intestine. Bile salt
export pump (BSEP) and multidrug resistance-associated protein (MRP2) are key transport
proteins for the hepatic efflux of BAs, while sodium bile acid/taurocholic synergistic
polypeptide (NTCP) and organic anion transport peptide (OATP) are the main transport
proteins in the liver responsible for uptake of circulating BAs in the portal vein [34,35].
Reports on patients with HCC also indicate that BSEP, MRP2, NTCP, and OATP expression
is downregulated [29,36], corroborating the disruption of enterohepatic circulation in the
development of HCC.

The intestine is the site of secondary BA synthesis. Primary BAs synthesized in the
liver are further metabolized in the intestine [37]. We provide dysregulation of the primary
and secondary BAs in the liver–gut axis, revealing a unique metabolic regulation of BAs
in the intestine. The organic solute transporter-alpha/beta (OSTα/OSTβ) are exporters of
BAs from the intestine and are an important link in enterohepatic circulation [38]. It has
been confirmed in the literature [39] that the absence of OSTα/OSTβ expression causes
an increased level of BAs in the intestinal contents as well as in the small intestine. Our
quantitative results showed that total secondary BAs were most significantly elevated
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in the intestine, in addition to being equally elevated in plasma but reduced in the liver,
a characteristic phenomenon that likewise suggests a deficiency of the liver bile acid
transport system.

Mechanisms underlying the failure of the intestinal barrier and the development of a
leaky gut are not fully understood. Still, abnormal retention of toxic BAs is recognized as
an important contributing factor [40–42]. Secondary BAs are generated from primary BAs
through reactions such as 7α-dehydroxylation, so they have the highest hydrophobicity
compared to all BAs, a property thought to be linked to hepatotoxicity [43]. On the
other side, secondary BAs and their derivatives are a major component of the intestinal
bile acid pool, and their elevation represents a change in the toxicity of the intestinal
bile acid pool [44]. With the progressive development of HCC, we concluded that due
to the large accumulation of secondary BAs in the intestinal epithelium, the intestinal
permeability is altered, which eventually causes intestinal fistula. Therefore, we believe
that the phenomenon of an abnormal rebound of total secondary bile acids in plasma and
the liver is caused by the development of intestinal fistula and the massive efflux of toxic
substances accumulated in the intestine at the advanced HCC stage. The above processes
also coincided with a progressive decrease of total and secondary BAs in the intestine of
the disease group.

CA and CDCA are two primary BAs, and DCA and LCA are secondary BAs from their
conversion, respectively. According to the report that the hydrophobic-hydrophilic balance
of BAs is closely related to metabolic homeostasis in vivo [45], more hydrophobic BAs can
act as cancer promoters and further amplify the development of HCC [46,47]. The high
hydrophobicity of CDCA and DCA makes them cytotoxic and pro-inflammatory [48,49].
CA is not highly hydrophobic, but studies have shown that feeding mice with CA increases
the size and hydrophobicity of the bile acid pool while causing cholestasis and hepatic
steatosis [50]. LCA also has hydrophobic properties, but that’s a small fraction of BAs.
UDCA is a primary bile acid in rats, a non-toxic hydrophilic bile acid [51]. Evidence
supports the ability of UDCA to accelerate enterohepatic circulation and its cytoprotective
properties [52,53]. Therefore, the elevation of CA, CDCA, and DCA in the liver and
intestine and the downregulation of LCA and UDCA imply a hydrophobic change in
the composition of BAs and a progressive accumulation of toxic BAs that inhibit the
enterohepatic circulation. Bile flow is primarily dependent on the drive of conjugated BAs.
Congenital defects in BA conjugating can lead to malabsorption of fat-soluble vitamins
and, thus, severe liver disease [54,55]. BAAT is the key enzyme capable of mediating bile
acid coupling [19]. As mentioned earlier, it has been demonstrated that BAAT -/- mice are
almost completely devoid of taurine-conjugated BAs in the liver, suggesting that BAAT
is the primary taurine-coupled enzyme in mice [56,57]. Our figures showed that the TBA
level in the intestines remained significantly elevated. At the same time, all the taurine-
conjugated BAs were continuously reductive in the intestine of model rats. We speculate
that the down-regulation of BAAT expression is the key reason for the above phenomenon.
Consistent with this, the gene enrichment results confirm our previous speculation about
the variation of taurine-conjugated BAs level in the intestine.

4. Materials and Methods
4.1. Reagents

Acetonitrile, isopropanol, and methanol were purchased from Fisher Scientific (Fair
Lawn, NJ, USA), while formic acid, dimethyl sulfoxide, and acetone were purchased
from Yuwang Co. Ltd. (Yucheng, China). The distilled water used in the experiments
was purchased from Wahaha Group Co., Ltd. (Hangzhou, China). DEN used in animal
experiments was purchased from Sigma-Aldrich (St. Louis, MO, USA).

The commercial standards selected for this study, the bile acid used for quantitative
analysis, their abbreviations, CAS numbers, and manufacturers are included in Table S1.
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4.2. Animals

For this study, Wistar male rats, weighing 100 ± 20 g, purchased from by the Animal
Ethical Committee of Changsheng Biotechnology (IACUC No. CSE202106002), were used
and provided a constant relative humidity of 65 ± 15% and a temperature of 23 ± 2 ◦C
environment with 12 h-light dark cycles. At the same time, the rats have full access to
food and water. The rats were fed and acclimatized to their environment for one week
prior to the experiment. Then, 64 rats were randomly divided into two groups, the HCC
model group and the healthy control group. Rats in the model group (n = 32) were injected
intraperitoneally with DEN solution at a dose of 70 mg/kg once a week for 10 weeks, while
rats in the control group (n = 32) were injected intraperitoneally with an equal volume of
saline as a control.

4.3. Histopathological Analysis

Liver tissue sections were deparaffinized with xylene and dehydrated in ethanol.
Making tissue into 3 µm slice samples and then stained with H&E. Images were acquired
using a NIKON digital sight DS-FI2 imaging system after observation with a NIKON
Eclipse ci optical microscope.

4.4. UFLC-MS/MS Conditions for Quantitation of BAs

A previously published method by our group was used to quantify the BAs [58]. The
method was based on a polar response homogeneous dispersion strategy with DEABA la-
beling, which reduces the polarity and response gap of the analytes and improves selectivity
compared to non-derivatization. The ultra-performance liquid chromatography—tandem
mass spectrometer (UPLC-MS/MS) systems and chromatographic column were used for
the analysis, and liquid phase conditions can be found in previous methods. The posi-
tive ion gradient elution program was: 0.01–10.00 min, 20%B→50%B; 10.00–17.00 min,
50%B→85%B; 17.00–22.00 min, 85%B→90%B. The negative ion gradient elution pro-
gram was 0.01–4.00 min, 20%B→35%B; 4.00–6.00 min, 35%B→70%B; 6.00–10.00 min,
70%B→85%B. 10.00–10.10 min, 85%B→90%B, and continued with 90% B running at 10.10–
12.00 min.

We used the electrospray ionization (ESI) source in both positive and negative ion
form to accomplish the analysis and determination of BAs by multiple reaction monitoring
(MRM) modes. The ion spray voltage was 5500 V(+)/4500 V(−), and the other parameters
of the mass spectrum were as follows: curtain gas (N2), 20 psi; nebulizer gas (gas 1, N2),
50 psi; heater gas (gas 2, N2), 50 psi; and source temperature, 500 ◦C(+)/500 ◦C(−). The
corresponding mass spectrometer (MS) parameters for the 15 BAs can be found in Table S2.

4.5. Sample Collection and Pretreatment

For plasma samples, the whole blood samples were collected from each group follow-
ing forbidden food for 12 h, placed in heparinized sterile eppendorf tubes, and centrifuged
at 10,142× g for 10 min at 4 ◦C to transfer plasma. Then, BAs were extracted from plasma
samples as described in the previous method [58].

For liver samples, rats in each group were killed by cervical dislocation after plasma
collection. Liver tissue was immediately peeled out, bathed in physiological saline, blotted
through filter paper, and transferred to a dry ice box soon afterward. Liver tissue samples
(50.00 ± 0.50 mg each) were homogenized in 100 µL physiological saline for 5 cycles
(5 s at 300 w, with 3 s between each cycle) by using an ultrasonic cell disruptor (JY92-
IIDN, SCIENTZ, Zhengjiang, China) in an ice bath. One liver homogenate was added to
10 µL of internal standard and 10 µL of methanol, the same internal standard used for
plasma samples. After vortex shaking for 30 s, 500 µL of precipitated protein reagent,
methanol:isopropanol (v/v, 1:2), was added. The homogenate was centrifuged (4 ◦C,
10,142× g) with vortex shaking for 5 min for 10 min, and the upper layer was dried under
a stream of nitrogen. The dried liver samples were derivatized in the same manner as the
plasma samples and then subjected to subsequent analysis.
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For intestinal contents samples, on the day before the rats were killed, the rats were
placed in metabolic cages to collect 24 h intestinal contents. The collected intestinal contents
samples were lyophilized for 48 h and ground into powder. 50 mg ± 0.50 mg was taken
from intestinal contents lyophilized powder and spiked with 500 µL of physiological saline,
then vortexed for 10 min to obtain Intestinal contents homogenate. The pretreatment
procedure for intestinal contents samples was approximately the same as for liver samples.
The difference is that for protein precipitation, 600 µL of methanol:acetonitrile:acetone
(v/v/v, 1:1:1) was added to the intestinal contents sample, and the supernatant before
drying was filtered through 0.22 µm organic filter membrane. The dried intestinal contents
sample were derivatized in the same manner as the plasma samples and then subjected to
subsequent analysis.

4.6. Gene Enrichment Analysis

We collected samples from The TCGA genomic data commons data portal (https:
//portal.gdc.cancer.gov/ (accessed on 15 September 2022)) and obtained their RNA se-
quencing fragments per kilobase million data.

In this study, we selected the gene sets associated with biological functions of bile acid
(shown in Table S3) from the GSEA data set (https://www.gsea-msigdb.org/ (accessed on
5 September 2022)) and performed enrichment analysis between the two groups by GSEA
software (version 4.2.3). Among them, gene sets whose p-value < 0.05, false discovery rate
(FDR) < 0.05, and normalized enrichment score (NES) > 1.5 were collected for subsequence
procession. We visualized the PPI network using STRING 11.5 (https://cn.string-db.org/
(accessed on 18 November 2022 )) and the cytoHubba plug-in of Cytoscape (version 3.9.1)
software for screening key genes.

4.7. Statistical Analysis

The generated raw data files were processed using the Analyst® application (version
1.5.1, AB SCIEX™, Foster City, CA, USA), based on which standard curves were created, and
all BAs were quantified. The significant differences between the experimental groups were
determined using the SPSS Statistics (version 26.0, CHI, Chicago, IL, USA) and GraphPad
Prism (version 9.2.0, GraphPad Software Inc., San Diego, CA, USA). The BLDA discriminant
analysis was carried out with SPSS software, while PCA and OPLS-DA analysis used the
SIMCA-P program (version 14.1, Umetrics, Malmö, Sweden). When the p-value < 0.05 or
less, we considered the data evidently different and statistically significant.

5. Conclusions

In this study, we achieved a dual coverage monitoring of the bile acid profile in
the liver–gut axis throughout the whole inflammation-cancer transformation progression.
We found that the enterohepatic circulation is disrupted during HCC development after
intensively researching the differences in levels of TBA, primary/secondary BAs, and single
BAs. Next, we used GSEA gene enrichment analysis to obtain the key node gene BAAT,
which dominates the synthesis of taurine-conjugated BAs in rats. We also validated our
specific phenomenon of taurine-conjugated BAs in the intestine.

In summary, our results suggest that the disruption of the enterohepatic circulation
in the internal environment is an important factor dominating the inflammation-cancer
transformation process. The lack of BAAT may be one of the potential mechanisms inter-
rupting the enterohepatic circulation. Additionally, we developed the BLAD diagnostic
model, and found that GLCA, CDCA, UDCA, and LCA in plasma samples can be used
as biomarkers to distinguish the different disease stages of HCC, enabling early diagnosis
of HCC from the perspective of non-invasive detection. However, immunotherapy has
been a hot research topic for treating HCC. It has been recently suggested that regulatory T
cells, the most abundant immunosuppressive cell population of the HCC-related tumor mi-
croenvironment, might suggest a potential target for HCC immunotherapy [59]. Evidence
supports that intestinal flora influences the differentiation, accumulation, and function

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.gsea-msigdb.org/
https://cn.string-db.org/
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of regulatory T cells [60], and the influence of intestinal flora on BAs metabolism is well
established [61,62]. In future studies, it is of great interest and necessity to focus on the link
between BAs metabolism, intestinal flora, and the immune cell population of the tumor
microenvironment, which will contribute to the further development of HCC therapy.
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BAAT Bile acid-CoA:amino acid N-acyltransferase
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OSTα/OSTβ Organic solute transporter-alpha/beta
BSEP Bile salt output pump
MRP2 Multidrug resistance-associated protein 2
NTCP Sodium bile acid/taurocholic synergistic polypeptide
OATP Organic anion transport peptide
PCA Principal component analysis
OPLS-DA Orthogonal partial least squares discrimination analysis
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FDR False discovery rate
NES Normalized enrichment score
PPI Protein-protein Interaction
MCC Maximal clique centrality
DEABA N,N-diethyl-1,4-butanediamine
UPLC-MS/MS Ultra-performance liquid chromatography—tandem mass spectrometer
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MRM Multiple reaction monitoring
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